Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 17 de 17
Filtrer
1.
Int J Mol Med ; 53(1)2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-38038161

RÉSUMÉ

Schizophrenia (SZ) is a multifactorial disorder characterized by volume reduction in gray and white matter, oxidative stress, neuroinflammation, altered neurotransmission, as well as molecular deficiencies such as punctual mutation in Disrupted­in­Schizophrenia 1 protein. In this regard, it is essential to understand the underlying molecular disturbances to determine the pathophysiological mechanisms of the disease. The signaling pathways activated by G protein­coupled receptors (GPCRs) are key molecular signaling pathways altered in SZ. Convenient models need to be designed and validated to study these processes and mechanisms at the cellular level. Cultured olfactory stem cells are used to investigate neural molecular and cellular alterations related to the pathophysiology of SZ. Multipotent human olfactory stem cells are undifferentiated and express GPCRs involved in numerous physiological functions such as proliferation, differentiation and bioenergetics. The use of olfactory stem cells obtained from patients with SZ may identify alterations in GPCR signaling that underlie dysfunctional processes in both undifferentiated and specialized neurons or derived neuroglia. The present review aimed to analyze the role of GPCRs and their signaling in the pathophysiology of SZ. Culture of olfactory epithelial cells constitutes a suitable model to study SZ and other psychiatric disorders at the cellular level.


Sujet(s)
Schizophrénie , Humains , Schizophrénie/génétique , Schizophrénie/métabolisme , Cellules neuroépithéliales/métabolisme , Neurones/métabolisme , Récepteurs couplés aux protéines G , Cellules souches/métabolisme
2.
World J Psychiatry ; 12(2): 264-285, 2022 Feb 19.
Article de Anglais | MEDLINE | ID: mdl-35317338

RÉSUMÉ

Schizophrenia and bipolar disorder are disabling psychiatric disorders with a worldwide prevalence of approximately 1%. Both disorders present chronic and deteriorating prognoses that impose a large burden, not only on patients but also on society and health systems. These mental illnesses share several clinical and neurobiological traits; of these traits, oligodendroglial dysfunction and alterations to white matter (WM) tracts could underlie the disconnection between brain regions related to their symptomatic domains. WM is mainly composed of heavily myelinated axons and glial cells. Myelin internodes are discrete axon-wrapping membrane sheaths formed by oligodendrocyte processes. Myelin ensheathment allows fast and efficient conduction of nerve impulses through the nodes of Ranvier, improving the overall function of neuronal circuits. Rapid and precisely synchronized nerve impulse conduction through fibers that connect distant brain structures is crucial for higher-level functions, such as cognition, memory, mood, and language. Several cellular and subcellular anomalies related to myelin and oligodendrocytes have been found in postmortem samples from patients with schizophrenia or bipolar disorder, and neuroimaging techniques have revealed consistent alterations at the macroscale connectomic level in both disorders. In this work, evidence regarding these multilevel alterations in oligodendrocytes and myelinated tracts is discussed, and the involvement of proteins in key functions of the oligodendroglial lineage, such as oligodendrogenesis and myelination, is highlighted. The molecular components of the axo-myelin unit could be important targets for novel therapeutic approaches to schizophrenia and bipolar disorder.

3.
Int J Mol Sci ; 22(17)2021 Aug 26.
Article de Anglais | MEDLINE | ID: mdl-34502152

RÉSUMÉ

Major depressive disorder is a disabling disease with the number of affected individuals increasing each year. Current antidepressant treatments take between three to six weeks to be effective with forty percent of patients being resistant to treatment, making it necessary to search for new antidepressant treatments. Ketamine, a phencyclidine hydrochloride derivative, given intravenously, induces a rapid antidepressant effect in humans. In mice, it causes increased neurogenesis and antidepressant-like effects. However, it also produces psychomimetic effects in humans and in rodents increases the locomotor activity. In contrast, melatonin, a hormone secreted by the pineal gland and synthesized in extrapineal sites, increases new neuron formation and causes antidepressant-like effects in adult rodents with no collateral effects. Here, we assessed the effects of a non-effective dose of ketamine in combination with melatonin (KET/MEL), both on neurogenesis as well as on the antidepressant-like effect in mice. Our results showed that KET/MEL combination increased neurogenesis and produced antidepressant-like effects without altering locomotor activity after both single and triple administration protocols. Our data strongly suggest that KET/MEL combination could be used to simultaneously promote neurogenesis, reverting neuronal atrophy and inducing antidepressant-like effects.


Sujet(s)
Antidépresseurs/usage thérapeutique , Dépression/traitement médicamenteux , Kétamine/usage thérapeutique , Mélatonine/usage thérapeutique , Animaux , Antidépresseurs/administration et posologie , Antidépresseurs/pharmacologie , Association médicamenteuse , Synergie des médicaments , Kétamine/administration et posologie , Kétamine/pharmacologie , Mâle , Mélatonine/administration et posologie , Mélatonine/pharmacologie , Souris , Neurogenèse/effets des médicaments et des substances chimiques
4.
Molecules ; 25(23)2020 Nov 25.
Article de Anglais | MEDLINE | ID: mdl-33255515

RÉSUMÉ

The pro-oxidant compound okadaic acid (OKA) mimics alterations found in Alzheimer's disease (AD) as oxidative stress and tau hyperphosphorylation, leading to neurodegeneration and cognitive decline. Although loss of dendrite complexity occurs in AD, the study of this post-synaptic domain in chemical-induced models remains unexplored. Moreover, there is a growing expectation for therapeutic adjuvants to counteract these brain dysfunctions. Melatonin, a free-radical scavenger, inhibits tau hyperphosphorylation, modulates phosphatases, and strengthens dendritic arbors. Thus, we determined if OKA alters the dendritic arbors of hilar hippocampal neurons and whether melatonin prevents, counteracts, or reverses these damages. Rat organotypic cultures were incubated with vehicle, OKA, melatonin, and combined treatments with melatonin either before, simultaneously, or after OKA. DNA breaks were assessed by TUNEL assay and nuclei were counterstained with DAPI. Additionally, MAP2 was immunostained to assess the dendritic arbor properties by the Sholl method. In hippocampal hilus, OKA increased DNA fragmentation and reduced the number of MAP2(+) cells, whereas melatonin protected against oxidation and apoptosis. Additionally, OKA decreased the dendritic arbor complexity and melatonin not only counteracted, but also prevented and reversed the dendritic arbor retraction, highlighting its role in post-synaptic domain integrity preservation against neurodegenerative events in hippocampal neurons.


Sujet(s)
Dendrites/effets des médicaments et des substances chimiques , Dendrites/métabolisme , Hippocampe/effets des médicaments et des substances chimiques , Hippocampe/métabolisme , Mélatonine/pharmacologie , Acide okadaïque/pharmacologie , Oxydants/pharmacologie , Animaux , Fragmentation de l'ADN , Dendrites/anatomopathologie , Immunohistochimie , Neuroprotecteurs/pharmacologie , Organoïdes/effets des médicaments et des substances chimiques , Oxydoréduction , Stress oxydatif , Rats , Espèces réactives de l'oxygène/métabolisme
5.
Cell Mol Neurobiol ; 40(1): 87-98, 2020 Jan.
Article de Anglais | MEDLINE | ID: mdl-31414299

RÉSUMÉ

Histopathological hallmarks of dementia have been described postmortem in the brain of patients with Alzheimer's disease (AD). Tau, a microtubule associated protein, is abnormally arranged in neurofibrillary tangles. In living AD patients, total tau (t-tau) and hyperphosphorylated tau (p-tau) levels are increased in the cerebrospinal fluid obtained by lumbar puncture. Herein, we studied the t-tau and p-tau levels as well as the subcellular distribution of t-tau in olfactory neuronal precursors obtained by exfoliation of the nasal cavity of AD patients and control participants. Data showed that t-tau and p-tau levels were increased in cell homogenates from AD patients. Also, t-tau immunoreactivity was arranged in a punctate pattern in olfactory neuronal precursors derived from an AD participant with 5 years of evolution and in the oldest participants, either control subjects or those with Alzheimer's disease. Results support that exfoliated neuronal precursors have tau alterations demonstrated in postmortem brain and in the cerebrospinal fluid. This evidence and because the obtainment of olfactory neuronal precursors is a noninvasive procedure, detection of tau alterations shown here might be useful for an early diagnosis of AD-type dementia.


Sujet(s)
Maladie d'Alzheimer/diagnostic , Cellules souches neurales/anatomopathologie , Bulbe olfactif/anatomopathologie , Sujet âgé , Sujet âgé de 80 ans ou plus , Calibrage , Cellules cultivées , Femelle , Humains , Mâle , Adulte d'âge moyen , Fosse nasale/anatomopathologie , Phosphorylation , Projets pilotes , Protéines recombinantes/métabolisme , Protéines tau/métabolisme
6.
Stem Cells Int ; 2019: 2728786, 2019.
Article de Anglais | MEDLINE | ID: mdl-31065271

RÉSUMÉ

Extracellular ATP and trophic factors released by exocytosis modulate in vivo proliferation, migration, and differentiation in multipotent stem cells (MpSC); however, the purinoceptors mediating this signaling remain uncharacterized in stem cells derived from the human olfactory epithelium (hOE). Our aim was to determine the purinergic pathway in isolated human olfactory neuronal precursor cells (hONPC) that exhibit MpSC features. Cloning by limiting dilution from a hOE heterogeneous primary culture was performed to obtain a culture predominantly constituted by hONPC. Effectiveness of cloning to isolate MpSC-like precursors was corroborated through immunodetection of specific protein markers and by functional criteria such as self-renewal, proliferation capability, and excitability of differentiated progeny. P2 receptor expression in hONPC was determined by Western blot, and the role of these purinoceptors in the ATP-induced exocytosis and changes in cytosolic Ca2+ ([Ca2+]i) were evaluated using the fluorescent indicators FM1-43 and Fura-2 AM, respectively. The clonal culture was enriched with SOX2 and OCT3/4 transcription factors; additionally, the proportion of nestin-immunopositive cells, the proliferation capability, and functionality of differentiated progeny remained unaltered through the long-term clonal culture. hONPC expressed P2X receptor subtypes 1, 3-5, and 7, as well as P2Y2, 4, 6, and 11; ATP induced both exocytosis and a transient [Ca2+]i increase predominantly by activation of metabotropic P2Y receptors. Results demonstrated for the first time that ex vivo-expressed functional P2 receptors in MpSC-like hONPC regulate exocytosis and Ca2+ signaling. This purinergic-triggered release of biochemical messengers to the extracellular milieu might be involved in the paracrine signaling among hOE cells.

7.
Int J Mol Sci ; 19(8)2018 Aug 03.
Article de Anglais | MEDLINE | ID: mdl-30081472

RÉSUMÉ

Melatonin is synthesized by the pineal gland with a circadian rhythm in synchrony with the environmental light/dark cycle. A gradual increase in circulating levels of melatonin occur after lights off, reaching its maximum around the middle of the dark phase. Agonists of melatonin receptors have proved effectiveness as antidepressants in clinical trials. However, there is contradictory evidence about the potential antidepressant effect of melatonin itself. Herein we studied melatonin administration in mice at two zeitgeber times (ZT; ZT = 0 lights on; 12:12 L/D), one hour before the beginning (ZT11) and at the middle (ZT18) of the dark phase after either a single or a three-dose protocol. Behavioral despair was assessed through a forced-swimming test (FST) or a tail suspension test (TST), at ZT18.5. A single dose of 4 mg/kg melatonin at ZT11 was effective to reduce the immobility time in both tests. However, acute administration of melatonin at ZT18 was not effective in mice subjected to FST, and a higher dose (16 mg/kg) was required to reduce immobility time in the TST. A three-dose administration protocol of 16 mg/kg melatonin (ZT18, ZT11, and ZT18) significantly reduced immobility time in FST. Data indicate that the timely administration of melatonin could improve its antidepressant-like effect.


Sujet(s)
Antidépresseurs/usage thérapeutique , Mélatonine/usage thérapeutique , Animaux , Antidépresseurs/sang , Dépression/traitement médicamenteux , Modèles animaux de maladie humaine , Suspension des membres postérieurs , Mâle , Mélatonine/sang , Souris , Natation/physiologie
8.
Int J Mol Sci ; 19(7)2018 Jul 23.
Article de Anglais | MEDLINE | ID: mdl-30041485

RÉSUMÉ

Melatonin (MEL) is an ancient molecule, broadly distributed in nature from unicellular to multicellular species. MEL is an indoleamine that acts on a wide variety of cellular targets regulating different physiological functions. This review is focused on the role played by this molecule in the regulation of the circadian rhythms in crayfish. In these species, information about internal and external time progression might be transmitted by the periodical release of MEL and other endocrine signals acting through the pacemaker. We describe documented and original evidence in support of this hypothesis that also suggests that the rhythmic release of MEL contributes to the reinforcement of the temporal organization of nocturnal or diurnal circadian oscillators. Finally, we discuss how MEL might coordinate functions that converge in the performance of complex behaviors, such as the agonistic responses to establish social dominance status in Procambarus clarkii and the burrowing behavior in the secondary digging crayfish P. acanthophorus.


Sujet(s)
Astacoidea/physiologie , Rythme circadien , Mélatonine/métabolisme , Animaux , Astacoidea/métabolisme , Comportement animal
9.
Br J Pharmacol ; 175(16): 3200-3208, 2018 08.
Article de Anglais | MEDLINE | ID: mdl-29512136

RÉSUMÉ

Mood disorders are a spectrum of neuropsychiatric disorders characterized by changes in the emotional state. In particular, major depressive disorder is expected to have a worldwide prevalence of 20% in 2020, representing a huge socio-economic burden. Currently used antidepressant drugs have poor efficacy with only 30% of the patients in remission after the first line of treatment. Importantly, mood disorder patients present uncoupling of circadian rhythms. In this regard, melatonin (5-methoxy-N-acetyltryptamine), an indolamine synthesized by the pineal gland during the night, contributes to synchronization of body rhythms with the environmental light/dark cycle. In this review, we describe evidence supporting antidepressant-like actions of melatonin related to the circadian modulation of neuroplastic changes in the hippocampus. We also present evidence for the role of melatonin receptors and their signalling pathways underlying modulatory effects in neuroplasticity. Finally, we briefly discuss the detrimental consequences of circadian disruption on neuroplasticity and mood disorders, due to the modern human lifestyle. Together, data suggest that melatonin's stimulation of neurogenesis and neuronal differentiation is beneficial to patients with mood disorders. LINKED ARTICLES: This article is part of a themed section on Recent Developments in Research of Melatonin and its Potential Therapeutic Applications. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.16/issuetoc.


Sujet(s)
Rythme circadien/physiologie , Dépression/traitement médicamenteux , Mélatonine/physiologie , Plasticité neuronale/physiologie , Animaux , Dépression/métabolisme , Dépression/physiopathologie , Acide glutamique/métabolisme , Hippocampe/effets des médicaments et des substances chimiques , Hippocampe/métabolisme , Humains , Mélatonine/usage thérapeutique
10.
Int J Mol Sci ; 18(7)2017 Jul 13.
Article de Anglais | MEDLINE | ID: mdl-28703738

RÉSUMÉ

The alterations that underlie the pathophysiology of schizophrenia (SCZ) include the dysregulation of structural and functional properties of neurons. Among these, the secretion of neurotransmitters and hormones, which plays a key role for neuronal communication and development, is altered. Neuronal precursors from the human olfactory epithelium have been recently characterized as a reliable model for studying the etiopathogenesis of neuropsychiatric diseases. Our previous work has shown that melatonin enhances the development of morphological and functional features of cloned olfactory neuronal precursors (ONPs) from a healthy subject. In this work we found that primary cultures of ONPs obtained from a schizophrenic patient display an increased potassium-evoked secretion, when compared with ONPs from an age- and gender-matched healthy control subject (HCS). Secretion was evaluated by FM1-43 fluorescence cumulative changes in response to depolarization. Interestingly, a 12 h-melatonin treatment modulated the abnormally increased secretion in SCZ ONPs and brought it to levels similar to those found in the HCS ONPs. Our results suggest that the actin cytoskeleton might be a target for melatonin effects, since it induces the thickening of actin microfilament bundles. Further research will address the mechanisms by which melatonin modulates neurochemical secretion from ONPs.


Sujet(s)
Mélatonine/pharmacologie , Cellules souches neurales/métabolisme , Muqueuse olfactive/anatomopathologie , Schizophrénie/anatomopathologie , Cytosquelette d'actine/métabolisme , Adulte , Calcium/pharmacologie , Humains , Mâle , Cellules souches neurales/effets des médicaments et des substances chimiques , Projets pilotes , Potassium/pharmacologie , Vésicules de sécrétion/effets des médicaments et des substances chimiques , Vésicules de sécrétion/métabolisme , Synapses/métabolisme , Synaptobrévine-1/métabolisme , Synaptobrévine-2/métabolisme
11.
J Pineal Res ; 63(3)2017 Oct.
Article de Anglais | MEDLINE | ID: mdl-28500770

RÉSUMÉ

Dim light exposure of the mother during pregnancy has been proposed as one of the environmental factors that affect the fetal brain development in schizophrenia. Melatonin circulating levels are regulated by the environmental light/dark cycle. This hormone stimulates neuronal differentiation in the adult brain. However, little is known about its role in the fetal human brain development. Olfactory neuronal precursors (ONPs) are useful for studying the physiopathology of neuropsychiatric diseases because they mimic all the stages of neurodevelopment in culture. Here, we first characterized whether melatonin stimulates neuronal differentiation in cloned ONPs obtained from a healthy control subject (HCS). Then, melatonin effects were evaluated in primary cultures of ONPs derived from a patient diagnosed with schizophrenia (SZ) and an age- and gender-matched HCS. Axonal formation was evidenced morphologically by tau immunostaining and by GSK3ß phosphorylated state. Potassium-evoked secretion was assessed as a functional feature of differentiated neurons. As well, we report the expression of MT1/2 receptors in human ONPs for the first time. Melatonin stimulated axonal formation and ramification in cloned ONPs through a receptor-mediated mechanism and enhanced the amount and velocity of axonal and somatic secretion. SZ ONPs displayed reduced axogenesis associated with lower levels of pGSK3ß and less expression of melatonergic receptors regarding the HCS ONPs. Melatonin counteracted this reduction in SZ cells. Altogether, our results show that melatonin signaling is crucial for functional differentiation of human ONPs, strongly suggesting that a deficit of this indoleamine may lead to an impaired neurodevelopment which has been associated with the etiology of schizophrenia.


Sujet(s)
Mélatonine/physiologie , Cellules neuroépithéliales/physiologie , Excroissance neuronale , Schizophrénie/étiologie , Axones/métabolisme , Études cas-témoins , Polarité de la cellule , Cellules cultivées , Récepteurs à la mélatonine/métabolisme , Synapses/physiologie
12.
J Pineal Res ; 62(4)2017 May.
Article de Anglais | MEDLINE | ID: mdl-28226198

RÉSUMÉ

Second generation antipsychotics (SGA) are associated with adverse cardiometabolic side effects contributing to premature mortality in patients. While mechanisms mediating these cardiometabolic side effects remain poorly understood, three independent studies recently demonstrated that melatonin was protective against cardiometabolic risk in SGA-treated patients. As one of the main target areas of circulating melatonin in the brain is the suprachiasmatic nucleus (SCN), we hypothesized that the SCN is involved in SGA-induced early cardiovascular effects in Wistar rats. We evaluated the acute effects of olanzapine and melatonin in the biological clock, paraventricular nucleus and autonomic nervous system using immunohistochemistry, invasive cardiovascular measurements, and Western blot. Olanzapine induced c-Fos immunoreactivity in the SCN followed by the paraventricular nucleus and dorsal motor nucleus of the vagus indicating a potent induction of parasympathetic tone. The involvement of a SCN-parasympathetic neuronal pathway after olanzapine administration was further documented using cholera toxin-B retrograde tracing and vasoactive intestinal peptide immunohistochemistry. Olanzapine-induced decrease in blood pressure and heart rate confirmed this. Melatonin abolished olanzapine-induced SCN c-Fos immunoreactivity, including the parasympathetic pathway and cardiovascular effects while brain areas associated with olanzapine beneficial effects including the striatum, ventral tegmental area, and nucleus accumbens remained activated. In the SCN, olanzapine phosphorylated the GSK-3ß, a regulator of clock activity, which melatonin prevented. Bilateral lesions of the SCN prevented the effects of olanzapine on parasympathetic activity. Collectively, results demonstrate the SCN as a key region mediating the early effects of olanzapine on cardiovascular function and show melatonin has opposing and potentially protective effects warranting additional investigation.


Sujet(s)
Benzodiazépines/toxicité , Horloges biologiques/effets des médicaments et des substances chimiques , Mélatonine/usage thérapeutique , Animaux , Dépresseurs du système nerveux central/pharmacologie , Dépresseurs du système nerveux central/usage thérapeutique , Hémodynamique/effets des médicaments et des substances chimiques , Immunohistochimie , Mâle , Mélatonine/pharmacologie , Noyau accumbens/effets des médicaments et des substances chimiques , Olanzapine , Protéines proto-oncogènes c-fos/métabolisme , Rats , Rat Wistar , Noyau suprachiasmatique/effets des médicaments et des substances chimiques , Aire tegmentale ventrale/effets des médicaments et des substances chimiques
13.
Int J Mol Sci ; 17(6)2016 Jun 14.
Article de Anglais | MEDLINE | ID: mdl-27314332

RÉSUMÉ

In adulthood, differentiation of precursor cells into neurons continues in several brain structures as well as in the olfactory neuroepithelium. Isolated precursors allow the study of the neurodevelopmental process in vitro. The aim of this work was to determine whether the expression of functional Voltage-Activated Ca(2+) Channels (VACC) is dependent on the neurodevelopmental stage in neuronal cells obtained from the human olfactory epithelium of a single healthy donor. The presence of channel-forming proteins in Olfactory Sensory Neurons (OSN) was demonstrated by immunofluorescent labeling, and VACC functioning was assessed by microfluorometry and the patch-clamp technique. VACC were immunodetected only in OSN. Mature neurons responded to forskolin with a five-fold increase in Ca(2+). By contrast, in precursor cells, a subtle response was observed. The involvement of VACC in the precursors' response was discarded for the absence of transmembrane inward Ca(2+) movement evoked by step depolarizations. Data suggest differential expression of VACC in neuronal cells depending on their developmental stage and also that the expression of these channels is acquired by OSN during maturation, to enable specialized functions such as ion movement triggered by membrane depolarization. The results support that VACC in OSN could be considered as a functional marker to study neurodevelopment.


Sujet(s)
Canaux calciques/métabolisme , Cellules neuroépithéliales/métabolisme , Neurogenèse , Neurorécepteurs olfactifs/métabolisme , Schizophrénie/métabolisme , Marqueurs biologiques/métabolisme , Canaux calciques/génétique , Cellules cultivées , Femelle , Humains , Cellules neuroépithéliales/cytologie , Neurorécepteurs olfactifs/cytologie , Schizophrénie/diagnostic
14.
Int J Mol Sci ; 16(1): 1907-27, 2015 Jan 16.
Article de Anglais | MEDLINE | ID: mdl-25603176

RÉSUMÉ

Melatonin (MEL), the main product synthesized by the pineal gland, stimulates early and late stages of neurodevelopment in the adult brain. MEL increases dendrite length, thickness and complexity in the hilar and mossy neurons of hippocampus. Dendrite formation involves activation of Ca2+/Calmodulin (CaM)-dependent kinase II (CaMKII) by CaM. Previous work showed that MEL increased the synthesis and translocation of CaM, suggesting that MEL activates CaM-dependent enzymes by this pathway. In this work we investigated whether MEL stimulates dendrite formation by CaMKII activation in organotypic cultures from adult rat hippocampus. We found that the CaMKII inhibitor, KN-62, abolished the MEL stimulatory effects on dendritogenesis and that MEL increased the relative amount of CaM in the soluble fraction of hippocampal slices. Also, PKC inhibition abolished dendritogenesis, while luzindole, an antagonist of MEL receptors (MT1/2), partially blocked the effects of MEL. Moreover, autophosphorylation of CaMKII and PKC was increased in presence of MEL, as well as phosphorylation of ERK1/2. Our results indicate that MEL stimulates dendrite formation through CaMKII and the translocation of CaM to the soluble fraction. Dendritogenesis elicited by MEL also required PKC activation, and signaling through MT1/2 receptors was partially involved. Data strongly suggest that MEL could repair the loss of hippocampal dendrites that occur in neuropsychiatric disorders by increasing CaM levels and activation of CaMKII.


Sujet(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/métabolisme , Calcium/métabolisme , Calmoduline/métabolisme , Dendrites/métabolisme , Hippocampe/métabolisme , Mélatonine/pharmacologie , Animaux , Dendrites/effets des médicaments et des substances chimiques , Hippocampe/effets des médicaments et des substances chimiques , Mâle , Neurogenèse/effets des médicaments et des substances chimiques , Phosphorylation/effets des médicaments et des substances chimiques , Protéine kinase C/métabolisme , Rat Wistar , Récepteurs à la mélatonine/métabolisme , Tryptamines/pharmacologie
15.
Chronobiol Int ; 32(2): 164-77, 2015 Mar.
Article de Anglais | MEDLINE | ID: mdl-25245012

RÉSUMÉ

The light-dark cycle is an environmental factor that influences immune physiology, and so, variations of the photoperiod length result in altered immune responsivity. Macrophage physiology comprises a spectrum of functions that goes from host defense to immune down-regulation, in addition to their homeostatic activities. Macrophages also play a key role in the transition from innate to adaptive immune responses. Met-enkephalin (MEnk) has been recognized as a modulator of macrophage physiology acting in an autocrine or paracrine fashion to influence macrophage activation, phenotype polarization and production of cytokines that would enhance lymphocyte activation at early stages of an immune response. Previously it was shown that splenic MEnk tissue content is reduced in rats exposed to constant light. In this work, we explored whether production of Met-enkephalin-containing peptides (MECPs) in cultured splenic macrophages is affected by exposure of rats to a constant light regime. In addition, we explored whether primary immune response was impaired under this condition. We found that in rats, 15 days in constant light was sufficient to disrupt their general activity rhythm. Splenic MEnk content oscillations and levels were also blunted throughout a 24-h period in animals subjected to constant light. In agreement, de novo synthesis of MECPs evaluated through incorporation of (35)S-methionine was reduced in splenic macrophages from rats exposed to constant light. Moreover, MECPs immunocytochemistry showed a decrease in the intracellular content and lack of granule-like deposits in this condition. Furthermore, we found that primary T-dependent antibody response was compromised in rats exposed to constant light. In those animals, pharmacologic treatment with MEnk increased IFN-γ-secreting cells. Also, IL-2 secretion from antigen-stimulated splenocytes was reduced after incubation with naloxone, suggesting that immune-derived opioid peptides and stimulation of opioid receptors are involved in this process. Thus, the immune impairment observed from early stages of the response in constant light-subjected rats, could be associated with reduced production of macrophage-derived enkephalins, leading to a sub-optimal interaction between macrophages and lymphocytes in the spleen and the subsequent deficiency in antibody production.


Sujet(s)
Méthionine-enképhaline/biosynthèse , Lumière , Macrophages/immunologie , Animaux , Rythme circadien/effets des médicaments et des substances chimiques , Cytokines/métabolisme , Régulation négative , Enképhalines/biosynthèse , Immunoglobuline M/métabolisme , Immunohistochimie , Interleukine-2/métabolisme , Macrophages/cytologie , Macrophages/effets des radiations , Mâle , Mélatonine/sang , Naloxone/pharmacologie , Phénotype , Photopériode , Précurseurs de protéines/biosynthèse , Rats , Rat Wistar , Rate/cytologie
16.
Salud ment ; 36(3): 193-199, may.-jun. 2013.
Article de Espagnol | LILACS-Express | LILACS | ID: lil-689664

RÉSUMÉ

Dementias are progressive and neurodegenerative neuropsychiatry disorders, with a high worldwide prevalence. These disorders affect memory and behavior, causing impairment in the performance of daily activities and general disability in the elders. Cognitive impairment in these patients is related to anatomical and structural alterations at cellular and sub-cellular levels in the Central Nervous System. In particular, amyloid plaques and neurofibrillar tangles have been defined as histopathological hallmarks of Alzheimer's disease. Likewise, oxidative stress and neuroinflammation are implicated in the etiology and progression of the disease. Neuronal precursors from human olfactory neuroepithelium have been recently characterized as an experimental model to identify neuropsychiatric disease biomarkers. Moreover, this model not only allows the study of neuropsychiatric physiopathology, but also the process of neurodevelopment at cellular, molecular and pharmacological levels. This review gathers the evidence to support the potential therapeutic use of melatonin for dementias, based on its antioxidant properties, its anti-inflammatory effect in the brain, and its ability to inhibit both tau hyper-phosphorylation and amyloid plaque formation. Furthermore, since melatonin stimulates neurogenesis, and promotes neuronal differentiation by inducing the early stages of neuritogenesis and dendrite formation, it has been suggested that melatonin could be useful to counteract the cognitive impairment in dementia patients.


Las demencias son enfermedades neuropsiquiátricas, progresivas, neurodegenerativas y con una alta prevalencia a nivel mundial. Ocupan uno de los primeros lugares como enfermedades que causan incapacidad en los adultos mayores. En estos pacientes el Sistema Nervioso Central presenta alteraciones anatómico-estructurales a nivel celular y subcelular que se asocian con deficiencias cognitivas. En particular, en la enfermedad de Alzheimer se han caracterizado marcadores histopatológicos como las placas amiloides y las marañas neurofibrilares. Se sabe que el estrés oxidativo y la neuroinflamación participan en la etiología y el desarrollo de la enfermedad. Recientemente se caracterizó a los precursores neuronales del neuroepitelio olfatorio humano como un modelo experimental adecuado para identificar biomarcadores de rasgo y para estudiar la fisiopatología de diversas enfermedades neuropsiquiátricas, así como el proceso del neurodesarrollo, a nivel celular, molecular y farmacológico. En este trabajo se presenta la evidencia que sustenta que la melatonina puede ser útil en el tratamiento de las demencias, por su capacidad antioxidante, por su efecto anti-inflamatorio, así como por el efecto inhibidor de la hiperfosforilación de la proteina tau y de la formación de placas amiloides. Además, al estimular la formación de nuevas neuronas, la neuritogénesis en sus etapas tempranas y la formación de dendritas, la melatonina podría contribuir a contrarrestar la pérdida de las funciones cognitivas que se observa en estos padecimientos.

17.
Salud ment ; 33(2): 123-131, mar.-abr. 2010. ilus, tab
Article de Espagnol | LILACS-Express | LILACS | ID: lil-632755

RÉSUMÉ

Since enkephalins discovery in 1975, several opioid peptides have been included in neuroscience research. Enkephalins have been involved in the homeostasis maintenance of the organism, mostly with cellular and molecular mechanisms implicated in antinociception and narcotic responses. Moreover, enkephalins have been shown to be involved in the control of stress, regulation of cardiovascular functions, modulating primary immune responses, in addition to cellular differentiation processes. As opioid peptides appear to modulate several bioactivities and physiological responses in organisms, this posits that several modifications should occur during their synthesis, cell release, and receptor binding in target cells. At present, it has been demonstrated that the endogenous opioid system (EOS), displays a circadian rhythm, in which its tissue content, presynaptic release, and receptor's number reaches its maximal concentration during the dark phase (24:00h) and the minimal during the early morning (05:00 h). Recently, our group reported that functional pinealectomy disrupts the enkephalin circadian rhythm and significantly reduces the tissue content of opioid peptides in the rat brain. However, the effect was shown to be specific to the hour along the 24h daytime. There were no significant changes during the light period, only during the dark period (01:00h), when the enkephalin tissue content decreased in the experimental group. The effect was reverted when pinealectomized rats were injected with single doses of melatonin (MEL) (150µg/kg i.p.). If the lack of melatonin in the rat brain significantly reduced the enkephalin tissue content, and its exogenous administration re-established the enkephalin tissue levels, it is possible that the hormone is involved in the enkephalin synthesis. In this paper we provide further evidence that supports the relation between melatonin and opioid peptides synthesis and release. In addition, we studied the effect of darkness and melatonin administration in enkephalin tissue levels. Finally, we analyzed the luzindole effect as a melatonin receptor antagonist in the pinealectomized rat brain. Material and methods Subjects: Male Wistar rats were housed in a light and temperature controlled room. Water and pellet food were available ad libitum. This group was subdivided in: 1. Functional pinealectomy group (FP). Rats were housed individually during 15 days in a room with continuous light (<50lux). 2. FP rats were housed in a dark room during four or six hours. 3. FP rats were injected with melatonin (150, 300, 600µg/kg s.c.). 4. FP rats were injected with Luzindole (187.5, 375, 750µg/kg i.p.). After 30 min, the animals were injected with melatonin (150µg/kg). 5. FP rats were injected with melatonin (800µg/ kg) and subjected to the in vitro release processes. The rats were sacrificed by decapitation and the blood collected for melatonin serum determination. The brains were removed and processed for an analytical preparative procedure for the enkephalin determination by radioimmunoassay technique. The in vitro release methodology was performed as follows: tissue samples were homogenized by applying 8 strokes with a Thomas grinder system. The homogenates were centrifuged at 4,000rpm, 4°C during 10 min. Supernatants were recovered and centrifuged at 12,000rpm at 4°C for 20 min. Supernatants were discarded and pellets were resuspended in the homogeneization buffer (1:9 w/v). Samples were placed on top of a Percoll gradient density (23%, 15%, and 10%) and centrifuged at 20,000 rpm at 4°C for 25min. The synaptosomal enriched fraction (15-23%) was obtained and diluted in 1mL of Krebs buffer (mM: NaCl 119, KCl 4.6, CaCl2·2H2O 1.25, KH2PO4 0.85 MgSO4 0.84, NaHCO3 24.8, sucrose 10). Buffer was gasified with a mixture of C0(2) 95% and O2 5%, pH 7.4. 800µL aliquots were placed into plastic chambers. After 20 min of stabilization with Krebs buffer, three different superfusates were collected: 1. basal, 2. potassium [50mM], and 3. post-stimulus (Krebs buffer without potassium). Samples were collected into HCl 0.1N, boiled and subsequently loaded into Amberlite XAD-2 columns (8 × 0.7cm) for solid-phase peptide extraction. The flow rate was held constant at 0.5 mL min-1 and elution of the whole peptide fraction was carried out using a continuous gradient with absolute methanol. Eluted samples were lyophilized and resuspended in 2mL of distilled water and finally stored at -20°C for further quantification of IR-Enkephalin using standard radioimmunoassay procedures. The results showed that functional pinealectomy reduced the opioid tissue content in the different brain structures assayed. The lack of melatonin significantly decreased the enkephalin tissue content when compared to the control group. However, tissue levels of enkephalin material were completely restored after four and six hours of administration of different doses of exogenous melatonin administration to the rats. As continuous light decreases the melatonin content in the brain, darkness should be able to counteract the aforementioned effect. Our results showed that tissue levels of enkephalin material were increased over 200% and 300%, after exposing animals to a four or six-hour period of darkness, when compared to animals exposed to continuous light. Luzindole was used to abolish any melatonin activity via activation of its membrane brain receptors. Our experiments showed that different doses of the antagonist were not able to obliterate the increased content of opioid peptides induced with melatonin administration in the tested brain tissues.


En la actualidad se reconoce que el Sistema Endógeno Opioide (SEO) participa en la regulación y control de la homeostasis; por lo tanto se requiere que los procesos bioquímicos que dan lugar a su síntesis, liberación y unión a receptores se encuentren reguladas de manera endocrina. Diversas líneas de investigación han demostrado que la concentración y liberación presináptica de las encefalinas no permanece constante durante un ciclo de 24 horas. Por el contrario, su síntesis y liberación alcanzan su máxima concentración durante la fase de oscuridad y la mínima durante las primeras horas de la mañana. Recientemente, nuestro grupo de trabajo ha demostrado que la ausencia de melatonina (MEL), por efecto de la pinealectomía funcional, rompe el ritmo circádico y reduce significativamente la concentración de las encefalinas durante la fase de oscuridad. Si la ausencia de la hormona abate la concentración de opioides, es factible que la MEL se encuentre involucrada en la síntesis de las encefalinas. En el presente trabajo se muestran los resultados del efecto de la pinealectomía funcional sobre la concentración tisular y la liberación de los opioides, así como el efecto de la administración exógena de MEL y de su antagonista el luzindol (LZ). Diseño experimental Control Naive. Se utilizaron ratas macho de la cepa Wistar (200-250g), que permanecieron en un cuarto con un ciclo de luz y oscuridad controlada. La fase de luz duró 12 horas y comenzó a las 06:00h. A su vez, este grupo fue subdividido en: 1. Luz Continua (LC): Para abatir la concentración sérica de la hormona, se usó el modelo experimental conocido como pinealectomía funcional. 2. Luz Continua + Oscuridad: La luz abate la concentración de MEL y la exposición a la oscuridad revierte dicho efecto. Un grupo de ratas sometido a la luz continua se colocó en un cuarto con oscuridad durante cuatro y seis horas. 3. Luz continua+melatonina: Para analizar el efecto de la MEL sobre el contenido tisular de opioides, se administró una dosis de MEL (150, 300 y 600µg/Kg s.c.). 4. Luz continua+luzindol (LZ)+MEL: Si la melatonina ejerce su mecanismo de acción al unirse a sus receptores presentes en la membrana plasmática, entonces su efecto podría ser revertido por la presencia del LZ. Por lo tanto, a tres grupos de ratas sometidas a la pinealectomía funcional se les inyectó con LZ a una dosis de 187.5, 375, 750 µg/kg. s.c. Después de transcurridos 30min., los animales fueron inyectados con MEL (150µg/kg. s.c.). 5. Liberación: Se utilizaron tres grupos de ratas: a) control, b) luz continua y c) luz continua+MEL (800µg/kg. s.c.). Post mortem la amígdala fue sometida al proceso preparativo para la obtención de los sinaptosomas. Resultados Los resultados obtenidos en el presente trabajo nos muestran que la pinealectomía funcional reduce significativamente la concentración de encefalinas en todas las estructuras cerebrales analizadas. Sin embargo, el efecto es revertido tanto por la administración exógena de MEL, como por la exposición a la oscuridad. Las diferentes dosis administradas del LZ bloquearon parcialmente el efecto estimulante de la MEL sobre la síntesis de los opioides. Por último, la pinealectomía funcional redujo significativamente la liberación presináptica de encefalinas, misma que se pudo reestablecer con la administración exógena de la hormona. Discusión Las evidencias experimentales del presente trabajo sugieren que la MEL se encuentra relacionada con la síntesis y la liberación de las encefalinas. Por un lado, la pinealectomía funcional redujo significativamente el contenido tisular de encefalinas, pero el efecto fue revertido tanto con la administración exógena de la hormona como con la exposición a la oscuridad. La administración del LZ sólo fue capaz de bloquear parcialmente el efecto estimulante de la MEL sobre la síntesis de encefalinas. El efecto de la MEL sobre la liberación de opioides pone de manifiesto la relación funcional entre ambos sistemas. A menor cantidad de opioides por efecto de la pinealectomía, menor liberación presináptica y por el contrario, una vez administrada la hormona los valores de la síntesis-liberación se restablecen. Conclusión La MEL puede estar involucrada en la síntesis y la liberación de los péptidos opioides.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...