Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 24
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Gene ; 710: 246-257, 2019 Aug 20.
Article de Anglais | MEDLINE | ID: mdl-31176732

RÉSUMÉ

Osteosarcoma is the most common primary bone tumor during childhood and adolescence. Several reports have presented data on serum biomarkers for osteosarcoma, but few reports have analyzed circulating microRNAs (miRNAs). In this study, we used next generation miRNA sequencing to examine miRNAs isolated from microvesicle-depleted extracellular vesicles (EVs) derived from six different human osteosarcoma or osteoblastic cell lines with different degrees of metastatic potential (i.e., SAOS2, MG63, HOS, 143B, U2OS and hFOB1.19). EVs from each cell line contain on average ~300 miRNAs, and ~70 of these miRNAs are present at very high levels (i.e., >1000 reads per million). The most prominent miRNAs are miR-21-5p, miR-143-3p, miR-148a-3p and 181a-5p, which are enriched between 3 and 100 fold and relatively abundant in EVs derived from metastatic SAOS2 cells compared to non-metastatic MG63 cells. Gene ontology analysis of predicted targets reveals that miRNAs present in EVs may regulate the metastatic potential of osteosarcoma cell lines by potentially inhibiting a network of genes (e.g., MAPK1, NRAS, FRS2, PRCKE, BCL2 and QKI) involved in apoptosis and/or cell adhesion. Our data indicate that osteosarcoma cell lines may selectively package miRNAs as molecular cargo of EVs that could function as paracrine agents to modulate the tumor micro-environment.


Sujet(s)
Tumeurs osseuses/génétique , Vésicules extracellulaires/génétique , Séquençage nucléotidique à haut débit/méthodes , microARN/génétique , Ostéosarcome/génétique , Apoptose , Adhérence cellulaire , Lignée cellulaire tumorale , Réseaux de régulation génique , Humains , Métastase tumorale , Analyse de séquence d'ARN/méthodes
2.
J Cell Physiol ; 234(8): 13659-13679, 2019 08.
Article de Anglais | MEDLINE | ID: mdl-30637720

RÉSUMÉ

Osteosarcomas are bone tumors that frequently metastasize to the lung. Aberrant expression of the transcription factor, runt-related transcription factor 2 (RUNX2), is a key pathological feature in osteosarcoma and associated with loss of p53 and miR-34 expression. Elevated RUNX2 may transcriptionally activate genes mediating tumor progression and metastasis, including the RUNX2 target gene osteopontin (OPN/SPP1). This gene encodes a secreted matricellular protein produced by osteoblasts to regulate bone matrix remodeling and tissue calcification. Here we investigated whether and how the RUNX2/OPN axis regulates lung metastasis of osteosarcoma. Importantly, RUNX2 depletion attenuates lung metastasis of osteosarcoma cells in vivo. Using next-generation RNA-sequencing, protein-based assays, as well as the loss- and gain-of-function approaches in selected osteosarcoma cell lines, we show that osteopontin messenger RNA levels closely correlate with RUNX2 expression and that RUNX2 controls the levels of secreted osteopontin. Elevated osteopontin levels promote heterotypic cell-cell adhesion of osteosarcoma cells to human pulmonary microvascular endothelial cells, but not in the presence of neutralizing antibodies. Collectively, these findings indicate that the RUNX2/OPN axis regulates the ability of osteosarcoma cells to attach to pulmonary endothelial cells as a key step in metastasis of osteosarcoma cells to the lung.


Sujet(s)
Tumeurs osseuses/métabolisme , Sous-unité alpha 1 du facteur CBF/métabolisme , Régulation de l'expression des gènes tumoraux/physiologie , Invasion tumorale , Ostéopontine/métabolisme , Ostéosarcome/métabolisme , Animaux , Tumeurs osseuses/anatomopathologie , Adhérence cellulaire/physiologie , Lignée cellulaire tumorale , Cellules endothéliales/métabolisme , Hétérogreffes , Humains , Poumon/métabolisme , Poumon/anatomopathologie , Tumeurs du poumon/secondaire , Souris , Souris de lignée NOD , Souris SCID , Ostéosarcome/secondaire
3.
J Cell Physiol ; 234(5): 6244-6253, 2019 05.
Article de Anglais | MEDLINE | ID: mdl-30256410

RÉSUMÉ

Expression of Runx2/p57 is a hallmark of the osteoblast-lineage identity. Although several regulators that control the expression of Runx2/p57 during osteoblast-lineage commitment have been identified, the epigenetic mechanisms that sustain this expression in differentiated osteoblasts remain to be completely determined. Here, we assess epigenetic mechanisms associated with Runx2/p57 gene transcription in differentiating MC3T3 mouse osteoblasts. Our results show that an enrichment of activating histone marks at the Runx2/p57 P1 promoter is accompanied by the simultaneous interaction of Wdr5 and Utx proteins, both are components of COMPASS complexes. Knockdown of Wdr5 and Utx expression confirms the activating role of both proteins at the Runx2-P1 promoter. Other chromatin modifiers that were previously described to regulate Runx2/p57 transcription in mesenchymal precursor cells (Ezh2, Prmt5, and Jarid1b proteins) were not found to contribute to Runx2/p57 transcription in full-committed osteoblasts. We also determined the presence of additional components of COMPASS complexes at the Runx2/p57 promoter, evidencing that the Mll2/COMPASS- and Mll3/COMPASS-like complexes bind to the P1 promoter in osteoblastic cells expressing Runx2/p57 to modulate the H3K4me1 to H3K4me3 transition.


Sujet(s)
Sous-unité alpha 1 du facteur CBF/génétique , Histone Demethylases/génétique , Histone/génétique , Protéines et peptides de signalisation intracellulaire/génétique , Ostéoblastes/métabolisme , Cellules 3T3 , Animaux , Différenciation cellulaire/physiologie , Sous-unité alpha 1 du facteur CBF/métabolisme , Épigenèse génétique/génétique , Régulation de l'expression des gènes/physiologie , Histone Demethylases/métabolisme , Histone/métabolisme , Protéines et peptides de signalisation intracellulaire/métabolisme , Souris , Ostéoblastes/cytologie , Transcription génétique
4.
Gene ; 687: 228-237, 2019 Mar 01.
Article de Anglais | MEDLINE | ID: mdl-30447344

RÉSUMÉ

The in vitro process of chondrogenic differentiation of mesenchymal stem cells (MSCs) induces a pre-apoptotic hypertrophic phenotype, guided by the active status of the WNT/߭catenin pathway. To achieve a stable chondrocyte phenotype for cartilage tissue engineering, it is necessary to gain a better understanding of specific genes that regulate the cartilage tissue phenotype. RNA sequencing (RNA-seq) analysis of tissue samples from bone, cartilage, growth plate and muscle show that Dickkopf-1 (DKK1), a natural WNT canonical signaling inhibitor, is expressed in cartilage tissue. This observation reinforces the concept that inhibition of the WNT/߭catenin pathway is critical for preventing avoid chondrocyte hypertrophy in vitro. We used two doses of DKK1 in a pellet cell culture system to inhibit the terminal differentiation of chondrocytes derived from bone marrow mesenchymal stem cells (MSCs). Bone marrow MSCs were cultured in chondrogenic induction medium with 50 and 200 ng/ml of DKK1 for 21 days. The highest doses of DKK1 reduce ߭catenin expression and nuclear localization at day 21, concomitant with reduced expression and activity of hypertrophy markers collagen type X (COL10A1) and alkaline phosphatase (ALPL), thus decreasing the pre-hypertrophic chondrocyte population. Furthermore, DKK1 stimulated expression of collagen type II (COL2A1) and glycosaminoglycans (GAGs), which represent healthy articular cartilage markers. We conclude that exogenous DKK1 impedes chondrocyte progression into a prehypertrophic stage and stimulates expression of healthy articular cartilage markers by blocking the WNT/߭catenin pathway. Hence, DKK1 may promote a mature healthy articular cartilage phenotype and facilitate cartilage tissue engineering for joint repair.


Sujet(s)
Marqueurs biologiques/analyse , Cellules de la moelle osseuse/anatomopathologie , Chondrocytes/anatomopathologie , Chondrogenèse , Hypertrophie/anatomopathologie , Protéines et peptides de signalisation intercellulaire/métabolisme , Cellules souches mésenchymateuses/anatomopathologie , Adulte , Apoptose , Cellules de la moelle osseuse/métabolisme , Différenciation cellulaire , Prolifération cellulaire , Cellules cultivées , Chondrocytes/métabolisme , Femelle , Humains , Hypertrophie/métabolisme , Protéines et peptides de signalisation intercellulaire/génétique , Mâle , Cellules souches mésenchymateuses/métabolisme , Ingénierie tissulaire , Jeune adulte
5.
J Cell Biochem ; 119(10): 8204-8219, 2018 11.
Article de Anglais | MEDLINE | ID: mdl-29923217

RÉSUMÉ

Osteoblast differentiation is controlled by transcription factor RUNX2 which temporally activates or represses several bone-related genes, including those encoding extracellular matrix proteins or factors that control cell-cell, and cell-matrix interactions. Cell-cell communication in the many skeletal pericellular micro-niches is critical for bone development and involves paracrine secretion of growth factors and morphogens. This paracrine signaling is in part regulated by "A Disintegrin And Metalloproteinase" (ADAM) proteins. These cell membrane-associated metalloproteinases support proteolytic release ("shedding") of protein ectodomains residing at the cell surface. We analyzed microarray and RNA-sequencing data for Adam genes and show that Adam17, Adam10, and Adam9 are stimulated during BMP2 mediated induction of osteogenic differentiation and are robustly expressed in human osteoblastic cells. ADAM17, which was initially identified as a tumor necrosis factor alpha (TNFα) converting enzyme also called (TACE), regulates TNFα-signaling pathway, which inhibits osteoblast differentiation. We demonstrate that Adam17 expression is suppressed by RUNX2 during osteoblast differentiation through the proximal Adam17 promoter region (-0.4 kb) containing two functional RUNX2 binding motifs. Adam17 downregulation during osteoblast differentiation is paralleled by increased RUNX2 expression, cytoplasmic-nuclear translocation and enhanced binding to the Adam17 proximal promoter. Forced expression of Adam17 reduces Runx2 and Alpl expression, indicating that Adam17 may negatively modulate osteoblast differentiation. These findings suggest a novel regulatory mechanism involving a reciprocal Runx2-Adam17 negative feedback loop to regulate progression through osteoblast differentiation. Our results suggest that RUNX2 may control paracrine signaling through regulation of ectodomain shedding at the cell surface of osteoblasts by directly suppressing Adam17 expression.


Sujet(s)
Protéine ADAM17/génétique , Protéine morphogénétique osseuse de type 2/génétique , Sous-unité alpha 1 du facteur CBF/génétique , Rétrocontrôle physiologique , Ostéoblastes/métabolisme , Ostéogenèse/génétique , Protéines ADAM/génétique , Protéines ADAM/métabolisme , Protéine ADAM10/génétique , Protéine ADAM10/métabolisme , Protéine ADAM17/métabolisme , Phosphatase alcaline/génétique , Phosphatase alcaline/métabolisme , Amyloid precursor protein secretases/génétique , Amyloid precursor protein secretases/métabolisme , Animaux , Sites de fixation , Protéine morphogénétique osseuse de type 2/métabolisme , Différenciation cellulaire , Lignée cellulaire , Lignée cellulaire tumorale , Sous-unité alpha 1 du facteur CBF/métabolisme , Analyse de profil d'expression de gènes , Régulation de l'expression des gènes , Humains , Protéines membranaires/génétique , Protéines membranaires/métabolisme , Cellules souches mésenchymateuses/cytologie , Cellules souches mésenchymateuses/métabolisme , Souris , Ostéoblastes/cytologie , Communication paracrine/génétique , Régions promotrices (génétique) , Liaison aux protéines , Rats , Transduction du signal , Facteur de nécrose tumorale alpha/génétique , Facteur de nécrose tumorale alpha/métabolisme
6.
J Cell Biochem ; 118(11): 3662-3674, 2017 11.
Article de Anglais | MEDLINE | ID: mdl-28370561

RÉSUMÉ

Osteosarcoma is the most common malignant bone tumor in children and adolescents. Metastasis and poor responsiveness to chemotherapy in osteosarcoma correlates with over-expression of the runt-related transcription factor RUNX2, which normally plays a key role in osteogenic lineage commitment, osteoblast differentiation, and bone formation. Furthermore, WNT/ß-catenin signaling is over-activated in osteosarcoma and promotes tumor progression. Importantly, the WNT/ß-catenin pathway normally activates RUNX2 gene expression during osteogenic lineage commitment. Therefore, we examined whether the WNT/ß-catenin pathway controls the tumor-related elevation of RUNX2 expression in osteosarcoma. We analyzed protein levels and nuclear localization of ß-catenin and RUNX2 in a panel of human osteosarcoma cell lines (SAOS, MG63, U2OS, HOS, G292, and 143B). In all six cell lines, ß-catenin and RUNX2 are expressed to different degrees and localized in the nucleus and/or cytoplasm. SAOS cells have the highest levels of RUNX2 protein that is localized in the nucleus, while MG63 cells have the lowest RUNX2 levels which is mostly localized in the cytoplasm. Levels of ß-catenin and RUNX2 protein are enhanced in HOS, G292, and 143B cells after treatment with the GSK3ß inhibitor SB216763. Furthermore, small interfering RNA (siRNA)-mediated depletion of ß-catenin inhibits RUNX2 expression in G292 cells. Thus, WNT/ß-catenin activation is required for RUNX2 expression in at least some osteosarcoma cell types, where RUNX2 is known to promote expression of metastasis related genes. J. Cell. Biochem. 118: 3662-3674, 2017. © 2017 Wiley Periodicals, Inc.


Sujet(s)
Tumeurs osseuses/métabolisme , Sous-unité alpha 1 du facteur CBF/biosynthèse , Protéines tumorales/biosynthèse , Ostéosarcome/métabolisme , Voie de signalisation Wnt , Tumeurs osseuses/génétique , Tumeurs osseuses/anatomopathologie , Lignée cellulaire tumorale , Sous-unité alpha 1 du facteur CBF/génétique , Régulation de l'expression des gènes tumoraux , Humains , Métastase tumorale , Protéines tumorales/génétique , Ostéosarcome/génétique , Ostéosarcome/anatomopathologie
7.
J Cell Biochem ; 118(2): 351-360, 2017 02.
Article de Anglais | MEDLINE | ID: mdl-27356893

RÉSUMÉ

Osteosarcomas are the most prevalent bone tumors in pediatric patients, but can also occur later in life. Bone tumors have the potential to metastasize to lung and occasionally other vital organs. To understand how osteosarcoma cells interact with their micro-environment to support bone tumor progression and metastasis, we analyzed secreted proteins and exosomes from three human osteosarcoma cell lines. Exosome isolation was validated by transmission electron microscopy (TEM) and immuno-blotting for characteristic biomarkers (CD63, CD9, and CD81). Exosomal and soluble proteins (less than 100 kDa) were identified by mass spectrometry analysis using nanoLC-MS/MS and classified by functional gene ontology clustering. We identified a secretome set of >3,000 proteins for both fractions, and detected proteins that are either common or unique among the three osteosarcoma cell lines. Protein ontology comparison of proteomes from exosomes and exosome-free fractions revealed differences in the enrichment of functional categories associated with different biological processes, including those related to tumor progression (i.e., angiogenesis, cell adhesion, and cell migration). The secretome characteristics of osteosarcoma cells are consistent with the pathological properties of tumor cells with metastatic potential. J. Cell. Biochem. 118: 351-360, 2017. © 2016 Wiley Periodicals, Inc.


Sujet(s)
Antigènes CD/métabolisme , Marqueurs biologiques tumoraux/métabolisme , Tumeurs osseuses/métabolisme , Exosomes/métabolisme , Protéines tumorales/métabolisme , Ostéosarcome/métabolisme , Lignée cellulaire tumorale , Humains
8.
Biochim Biophys Acta ; 1859(8): 1043-55, 2016 08.
Article de Anglais | MEDLINE | ID: mdl-27216774

RÉSUMÉ

During hippocampal neuron differentiation, the expression of critical inducers of non-neuronal cell lineages must be efficiently silenced. Runx2 transcription factor is the master regulator of mesenchymal cells responsible for intramembranous osteoblast differentiation and formation of the craniofacial bone tissue that surrounds and protects the central nervous system (CNS) in mammalian embryos. The molecular mechanisms that mediate silencing of the Runx2 gene and its downstream target osteogenic-related genes in neuronal cells have not been explored. Here, we assess the epigenetic mechanisms that mediate silencing of osteoblast-specific genes in CNS neurons. In particular, we address the contribution of histone epigenetic marks and histone modifiers on the silencing of the Runx2/p57 bone-related isoform in rat hippocampal tissues at embryonic to adult stages. Our results indicate enrichment of repressive chromatin histone marks and of the Polycomb PRC2 complex at the Runx2/p57 promoter region. Knockdown of PRC2 H3K27-methyltransferases Ezh2 and Ezh1, or forced expression of the Trithorax/COMPASS subunit Wdr5 activates Runx2/p57 mRNA expression in both immature and mature hippocampal cells. Together these results indicate that complementary epigenetic mechanisms progressively and efficiently silence critical osteoblastic genes during hippocampal neuron differentiation.


Sujet(s)
Vieillissement/génétique , Sous-unité alpha 1 du facteur CBF/génétique , Extinction de l'expression des gènes , Neurones/métabolisme , Ostéoblastes/métabolisme , Complexe répresseur Polycomb-2/génétique , Vieillissement/métabolisme , Animaux , Animaux nouveau-nés , Différenciation cellulaire , Chromatine/composition chimique , Chromatine/métabolisme , Sous-unité alpha 1 du facteur CBF/métabolisme , Inhibiteur p57 de kinase cycline-dépendante/génétique , Inhibiteur p57 de kinase cycline-dépendante/métabolisme , Embryon de mammifère , Régulation de l'expression des gènes au cours du développement , Hippocampe/cytologie , Hippocampe/métabolisme , Histone/génétique , Histone/métabolisme , Cellules souches mésenchymateuses/cytologie , Cellules souches mésenchymateuses/métabolisme , Neurones/cytologie , Ostéoblastes/cytologie , Ostéogenèse/génétique , Complexe répresseur Polycomb-2/métabolisme , Culture de cellules primaires , Rats , Rat Sprague-Dawley
9.
J Cell Physiol ; 231(5): 1001-14, 2016 May.
Article de Anglais | MEDLINE | ID: mdl-26381402

RÉSUMÉ

Epigenetic mechanisms mediate the acquisition of specialized cellular phenotypes during tissue development, maintenance and repair. When phenotype-committed cells transit through mitosis, chromosomal condensation counteracts epigenetic activation of gene expression. Subsequent post-mitotic re-activation of transcription depends on epigenetic DNA and histone modifications, as well as other architecturally bound proteins that "bookmark" the genome. Osteogenic lineage commitment, differentiation and progenitor proliferation require the bone-related runt-related transcription factor Runx2. Here, we characterized a non-genomic mRNA mediated mechanism by which osteoblast precursors retain their phenotype during self-renewal. We show that osteoblasts produce maximal levels of Runx2 mRNA, but not protein, prior to mitotic cell division. Runx2 mRNA partitions symmetrically between daughter cells in a non-chromosomal tubulin-containing compartment. Subsequently, transcription-independent de novo synthesis of Runx2 protein in early G1 phase results in increased functional interactions of Runx2 with a representative osteoblast-specific target gene (osteocalcin/BGLAP2) in chromatin. Somatic transmission of Runx2 mRNAs in osteoblasts and osteosarcoma cells represents a versatile mechanism for translational rather than transcriptional induction of this principal gene regulator to maintain osteoblast phenotype identity after mitosis.


Sujet(s)
Lignage cellulaire/génétique , Sous-unité alpha 1 du facteur CBF/métabolisme , Modes de transmission héréditaire/génétique , Mitose/génétique , Ostéoblastes/cytologie , Ostéogenèse/génétique , Biosynthèse des protéines , Animaux , Lignée cellulaire , Sous-unité alpha 1 du facteur CBF/génétique , Phase G1 , Régulation de l'expression des gènes , Humains , Interphase , Souris , Ostéoblastes/métabolisme , Ostéocalcine/génétique , Régions promotrices (génétique) , Liaison aux protéines , ARN messager/génétique , ARN messager/métabolisme
10.
J Biol Chem ; 290(47): 28329-28342, 2015 Nov 20.
Article de Anglais | MEDLINE | ID: mdl-26453309

RÉSUMÉ

Transcription factor Runx2 controls bone development and osteoblast differentiation by regulating expression of a significant number of bone-related target genes. Here, we report that transcriptional activation and repression of the Runx2 gene via its osteoblast-specific P1 promoter (encoding mRNA for the Runx2/p57 isoform) is accompanied by selective deposition and elimination of histone marks during differentiation of mesenchymal cells to the osteogenic and myoblastic lineages. These epigenetic profiles are mediated by key components of the Trithorax/COMPASS-like and Polycomb group complexes together with histone arginine methylases like PRMT5 and lysine demethylases like JARID1B/KDM5B. Importantly, knockdown of the H3K4me2/3 demethylase JARID1B, but not of the demethylases UTX and NO66, prevents repression of the Runx2 P1 promoter during myogenic differentiation of mesenchymal cells. The epigenetically forced expression of Runx2/p57 and osteocalcin, a classical bone-related target gene, under myoblastic-differentiation is accompanied by enrichment of the H3K4me3 and H3K27ac marks at the Runx2 P1 promoter region. Our results identify JARID1B as a key component of a potent epigenetic switch that controls mesenchymal cell fate into myogenic and osteogenic lineages.


Sujet(s)
Sous-unité alpha 1 du facteur CBF/génétique , Protéines de liaison à l'ADN/métabolisme , Épigenèse génétique , Jumonji Domain-Containing Histone Demethylases/métabolisme , Ostéoblastes/cytologie , Animaux , Différenciation cellulaire , Lignée cellulaire , Lignage cellulaire , Histone/métabolisme , Humains , Souris , Ostéoblastes/métabolisme , Régions promotrices (génétique)
11.
J Cell Physiol ; 229(10): 1521-8, 2014 Oct.
Article de Anglais | MEDLINE | ID: mdl-24585571

RÉSUMÉ

The chromatin remodeling complex SWI/SNF and the transcription factor C/EBPß play critical roles in osteoblastic cells as they jointly control transcription of a number of bone-related target genes. The largest C/EBPß isoform, LAP*, possesses a short additional N-terminal domain that has been proposed to mediate the interaction of this factor with SWI/SNF in myeloid cells. Here we examine the requirement of a functional N-terminus in C/EBPß-LAP* for binding SWI/SNF and for recruiting this complex to the Ric-8B gene to mediate transcriptional repression. We find that both C/EBPß-LAP* and SWI/SNF simultaneously bind to the Ric-8B promoter in differentiating osteoblasts that repress Ric-8B expression. This decreased expression of Ric-8B is not accompanied by significant changes in histone acetylation at the Ric-8B gene promoter sequence. A single aminoacid change at the C/EBPß-LAP* N-terminus (R3L) that inhibits C/EBPß-LAP*-SWI/SNF interaction, also prevents SWI/SNF recruitment to the Ric-8B promoter as well as C/EBPß-LAP*-dependent repression of the Ric-8B gene. Inducible expression of the C/EBPß-LAP*R3L protein in stably transfected osteoblastic cells demonstrates that this mutant protein binds to C/EBPß-LAP*-target promoters and competes with the endogenous C/EBPß factor. Together our results indicate that a functional N-terminus in C/EBPß-LAP* is required for interacting with SWI/SNF and for Ric-8B gene repression in osteoblasts.


Sujet(s)
Protéine bêta de liaison aux séquences stimulatrices de type CCAAT/métabolisme , Assemblage et désassemblage de la chromatine , Protéines chromosomiques nonhistones/métabolisme , Facteurs d'échange de nucléotides guanyliques/métabolisme , Protéines nucléaires/métabolisme , Ostéoblastes/métabolisme , Facteurs de transcription/métabolisme , Transcription génétique , Cellules 3T3 , Acétylation , Animaux , Sites de fixation , Protéine bêta de liaison aux séquences stimulatrices de type CCAAT/génétique , Lignée cellulaire tumorale , Prolifération cellulaire , Régulation négative , Facteurs d'échange de nucléotides guanyliques/génétique , Histone/métabolisme , Souris , Mutation , Protéines nucléaires/génétique , Ostéocalcine/métabolisme , Régions promotrices (génétique) , Liaison aux protéines , Motifs et domaines d'intéraction protéique , Isoformes de protéines , Rats , Transfection
12.
J Cell Physiol ; 228(4): 714-23, 2013 Apr.
Article de Anglais | MEDLINE | ID: mdl-22949168

RÉSUMÉ

Runx2 regulates osteogenic differentiation and bone formation, but also suppresses pre-osteoblast proliferation by affecting cell cycle progression in the G(1) phase. The growth suppressive potential of Runx2 is normally inactivated in part by protein destabilization, which permits cell cycle progression beyond the G(1)/S phase transition, and Runx2 is again up-regulated after mitosis. Runx2 expression also correlates with metastasis and poor chemotherapy response in osteosarcoma. Here we show that six human osteosarcoma cell lines (SaOS, MG63, U2OS, HOS, G292, and 143B) have different growth rates, which is consistent with differences in the lengths of the cell cycle. Runx2 protein levels are cell cycle-regulated with respect to the G(1)/S phase transition in U2OS, HOS, G292, and 143B cells. In contrast, Runx2 protein levels are constitutively expressed during the cell cycle in SaOS and MG63 cells. Forced expression of Runx2 suppresses growth in all cell lines indicating that accumulation of Runx2 in excess of its pre-established levels in a given cell type triggers one or more anti-proliferative pathways in osteosarcoma cells. Thus, regulatory mechanisms controlling Runx2 expression in osteosarcoma cells must balance Runx2 protein levels to promote its putative oncogenic functions, while avoiding suppression of bone tumor growth.


Sujet(s)
Tumeurs osseuses/génétique , Tumeurs osseuses/métabolisme , Sous-unité alpha 1 du facteur CBF/génétique , Sous-unité alpha 1 du facteur CBF/métabolisme , Ostéosarcome/génétique , Ostéosarcome/métabolisme , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme , Tumeurs osseuses/anatomopathologie , Processus de croissance cellulaire/physiologie , Lignée cellulaire tumorale , Phase G1/génétique , Humains , Ostéosarcome/anatomopathologie , Phase S/génétique
13.
J Cell Physiol ; 226(11): 3043-52, 2011 Nov.
Article de Anglais | MEDLINE | ID: mdl-21302301

RÉSUMÉ

The Runx2 factor is an essential component of the regulatory mechanisms that control transcription during skeletogenesis. Runx2/p57 expression in osteoblastic cells is controlled by the P1 promoter, which is recognized by key regulators of osteoblast differentiation including homeodomain factors and Wnt- and BMP-signaling mediators. Here, we report that the transcription factor C/EBPß up-regulates Runx2/p57 expression by directly binding to the Runx2 P1 promoter in mesenchymal, pre-osteoblastic, and osteoblastic cells. This C/EBPß-mediated up-regulation is principally dependent on C/EBP site II that is located within the first 180 bp of the proximal P1 promoter region and is highly conserved among mouse, rat, and human Runx2 genes. Our studies reveal how the C/EBPß factor, known to have a key role during osteogenesis, contributes to regulating the expression of Runx2, the master regulator of osteoblast differentiation.


Sujet(s)
Protéine bêta de liaison aux séquences stimulatrices de type CCAAT/métabolisme , Sous-unité alpha 1 du facteur CBF/génétique , Régulation de l'expression des gènes , Ostéoblastes/métabolisme , Régions promotrices (génétique) , Transcription génétique , Animaux , Séquence nucléotidique , Lignée cellulaire , Humains , Cellules souches mésenchymateuses/métabolisme , Souris , Données de séquences moléculaires , Rats , Régulation positive
14.
J Cell Physiol ; 222(2): 336-46, 2010 Feb.
Article de Anglais | MEDLINE | ID: mdl-19885846

RÉSUMÉ

1alpha,25-dihydroxy vitamin D(3) (vitamin D(3)) has an important role during osteoblast differentiation as it directly modulates the expression of key bone-related genes. Vitamin D(3) binds to the vitamin D(3) receptor (VDR), a member of the superfamily of nuclear receptors, which in turn interacts with transcriptional activators to target this regulatory complex to specific sequence elements within gene promoters. Increasing evidence demonstrates that the architectural organization of the genome and regulatory proteins within the eukaryotic nucleus support gene expression in a physiological manner. Previous reports indicated that the VDR exhibits a punctate nuclear distribution that is significantly enhanced in cells grown in the presence of vitamin D(3). Here, we demonstrate that in osteoblastic cells, the VDR binds to the nuclear matrix in a vitamin D(3)-dependent manner. This interaction of VDR with the nuclear matrix occurs rapidly after vitamin D(3) addition and does not require a functional VDR DNA-binding domain. Importantly, nuclear matrix-bound VDR colocalizes with its transcriptional coactivator DRIP205/TRAP220/MED1 which is also matrix bound. Together these results indicate that after ligand stimulation the VDR rapidly enters the nucleus and associates with the nuclear matrix preceding vitamin D(3)-transcriptional upregulation.


Sujet(s)
Calcitriol/métabolisme , Matrice nucléaire/métabolisme , Ostéoblastes/métabolisme , Récepteur calcitriol/métabolisme , Animaux , Sites de fixation , Lignée cellulaire tumorale , Sous-unité alpha 1 du facteur CBF/métabolisme , ADN/métabolisme , Humains , Ligands , Sous-unité-1 du complexe médiateur/métabolisme , Souris , Mutation , Liaison aux protéines , Structure tertiaire des protéines , Rats , Récepteur calcitriol/génétique , Protéines de fusion recombinantes/métabolisme , Activation de la transcription , Transduction génétique
15.
J Cell Physiol ; 221(3): 560-71, 2009 Dec.
Article de Anglais | MEDLINE | ID: mdl-19739101

RÉSUMÉ

Bone formation and osteoblast differentiation require the functional expression of the Runx2/Cbfbeta heterodimeric transcription factor complex. Runx2 is also a suppressor of proliferation in osteoblasts by attenuating cell cycle progression in G(1). Runx2 levels are modulated during the cell cycle, which are maximal in G(1) and minimal beyond the G(1)/S phase transition (S, G(2), and M phases). It is not known whether Cbfbeta gene expression is cell cycle controlled in preosteoblasts nor how Runx2 or Cbfbeta are regulated during the cell cycle in bone cancer cells. We investigated Runx2 and Cbfbeta gene expression during cell cycle progression in MC3T3-E1 osteoblasts, as well as ROS17/2.8 and SaOS-2 osteosarcoma cells. Runx2 protein levels are reduced as expected in MC3T3-E1 cells arrested in late G(1) (by mimosine) or M phase (by nocodazole), but not in cell cycle arrested osteosarcoma cells. Cbfbeta protein levels are cell cycle independent in both osteoblasts and osteosarcoma cells. In synchronized MC3T3-E1 osteoblasts progressing from late G1 or mitosis, Runx2 levels but not Cbfbeta levels are cell cycle regulated. However, both factors are constitutively elevated throughout the cell cycle in osteosarcoma cells. Proteasome inhibition by MG132 stabilizes Runx2 protein levels in late G(1) and S in MC3T3-E1 cells, but not in ROS17/2.8 and SaOS-2 osteosarcoma cells. Thus, proteasomal degradation of Runx2 is deregulated in osteosarcoma cells. We propose that cell cycle control of Runx2 gene expression is impaired in osteosarcomas and that this deregulation may contribute to the pathogenesis of osteosarcoma.


Sujet(s)
Cycle cellulaire/physiologie , Sous-unité alpha 1 du facteur CBF/métabolisme , Sous-unités bêta du facteur CBF/métabolisme , Régulation de l'expression des gènes tumoraux/physiologie , Ostéosarcome/métabolisme , Animaux , Lignée cellulaire , Lignée cellulaire tumorale , Sous-unité alpha 1 du facteur CBF/génétique , Sous-unités bêta du facteur CBF/génétique , Inhibiteurs de la cystéine protéinase , Phase G1/physiologie , Expression des gènes/génétique , Humains , Leupeptines/pharmacologie , Souris , Mitose/physiologie , Ostéoblastes/cytologie , Ostéoblastes/métabolisme , Ostéosarcome/anatomopathologie , Proteasome endopeptidase complex/métabolisme , Inhibiteurs du protéasome , Rats , Ubiquitination/effets des médicaments et des substances chimiques
16.
Biochemistry ; 48(30): 7287-95, 2009 Aug 04.
Article de Anglais | MEDLINE | ID: mdl-19545172

RÉSUMÉ

The Runx2 transcription factor is essential for skeletal development as it regulates expression of several key bone-related genes. Multiple lines of evidence indicate that expression of the Runx2/p57 isoform in osteoblasts is controlled by the distal P1 promoter. Alterations of chromatin structure are often associated with transcription and can be mediated by members of the SWI/SNF family of chromatin remodeling complexes, or by transcriptional coactivators that possess enzymatic activities that covalently modify structural components of the chromatin. Here, we report that a specific chromatin remodeling process at the proximal region (residues -400 to 35) of the Runx2 gene P1 promoter accompanies transcriptional activity in osteoblasts. This altered chromatin organization is reflected by the presence of two DNase I hypersensitive sites that span key regulatory elements for Runx2/p57 transcription. Chromatin remodeling and transcription of the Runx2 gene are associated with elevated levels of histone acetylation at the P1 promoter region and binding of active RNA polymerase II and are independent of the activity of the SWI/SNF chromatin remodeling complex. Changes in chromatin organization at the P1 promoter are stimulated during differentiation of C2C12 mesenchymal cells to the osteoblastic lineage by treatment with BMP2. Together, our results support a model in which changes in chromatin organization occur at very early stages of mesenchymal differentiation to facilitate subsequent expression of the Runx2/p57 isoform in osteoblastic cells.


Sujet(s)
Protéines chromosomiques nonhistones/métabolisme , Sous-unité alpha 1 du facteur CBF/métabolisme , Désoxyribonucléases/métabolisme , Histone/métabolisme , Régions promotrices (génétique) , Facteurs de transcription/métabolisme , Transcription génétique , Acétylation , Animaux , Protéine morphogénétique osseuse de type 2/génétique , Protéine morphogénétique osseuse de type 2/métabolisme , Différenciation cellulaire/physiologie , Lignée cellulaire , Assemblage et désassemblage de la chromatine , Protéines chromosomiques nonhistones/génétique , Sous-unité alpha 1 du facteur CBF/génétique , Régulation de l'expression des gènes , Histone/génétique , Souris , Ostéoblastes/cytologie , Ostéoblastes/physiologie , Isoformes de protéines/génétique , Isoformes de protéines/métabolisme , Facteurs de transcription/génétique
17.
Crit Rev Eukaryot Gene Expr ; 18(2): 163-72, 2008.
Article de Anglais | MEDLINE | ID: mdl-18304030

RÉSUMÉ

Vitamin D is a principal modulator of skeletal gene expression, thus necessitating an understanding of interfaces between the activity of this steroid hormone and regulatory cascades that are functionally linked to the regulation of skeletal genes. Physiologic responsiveness requires combinatorial control, whereas co-regulatory proteins determine the specificity of biologic responsiveness to physiologic cues. It is becoming increasingly evident that regulatory complexes containing the vitamin D receptor are dynamic rather than static. Temporal and spatial modifications in the composition of these complexes provide a mechanism for integrating regulatory signals to support positive or negative control through synergism and antagonism. Compartmentalization of components of vitamin D control in nuclear microenvironments supports the integration of regulatory activities, perhaps by establishing thresholds for protein activity in time frames that are consistent with the execution of regulatory signaling.


Sujet(s)
Développement osseux/génétique , Régulation de l'expression des gènes au cours du développement , Vitamine D/physiologie , Animaux , Noyau de la cellule/métabolisme , Humains , Modèles biologiques , Complexes multiprotéiques/physiologie , Facteurs de transcription/physiologie
18.
J Cell Physiol ; 214(3): 740-9, 2008 Mar.
Article de Anglais | MEDLINE | ID: mdl-17786964

RÉSUMÉ

Binding of 1alpha,25-dihydroxy vitamin D(3) to the C-terminal ligand-binding domain (LBD) of its receptor (VDR) induces a conformational change that enables interaction of VDR with transcriptional coactivators such as members of the p160/SRC family or the DRIP (vitamin D receptor-interacting complex)/Mediator complex. These interactions are critical for VDR-mediated transcriptional enhancement of target genes. The p160/SRC members contain intrinsic histone acetyl transferase (HAT) activities that remodel chromatin at promoter regulatory regions, and the DRIP/Mediator complex may establish a molecular bridge between the VDR complex and the basal transcription machinery. Here, we have analyzed the rate of recruitment of these coactivators to the bone-specific osteocalcin (OC) gene in response to short and long exposures to 1alpha,25-dihydroxy vitamin D3. We report that in intact osteoblastic cells VDR, in association with SRC-1, rapidly binds to the OC promoter in response to the ligand. The recruitment of SRC-1 correlates with maximal transcriptional enhancement of the OC gene at 4 h and with increased histone acetylation at the OC promoter. In contrast to other 1alpha,25-dihydroxy vitamin D3-enhanced genes, binding of the DRIP205 subunit, which anchors the DRIP/Mediator complex to the VDR, is detected at the OC promoter only after several hours of incubation with 1alpha,25-dihydroxy vitamin D(3), concomitant with the release of SRC-1. Together, our results support a model where VDR preferentially recruits SRC-1 to enhance bone-specific OC gene transcription.


Sujet(s)
Régulation de l'expression des gènes/effets des médicaments et des substances chimiques , Histone acetyltransferases/métabolisme , Ostéocalcine/génétique , Régions promotrices (génétique)/génétique , Récepteur calcitriol/métabolisme , Facteurs de transcription/métabolisme , Transcription génétique/effets des médicaments et des substances chimiques , Vitamine D/analogues et dérivés , Animaux , Sous-unité-1 du complexe médiateur , Modèles génétiques , Coactivateur-1 de récepteur nucléaire , Ostéoblastes/effets des médicaments et des substances chimiques , Ostéoblastes/enzymologie , Ostéoblastes/métabolisme , Liaison aux protéines/effets des médicaments et des substances chimiques , RNA polymerase II/métabolisme , ARN messager/génétique , ARN messager/métabolisme , Rats , Régulation positive/effets des médicaments et des substances chimiques , Vitamine D/pharmacologie
19.
Biochem Cell Biol ; 85(4): 419-25, 2007 Aug.
Article de Anglais | MEDLINE | ID: mdl-17713577

RÉSUMÉ

Chromatin organization within the nuclear compartment is a fundamental mechanism to regulate the expression of eukaryotic genes. During the last decade, a number of nuclear protein complexes with the ability to remodel chromatin and regulate gene transcription have been reported. Among these complexes is the SWI/SNF family, which alters chromatin structure in an ATP-dependent manner. A considerable effort has been made to understand the molecular mechanisms by which SWI/SNF catalyzes nucleosome remodeling. However, limited attention has been dedicated to studying the role of the DNA sequence in this remodeling process. Therefore, in this minireview, we discuss the contribution of nucleosome positioning and nucleosome excluding sequences to the targeting and activity of SWI/SNF complexes. This discussion includes results from our group using the rat osteocalcin gene promoter as a model. Based on these results, we postulate a model for chromatin remodeling and transcriptional activation of this gene in osteoblastic cells.


Sujet(s)
Séquence nucléotidique , Assemblage et désassemblage de la chromatine , Protéines chromosomiques nonhistones/métabolisme , ADN , Nucléosomes , Facteurs de transcription/métabolisme , Animaux , ADN/génétique , ADN/métabolisme , Modèles génétiques , Nucléosomes/métabolisme , Nucléosomes/ultrastructure , Ostéocalcine/génétique , Régions promotrices (génétique) , Transcription génétique
20.
Arch Biochem Biophys ; 460(2): 293-9, 2007 Apr 15.
Article de Anglais | MEDLINE | ID: mdl-17288986

RÉSUMÉ

Vitamin D serves as a principal modulator of skeletal gene transcription, thus necessitating an understanding of interfaces between the activity of this steroid hormone and regulatory cascades that are functionally linked to the regulation of skeletal genes. Physiological responsiveness requires combinatorial control where coregulatory proteins determine the specificity of biological responsiveness to physiological cues. It is becoming increasingly evident that the regulatory complexes containing the vitamin D receptor are dynamic rather than static. Temporal and spatial modifications in the composition of these complexes provide a mechanism for integrating regulatory signals to support positive or negative control through synergism and antagonism. Compartmentalization of components of vitamin D control in nuclear microenvironments supports the integration of regulatory activities, perhaps by establishing thresholds for protein activity in time frames that are consistent with the execution of regulatory signaling.


Sujet(s)
Noyau de la cellule/métabolisme , Régulation de l'expression des gènes/physiologie , Récepteur calcitriol/métabolisme , Transduction du signal/physiologie , Vitamine D/métabolisme , Transport nucléaire actif/physiologie , Animaux , Humains
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE