Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Biochem Mol Biol Educ ; 51(6): 708-718, 2023.
Article de Anglais | MEDLINE | ID: mdl-37597129

RÉSUMÉ

An understanding of structure-function relationships in proteins is essential for modern biochemical studies. The integration of common freely accessible bioinformatics tools available online with the knowledge of protein-engineering tools provide a fundamental understanding of the application of protein structure-function for biochemical research. In order for students to apply their prior knowledge of recombinant protein technology into the understanding of protein structure-function relationships, we developed a semester-long project-oriented biochemistry laboratory experience that is the second laboratory course of a series. For easier integration of knowledge and application, we organized this course into four sequential modules: protein structure visualization/modification, mutagenesis target identification, site-directed mutagenesis, and mutant protein expression, purification, and characterization. These tasks were performed on the protein small laccase (SLAC) that was cloned and characterized by students in the previous semester during the first biochemistry laboratory course of the series. This goal-oriented project-based approach helped students apply their prior knowledge to newly introduced techniques to understand protein structure-function relationships in this research-like laboratory setting. A student assessment before and after the course demonstrated an overall increase in learning and enthusiasm for this topic.


Sujet(s)
Laccase , Streptomyces coelicolor , Humains , Laccase/métabolisme , Streptomyces coelicolor/génétique , Biochimie/enseignement et éducation , Étudiants , Mutagenèse dirigée
2.
Drug Dev Res ; 84(5): 999-1007, 2023 08.
Article de Anglais | MEDLINE | ID: mdl-37129190

RÉSUMÉ

Given the ever-present threat of antibacterial resistance, there is an urgent need to identify new antibacterial drugs and targets. One such target is alanine racemase (Alr), an enzyme required for bacterial cell-wall biosynthesis. Alr is an attractive drug target because it is essential for bacterial survival but is absent in humans. Existing drugs targeting Alr lack specificity and have severe side effects. We here investigate alternative mechanisms of Alr inhibition. Alr functions exclusively as an obligate homodimer, so we probed seven conserved interactions on the dimer interface, distant from the enzymatic active site, to identify possible allosteric influences on activity. Using the Alr from Mycobacterium tuberculosis (MT) as a model, we found that the Lys261/Asp135 salt bridge is critical for catalytic activity. The Lys261Ala mutation completely inactivated the enzyme, and the Asp135Ala mutation reduced catalytic activity eight-fold. Further investigation suggested a potential drug-binding site near the Lys261/Asp135 salt bridge that may be useful for allosteric drug discovery.


Sujet(s)
Alanine racemase , Mycobacterium tuberculosis , Humains , Antibactériens/pharmacologie , Alanine racemase/génétique , Alanine racemase/composition chimique , Alanine racemase/métabolisme , Domaine catalytique , Mycobacterium tuberculosis/génétique , Résistance bactérienne aux médicaments
3.
Int J Radiat Oncol Biol Phys ; 114(3): 444-453, 2022 11 01.
Article de Anglais | MEDLINE | ID: mdl-35863672

RÉSUMÉ

PURPOSE: Effective consolidative chemoradiation (CRT) regimens are lacking. In this phase 1 trial, we evaluated the safety and efficacy of nab-paclitaxel, capecitabine, and radiation therapy after induction chemotherapy in patients with locally advanced and borderline-resectable pancreatic cancer (LAPC and BRPC). Also, we evaluated a computed tomography (CT)-based biomarker of response. METHODS AND MATERIALS: Eligible patients had pathologically confirmed pancreatic ductal adenocarcinoma, underwent computed tomography-imaging, received a diagnosis of LAPC or BRPC, and received induction chemotherapy. Standard 3 + 3 study design was used, with 3 escalating nab-paclitaxel dose levels (50, 75, and 100 mg/m2) with concurrent capecitabine and RT in cohort sizes of 3 starting at the lowest dose. Dose limiting toxicity was defined as grade 3 or higher toxicity. Patients were restaged 4 to 6 weeks post-CRT completion, and surgical resection was offered to those with stable/responsive disease. We scored the tumor interface response (IR) postchemotherapy and post-CRT into type I (remained/became more defined) and type II (became less defined). Overall survival (OS) and progression-free survival (PFS) from time of CRT were estimated using Kaplan-Meier method. P ≤ .05 was considered significant. RESULTS: Twenty-three patients started and finished on protocol (LAPC = 14, BRPC = 9). No grade 3 and 4 toxicities were reported in level 1 (n = 3) or level 2 (n = 3) initial groups. Two patients in the initial level 3 group developed dose limiting toxicity, establishing level 2 dose as the maximal tolerated dose. Level 2 group was expanded for additional 15 patients (for a total of 23 on trial), 5 of whom developed grade 3 toxicities. Seven patients underwent surgical resection. Median OS and PFS were 21.2 and 8.1 months, respectively. Type I IR was associated with better OS (P = .004) and PFS (P = .03) compared with type II IR. CONCLUSIONS: We established the maximum tolerated dose for nab-paclitaxel in a consolidative CRT regimen for pancreatic ductal adenocarcinoma. Preliminary efficacy results warrant phase 2 trial evaluation. IR may be used for personalized treatment.


Sujet(s)
Carcinome du canal pancréatique , Tumeurs du pancréas , Albumines , Protocoles de polychimiothérapie antinéoplasique/effets indésirables , Marqueurs biologiques , Capécitabine , Carcinome du canal pancréatique/imagerie diagnostique , Carcinome du canal pancréatique/thérapie , Désoxycytidine/usage thérapeutique , Humains , Chimiothérapie d'induction/méthodes , Paclitaxel , Tumeurs du pancréas/traitement médicamenteux , Tumeurs du pancréas/thérapie , Tumeurs du pancréas
4.
Mol Ther Oncolytics ; 26: 135-140, 2022 Sep 15.
Article de Anglais | MEDLINE | ID: mdl-35702422

RÉSUMÉ

The coronavirus disease 2019 (COVID-19) pandemic has produced a new global challenge for patients with cancer. The disease and the immunosuppression induced by cancer therapies have generated a perfect storm of conditions to increase the severity of the symptoms and worsen the prognosis. However, a few clinical reports showcased the power of viruses to induce remission in some patients suffering from liquid tumors. Here, we reviewed six cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that resulted in cancer remission, simultaneously highlighting the strengths and the unique challenges of oncolytic virotherapy. Virotherapy has become a special case of cancer immunotherapy. This paradigm-shifting concept suggests that oncolytic viruses are not only promising agents to combat particularly immunologically suppressed, immunotherapy-resistant tumors but also that the trigger of local inflammation, such as SARS-CoV-2 infection of the respiratory pathways, may trigger an abscopal effect sufficient to induce the remission of systemic cancer.

5.
ACS Omega ; 7(7): 6184-6194, 2022 Feb 22.
Article de Anglais | MEDLINE | ID: mdl-35224382

RÉSUMÉ

Many industrial processes operate at elevated temperatures or within broad pH and salinity ranges. However, the utilization of enzymes to carry out biocatalysis in such processes is often impractical or even impossible. Laccases (EC 1.10.3.2), which constitute a large family of multicopper oxidases, have long been used in the industrial setting. Although fungal laccases are in many respects considered superior to their bacterial counterparts, the bacterial laccases have been receiving greater attention recently. Albeit lower in redox potential than fungal laccases, bacterial laccases are commonly thermally more stable, act within broader pH ranges, do not contain posttranslational modifications, and could therefore serve as a high potential scaffold for directed evolution for the production of enzymes with enhanced properties. Several examples focusing on the axial ligand mutations of the T1 copper site have been published in the past. However, structural evidence on the local and global changes induced by those mutations have thus far been of computational nature only. In this study, we set out to structurally and kinetically characterize a few of the most commonly reported axial ligand mutations of a bacterial small laccase (SLAC) from Streptomyces coelicolor. While one of the mutations (Met to Leu) equips the enzyme with better thermal stability, the other (Met to Phe) induces an opposite effect. These mutations cause local structural rearrangement of the T1 site as demonstrated by X-ray crystallography. Our analysis confirms past findings that for SLACs, single point mutations that change the identity of the axial ligand of the T1 copper are not enough to provide a substantial increase in the catalytic efficiency but can in some cases have a detrimental effect on the enzyme's thermal stability parameters instead.

6.
J Mol Microbiol Biotechnol ; 29(1-6): 57-65, 2019.
Article de Anglais | MEDLINE | ID: mdl-31851994

RÉSUMÉ

Streptomyces, the most important group of industrial microorganisms, is harvested in liquid cultures for the production of two-thirds of all clinically relevant secondary metabolites. It is demonstrated here that the growth of Streptomyces coelicolor A3(2) is impacted by the deletion of the alanine dehydrogenase (ALD), an essential enzyme that plays a central role in the carbon and nitrogen metabolism. A long lag-phase growth followed by a slow exponential growth of S. coelicolor due to ALD gene deletion was observed in liquid yeast extract mineral salt culture. The slow lag-phase growth was replaced by the normal wild-type like growth by ALD complementation engineering. The ALD enzyme from S. coelicolor was also heterologously cloned and expressed in Escherichia coli for characterization. The optimum enzyme activity for the oxidative deamination reaction was found at 30°C, pH 9.5 with a catalytic efficiency, kcat/KM, of 2.0 ± 0.1 mM-1 s-1. The optimum enzyme activity for the reductive amination reaction was found at 30°C, pH 9.0 with a catalytic efficiency, kcat/KM, of 1.9 ± 0.1 mM-1 s-1.


Sujet(s)
Alanine dehydrogenase/métabolisme , Streptomyces/enzymologie , Alanine dehydrogenase/génétique , Désamination , Escherichia coli/génétique , Délétion de gène , Test de complémentation , Microbiologie industrielle , Azote/métabolisme , Streptomyces/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...