Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Article de Anglais | MEDLINE | ID: mdl-38995610

RÉSUMÉ

Abiraterone acetate (ABA), a biopharmaceutical class IV drug suffers from solubility and permeability pitfalls resulting in limited oral bioavailability and positive food effect, i.e. multi-fold enhancement in drug absorption in the presence of food. This poses difficulties to physicians towards the estimation of dose and dosage regimen required for efficacious therapy of prostate cancer (PCa). Nanostructured lipid carriers (NLC) have demonstrated tremendous outcomes in enhancing the oral bioavailability of various entities along with food effect attenuation. In this study, Quality by design and multivariate analysis was employed for optimization of ABA loaded NLC (ABA NLC). The optimal size, PDI and zeta potential obtained using QbD were 134.6 nm, 0.163 and -15.7 mV respectively. Ex vivo qualitative and quantitative intestinal permeability studies demonstrated improved traversion of NLC through the intestinal segments. In vitro dissolution profile in biorelevant fast and fed gastric and intestinal media revealed minimal differences for ABA NLC compared to ABA. In vivo pharmacokinetics was performed to decipher the efficacy of ABA NLC in mitigating the food effect of ABA. The studies demonstrated 14.51-fold and 1.94-fold improvement in oral bioavailability during fasted and fed state respectively as compared to free ABA. The absorption mechanism of ABA NLC using chylomicron flow blocking approach conveyed lymphatic uptake as the major mechanism. Cmax fast/fed ratio was 0.9758 whereas, AUC fast/fed ratio was 0.9386, which being nearly equivalent, confirmed the food effect attenuation. Therefore, the results of the study demonstrate optimal pharmacokinetics of ABA NLC and its utility in circumventing the fast fed variability.

2.
Article de Anglais | MEDLINE | ID: mdl-39009931

RÉSUMÉ

Breast cancer (BC) is the most commonly diagnosed cancer among women. Chemo-, immune- and photothermal therapies are employed to manage BC. However, the tumor microenvironment (TME) prevents free drugs and nanocarriers (NCs) from entering the tumor premises. Formulation scientists rely on enhanced permeation and retention (EPR) to extravasate NCs in the TME. However, recent research has demonstrated the inconsistent nature of EPR among different patients and tumor types. In addition, angiogenesis, high intra-tumor fluid pressure, desmoplasia, and high cell and extracellular matrix density resist the accumulation of NCs in the TME. In this review, we discuss TME normalization as an approach to improve the penetration of drugs and NCSs in the tumor premises. Strategies such as normalization of tumor vessels, reversal of hypoxia, alleviation of high intra-tumor pressure, and infiltration of lymphocytes for the reversal of therapy failure have been discussed in this manuscript. Strategies to promote the infiltration of anticancer immune cells in the TME after vascular normalization have been discussed. Studies strategizing time points to administer TME-normalizing agents are highlighted. Mechanistic pathways controlling the angiogenesis and normalization processes are discussed along with the studies. This review will provide greater tumor-targeting insights to the formulation scientists.

3.
Article de Anglais | MEDLINE | ID: mdl-39037533

RÉSUMÉ

Design and development of efficient drug delivery technologies that impart site-specificity is the need of the hour for the effective treatment of lung cancer. The emergence of materials science and nanotechnology partially helped drug delivery scientists to achieve this objective. Various stimuli-responsive materials that undergo degradation at the pathological tumor microenvironment (TME) have been developed and explored for drug delivery applications using nanotechnological approaches. Nanoparticles (NPs), owing to their small size and high surface area to volume ratio, demonstrated enhanced cellular internalization, permeation, and retention at the tumor site. Such passive accumulation of stimuli-responsive materials helped to achieve spatiotemporally controlled and targeted drug delivery within the tumors. In this review, we discussed various stimuli-physical (interstitial pressure, temperature, and stiffness), chemical (pH, hypoxia, oxidative stress, and redox state), and biological (receptor expression, efflux transporters, immune cells, and their receptors or ligands)-that are characteristic to the TME. We mentioned an array of biomaterials-based nanoparticulate delivery systems that respond to these stimuli and control drug release at the TME. Further, we discussed nanoparticle-based combinatorial drug delivery strategies. Finally, we presented our perspectives on challenges related to scale-up, clinical translation, and regulatory approvals.

4.
Article de Anglais | MEDLINE | ID: mdl-38696091

RÉSUMÉ

The current advent explores the potential of itraconazole (ITR) in prostate cancer (PCa), by its incorporation into albumin nanoparticles (NP). ITR as a repurposed moiety has displayed tremendous potential in various cancers. However, poor aqueous solubility poses hurdles towards its clinical translation. Amorphisation of ITR was observed post-incorporation within NP matrix which could prevent its precipitation in aqueous media. ITR NP was developed using quality by design and multivariate analysis and evaluated for cellular uptake, cell proliferation inhibition and the mechanism of PCa cell inhibition. Time and concentration-dependent serum stability and hemolytic potential revealed safety of ITR NP. Morphological changes and nuclear staining studies revealed the efficacy of ITR and ITR NP in promoting growth inhibition of PC-3 cells. Superior qualitative and quantitative uptake, reactive oxygen species (ROS) and mitochondrial impairment for ITR NP in comparison with ITR and control group was observed. Cell cycle study revealed remarkable G2/M phase inhibition in PC-3 cells. ITR NP demonstrated superior anticancer potential in 3D tumoroids mimicking the micro-metastatic lesions compared to control and ITR. Hence, ITR NP can be a favorable alternative therapeutic alternative in PCa.

5.
Mol Pharm ; 21(5): 2118-2147, 2024 May 06.
Article de Anglais | MEDLINE | ID: mdl-38660711

RÉSUMÉ

The various kinds of nanocarriers (NCs) have been explored for the delivery of therapeutics designed for the management of skin manifestations. The NCs are considered as one of the promising approaches for the skin delivery of therapeutics attributable to sustained release and enhanced skin penetration. Despite the extensive applications of the NCs, the challenges in their delivery via skin barrier (majorly stratum corneum) have persisted. To overcome all the challenges associated with the delivery of NCs, the microneedle (MN) technology has emerged as a beacon of hope. Programmable drug release, being painless, and its minimally invasive nature make it an intriguing strategy to circumvent the multiple challenges associated with the various drug delivery systems. The integration of positive traits of NCs and MNs boosts therapeutic effectiveness by evading stratum corneum, facilitating the delivery of NCs through the skin and enhancing their targeted delivery. This review discusses the barrier function of skin, the importance of MNs, the types of MNs, and the superiority of NC-loaded MNs. We highlighted the applications of NC-integrated MNs for the management of various skin ailments, combinational drug delivery, active targeting, in vivo imaging, and as theranostics. The clinical trials, patent portfolio, and marketed products of drug/NC-integrated MNs are covered. Finally, regulatory hurdles toward benchtop-to-bedside translation, along with promising prospects needed to scale up NC-integrated MN technology, have been deliberated. The current review is anticipated to deliver thoughtful visions to researchers, clinicians, and formulation scientists for the successful development of the MN-technology-based product by carefully optimizing all the formulation variables.


Sujet(s)
Administration par voie cutanée , Systèmes de délivrance de médicaments , Aiguilles , Maladies de la peau , Peau , Humains , Systèmes de délivrance de médicaments/méthodes , Maladies de la peau/traitement médicamenteux , Peau/métabolisme , Peau/effets des médicaments et des substances chimiques , Nanoparticules/composition chimique , Nanoparticules/administration et posologie , Vecteurs de médicaments/composition chimique , Animaux , Absorption cutanée , Microinjections/méthodes , Microinjections/instrumentation
6.
Article de Anglais | MEDLINE | ID: mdl-38509343

RÉSUMÉ

Resveratrol is a polyphenolic compound showing anti-inflammatory activity by inhibition of high mobility group box 1 cytokine responsible for the activation of nuclear factor-κB pathway in atopic dermatitis. To evaluate the efficacy of resveratrol through topical route we have developed resveratrol-loaded nanoemulgel for the effective management of atopic dermatitis in mice model. The resveratrol-loaded nanoemulsion (0.5%, 0.75% and 1% w/w) was optimized by spontaneous nano-emulsification. The optimized resveratrol-loaded nanoemulsions showed average globule size in the 180-230 nm range and found to be monodispersed. The resveratrol nanoemulgel was prepared with a SEPINEO™ P 600 gel base and propylene glycol. Ex vivo permeation and retention study resulted in significantly higher skin retention of resveratrol from resveratrol-loaded nanoemulgel than free resveratrol-loaded gel. Preclinical efficacy of resveratrol nanoemulgel displayed promising therapeutic outcomes where, western blotting of skin tissues disclosed a significant reduction in the relative expression of high mobility group box 1, the receptor for advanced glycation end products, toll-like receptor-4 and phosphorylated nuclear factor-κB. Further, real-time polymerase chain reaction also disclosed a significant reduction in pro-inflammatory cytokines such as thymic stromal lymphopoietin, interleukin-4, interleukin-13, interleukin-31, tumor necrosis factor-α and interleukin-6. The histopathological examination of skin sections showed improvement in the skin condition. Collectively, the findings from our study showcased the significant improvement in the atopic dermatitis skin condition in mice model after topical application of resveratrol loaded nanoemulgel.

7.
Colloids Surf B Biointerfaces ; 234: 113732, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38181691

RÉSUMÉ

Cabazitaxel has been approved for the treatment of prostate cancer since 2010. However, its poor solubility and permeability pitfalls prevent its accumulation at the target site and promote severe adverse effects. About 90% of prostate cancer (PCa) patients suffer from bone metastasis. This advent reports the development of CBZ-loaded pH-responsive polydopamine nanoparticles (CBZ NP) against metastatic PCa cells. Quality by design (QbD) and multivariate analysis tools were employed for the optimization of CBZ NP. Amorphisation of CBZ along with metastatic microenvironment responsive release was observed thereby imparting spatial release and circumventing solubility pitfalls. CBZ NP retained its cytotoxic potential, with a significant increase in quantitative cellular uptake. Apoptotic markers observed from nuclear staining with elevated reactive oxygen species (ROS) and mitochondrial damage revealed by JC-1 staining demonstrated the efficacy of CBZ NP against PC-3 cells with good serum stability and diminished hemolysis. Cell cycle analysis revealed substantial S and G2/M phase arrest with enhancement in apoptosis was observed. Western blot studies revealed an elevation in caspase-1 and suppression in Bcl-2 indicating enhanced apoptosis compared to the control group. Substantial reduction in the diameter of 3D-Tumoroid and enhanced cell proliferation inhibition indicated the efficacy of CBZ NP in PCa. Thus, we conclude that CBZ NP could be a promising Nanotherapeutic approach for PCa.


Sujet(s)
Antinéoplasiques , Tumeurs de la prostate , Taxoïdes , Humains , Mâle , Lignée cellulaire tumorale , Tumeurs de la prostate/traitement médicamenteux , Tumeurs de la prostate/anatomopathologie , Antinéoplasiques/pharmacologie , Antinéoplasiques/usage thérapeutique , Apoptose , Concentration en ions d'hydrogène , Microenvironnement tumoral
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE