Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 35
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Sci Rep ; 13(1): 22895, 2023 12 21.
Article de Anglais | MEDLINE | ID: mdl-38129478

RÉSUMÉ

Argonaute proteins are instrumental in regulating RNA stability and translation. AGO2, the major mammalian Argonaute protein, is known to primarily associate with microRNAs, a family of small RNA 'guide' sequences, and identifies its targets primarily via a 'seed' mediated partial complementarity process. Despite numerous studies, a definitive experimental dataset of AGO2 'guide'-'target' interactions remains elusive. Our study employs two experimental methods-AGO2 CLASH and AGO2 eCLIP, to generate thousands of AGO2 target sites verified by chimeric reads. These chimeric reads contain both the AGO2 loaded small RNA 'guide' and the target sequence, providing a robust resource for modeling AGO2 binding preferences. Our novel analysis pipeline reveals thousands of AGO2 target sites driven by microRNAs and a significant number of AGO2 'guides' derived from fragments of other small RNAs such as tRNAs, YRNAs, snoRNAs, rRNAs, and more. We utilize convolutional neural networks to train machine learning models that accurately predict the binding potential for each 'guide' class and experimentally validate several interactions. In conclusion, our comprehensive analysis of the AGO2 targetome broadens our understanding of its 'guide' repertoire and potential function in development and disease. Moreover, we offer practical bioinformatic tools for future experiments and the prediction of AGO2 targets. All data and code from this study are freely available at https://github.com/ML-Bioinfo-CEITEC/HybriDetector/ .


Sujet(s)
microARN , Animaux , microARN/génétique , microARN/métabolisme , Protéines Argonaute/génétique , Protéines Argonaute/métabolisme , ARN ribosomique , ARN de transfert , Mammifères/métabolisme
2.
Cell Mol Life Sci ; 80(9): 273, 2023 Aug 30.
Article de Anglais | MEDLINE | ID: mdl-37646974

RÉSUMÉ

ISG20L2, a 3' to 5' exoribonuclease previously associated with ribosome biogenesis, is identified here in activated T cells as an enzyme with a preferential affinity for uridylated miRNA substrates. This enzyme is upregulated in T lymphocytes upon TCR and IFN type I stimulation and appears to be involved in regulating T cell function. ISG20L2 silencing leads to an increased basal expression of CD69 and induces greater IL2 secretion. However, ISG20L2 absence impairs CD25 upregulation, CD3 synaptic accumulation and MTOC translocation towards the antigen-presenting cell during immune synapsis. Remarkably, ISG20L2 controls the expression of immunoregulatory molecules, such as AHR, NKG2D, CTLA-4, CD137, TIM-3, PD-L1 or PD-1, which show increased levels in ISG20L2 knockout T cells. The dysregulation observed in these key molecules for T cell responses support a role for this exonuclease as a novel RNA-based regulator of T cell function.


Sujet(s)
Activation des lymphocytes , microARN , Cellules présentatrices d'antigène , Endonucleases , microARN/génétique , Humains
3.
Sci Transl Med ; 14(672): eabo5715, 2022 11 23.
Article de Anglais | MEDLINE | ID: mdl-36417487

RÉSUMÉ

Cardiac pathologies are characterized by intense remodeling of the extracellular matrix (ECM) that eventually leads to heart failure. Cardiomyocytes respond to the ensuing biomechanical stress by reexpressing fetal contractile proteins via transcriptional and posttranscriptional processes, such as alternative splicing (AS). Here, we demonstrate that the heterogeneous nuclear ribonucleoprotein C (hnRNPC) is up-regulated and relocates to the sarcomeric Z-disc upon ECM pathological remodeling. We show that this is an active site of localized translation, where the ribonucleoprotein associates with the translation machinery. Alterations in hnRNPC expression, phosphorylation, and localization can be mechanically determined and affect the AS of mRNAs involved in mechanotransduction and cardiovascular diseases, including Hippo pathway effector Yes-associated protein 1. We propose that cardiac ECM remodeling serves as a switch in RNA metabolism by affecting an associated regulatory protein of the spliceosome apparatus. These findings offer new insights on the mechanism of mRNA homeostatic mechanoregulation in pathological conditions.


Sujet(s)
Défaillance cardiaque , Ribonucléoprotéine nucléaire hétérogène du groupe C , Humains , Ribonucléoprotéine nucléaire hétérogène du groupe C/métabolisme , Mécanotransduction cellulaire , Myocytes cardiaques/métabolisme , Défaillance cardiaque/métabolisme , Matrice extracellulaire/métabolisme , ARN messager/génétique , ARN messager/métabolisme
4.
RNA ; 28(12): 1568-1581, 2022 12.
Article de Anglais | MEDLINE | ID: mdl-36192131

RÉSUMÉ

Transfer RNAs acquire a large plethora of chemical modifications. Among those, modifications of the anticodon loop play important roles in translational fidelity and tRNA stability. Four human wobble U-containing tRNAs obtain 5-methoxycarbonylmethyluridine (mcm5U34) or 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U34), which play a role in decoding. This mark involves a cascade of enzymatic activities. The last step is mediated by alkylation repair homolog 8 (ALKBH8). In this study, we performed a transcriptome-wide analysis of the repertoire of ALKBH8 RNA targets. Using a combination of HITS-CLIP and RIP-seq analyses, we uncover ALKBH8-bound RNAs. We show that ALKBH8 targets fully processed and CCA modified tRNAs. Our analyses uncovered the previously known set of wobble U-containing tRNAs. In addition, both our approaches revealed ALKBH8 binding to several other types of noncoding RNAs, in particular C/D box snoRNAs.


Sujet(s)
Séquençage après immunoprécipitation de la chromatine , ARN de transfert , Humains , ARN de transfert/génétique , ARN de transfert/métabolisme , Anticodon , ARN non traduit/génétique , AlkB Homolog 8, tRNA methyltransferase/génétique
5.
Nucleic Acids Res ; 49(19): 10895-10910, 2021 11 08.
Article de Anglais | MEDLINE | ID: mdl-34634806

RÉSUMÉ

N6-methyladenosine (m6A) and N6,2'-O-dimethyladenosine (m6Am) are two abundant modifications found in mRNAs and ncRNAs that can regulate multiple aspects of RNA biology. They function mainly by regulating interactions with specific RNA-binding proteins. Both modifications are linked to development, disease and stress response. To date, three methyltransferases and two demethylases have been identified that modify adenosines in mammalian mRNAs. Here, we present a comprehensive analysis of the interactomes of these enzymes. PCIF1 protein network comprises mostly factors involved in nascent RNA synthesis by RNA polymerase II, whereas ALKBH5 is closely linked with most aspects of pre-mRNA processing and mRNA export to the cytoplasm. METTL16 resides in subcellular compartments co-inhabited by several other RNA modifiers and processing factors. FTO interactome positions this demethylase at a crossroad between RNA transcription, RNA processing and DNA replication and repair. Altogether, these enzymes share limited spatial interactomes, pointing to specific molecular mechanisms of their regulation.


Sujet(s)
Protéines adaptatrices de la transduction du signal/génétique , Adénosine/analogues et dérivés , AlkB Homolog 5, RNA demethylase/génétique , Alpha-ketoglutarate-dependent dioxygenase FTO/génétique , Methyltransferases/génétique , Protéines nucléaires/génétique , Protéines adaptatrices de la transduction du signal/métabolisme , Adénosine/métabolisme , AlkB Homolog 5, RNA demethylase/métabolisme , Alpha-ketoglutarate-dependent dioxygenase FTO/métabolisme , Réparation de l'ADN , Réplication de l'ADN , Gene Ontology , Cellules HEK293 , Humains , Methyltransferases/métabolisme , Annotation de séquence moléculaire , Protéines nucléaires/métabolisme , Oxidoreductases, (N-demethylating)/génétique , Oxidoreductases, (N-demethylating)/métabolisme , Liaison aux protéines , Cartographie d'interactions entre protéines , Isoformes de protéines/génétique , Isoformes de protéines/métabolisme , ARN messager/génétique , ARN messager/métabolisme , ARN non traduit/génétique , ARN non traduit/métabolisme , Transcription génétique
6.
RNA Biol ; 18(sup1): 19-30, 2021 10 15.
Article de Anglais | MEDLINE | ID: mdl-34424827

RÉSUMÉ

Eukaryotic mRNAs are modified by several chemical marks which have significant impacts on mRNA biology, gene expression, and cellular metabolism as well as on the survival and development of the whole organism. The most abundant and well-studied mRNA base modifications are m6A and ADAR RNA editing. Recent studies have also identified additional mRNA marks such as m6Am, m5C, m1A and Ψ and studied their roles. Each type of modification is deposited by a specific writer, many types of modification are recognized and interpreted by several different readers and some types of modifications can be removed by eraser enzymes. Several works have addressed the functional relationships between some of the modifications. In this review we provide an overview on the current status of research on the different types of mRNA modifications and about the crosstalk between different marks and its functional consequences.


Sujet(s)
Épigenèse génétique , Épigénomique/méthodes , Maturation post-transcriptionnelle des ARN , ARN messager/métabolisme , Transcriptome , Animaux , Humains , ARN messager/génétique
7.
Methods Mol Biol ; 2062: C1-C4, 2020.
Article de Anglais | MEDLINE | ID: mdl-33252726

RÉSUMÉ

The original version of this book was inadvertently published with the hyperlinks deleted from the reference section in the Chapters 1,5,8,11,13,15,16 and 24. These are corrected now.

8.
Nucleic Acids Res ; 48(11): 6184-6197, 2020 06 19.
Article de Anglais | MEDLINE | ID: mdl-32374871

RÉSUMÉ

Spliceosomal small nuclear ribonucleoprotein particles (snRNPs) undergo a complex maturation pathway containing multiple steps in the nucleus and in the cytoplasm. snRNP biogenesis is strictly proofread and several quality control checkpoints are placed along the pathway. Here, we analyzed the fate of small nuclear RNAs (snRNAs) that are unable to acquire a ring of Sm proteins. We showed that snRNAs lacking the Sm ring are unstable and accumulate in P-bodies in an LSm1-dependent manner. We further provide evidence that defective snRNAs without the Sm binding site are uridylated at the 3' end and associate with DIS3L2 3'→5' exoribonuclease and LSm proteins. Finally, inhibition of 5'→3' exoribonuclease XRN1 increases association of ΔSm snRNAs with DIS3L2, which indicates competition and compensation between these two degradation enzymes. Together, we provide evidence that defective snRNAs without the Sm ring are uridylated and degraded by alternative pathways involving either DIS3L2 or LSm proteins and XRN1.


Sujet(s)
Exoribonucleases/métabolisme , Conformation d'acide nucléique , Protéines proto-oncogènes/métabolisme , Transport des ARN , Petit ARN nucléaire/composition chimique , Petit ARN nucléaire/métabolisme , Protéines de liaison à l'ARN/métabolisme , Séquence nucléotidique , Sites de fixation , Cellules HeLa , Humains , Organites/métabolisme , Liaison aux protéines , Stabilité de l'ARN , Protéines du complexe SMN/métabolisme
9.
Methods Mol Biol ; 2062: 237-253, 2020.
Article de Anglais | MEDLINE | ID: mdl-31768980

RÉSUMÉ

The RNA exosome processes a wide variety of RNA and mediates RNA maturation, quality control and decay. In marked contrast to its high processivity in vivo, the purified exosome exhibits only weak activity on RNA substrates in vitro. Its activity is regulated by several auxiliary proteins, and protein complexes. In budding yeast, the activity of exosome is enhanced by the polyadenylation complex referred to as TRAMP. TRAMP oligoadenylates precursors and aberrant forms of RNAs to promote their trimming or complete degradation by exosomes. This chapter provides protocols for the purification of TRAMP and exosome complexes from yeast and the in vitro evaluation of exosome activation by the TRAMP complex. The protocols can be used for different purposes, such as the assessment of the role of individual subunits, protein domains or particular mutations in TRAMP-exosome RNA processing in vitro.


Sujet(s)
Exosome multienzyme ribonuclease complex/métabolisme , Exosomes/métabolisme , Polyadénylation/physiologie , Protéines de Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/métabolisme , Serine endopeptidases/métabolisme , Noyau de la cellule/métabolisme , ARN/métabolisme , Stabilité de l'ARN/physiologie
10.
Nucleic Acids Res ; 48(4): 2091-2106, 2020 02 28.
Article de Anglais | MEDLINE | ID: mdl-31875226

RÉSUMÉ

Staufen1 (STAU1) is a dsRNA binding protein mediating mRNA transport and localization, translational control and STAU1-mediated mRNA decay (SMD). The STAU1 binding site (SBS) within human ADP-ribosylation factor1 (ARF1) 3'UTR binds STAU1 and this downregulates ARF1 cytoplasmic mRNA levels by SMD. However, how STAU1 recognizes specific mRNA targets is still under debate. Our structure of the ARF1 SBS-STAU1 complex uncovers target recognition by STAU1. STAU1 dsRNA binding domain (dsRBD) 4 interacts with two pyrimidines and one purine from the minor groove side via helix α1, the ß1-ß2 loop anchors the dsRBD at the end of the dsRNA and lysines in helix α2 bind to the phosphodiester backbone from the major groove side. STAU1 dsRBD3 displays the same binding mode with specific recognition of one guanine base. Mutants disrupting minor groove recognition of ARF1 SBS affect in vitro binding and reduce SMD in vivo. Our data thus reveal how STAU1 recognizes minor groove features in dsRNA relevant for target selection.


Sujet(s)
Facteur-1 d'ADP-ribosylation/composition chimique , Protéines du cytosquelette/composition chimique , Motif de liaison à l'ARN double brin/génétique , ARN double brin/composition chimique , Protéines de liaison à l'ARN/composition chimique , Facteur-1 d'ADP-ribosylation/génétique , Sites de fixation/génétique , Cytoplasme/composition chimique , Cytoplasme/génétique , Protéines du cytosquelette/génétique , Humains , Conformation des protéines , Stabilité de l'ARN/génétique , ARN double brin/génétique , Protéines de liaison à l'ARN/génétique
11.
Biochim Biophys Acta Gene Regul Mech ; 1862(3): 343-355, 2019 03.
Article de Anglais | MEDLINE | ID: mdl-30550773

RÉSUMÉ

RNA modifications are being recognized as an essential factor in gene expression regulation. They play essential roles in germ line development, differentiation and disease. In eukaryotic mRNAs, N6-adenosine methylation (m6A) is the most prevalent internal chemical modification identified to date. The m6A pathway involves factors called writers, readers and erasers. m6A thus offers an interesting concept of dynamic reversible modification with implications in fine-tuning the cellular metabolism. In mammals, FTO and ALKBH5 have been initially identified as m6A erasers. Recently, FTO m6A specificity has been debated as new reports identify FTO targeting N6,2'-O-dimethyladenosine (m6Am). The two adenosine demethylases have diverse roles in the metabolism of mRNAs and their activity is involved in key processes, such as embryogenesis, disease or infection. In this article, we review the current knowledge of their function and mechanisms and discuss the existing contradictions in the field. This article is part of a Special Issue entitled: mRNA modifications in gene expression control edited by Dr. Soller Matthias and Dr. Fray Rupert.


Sujet(s)
AlkB Homolog 5, RNA demethylase/métabolisme , Maturation post-transcriptionnelle des ARN , ARN/métabolisme , Adénine/analogues et dérivés , Adénine/métabolisme , Animaux , Humains , ARN/génétique
12.
Article de Anglais | MEDLINE | ID: mdl-30397107

RÉSUMÉ

Most eukaryotic RNAs are posttranscriptionally modified. The majority of modifications promote RNA maturation, others may regulate function and stability. The 3' terminal non-templated oligouridylation is a widespread modification affecting many cellular RNAs at some stage of their life cycle. It has diverse roles in RNA metabolism. The most prevalent is the regulation of stability and quality control. On the cellular and organismal level, it plays a critical role in a number of pathways, such as cell cycle regulation, cell death, development or viral infection. Defects in uridylation have been linked to several diseases. This review summarizes the current knowledge about the role of the 3' terminal oligo(U)-tailing in biology of various RNAs in eukaryotes and describes key factors involved in these pathways.This article is part of the theme issue '5' and 3' modifications controlling RNA degradation'.


Sujet(s)
Cellules eucaryotes/physiologie , Maturation de l'extrémité 3' des ARN , ARN/métabolisme , Uridine/métabolisme , Eucaryotes , Humains
13.
Wiley Interdiscip Rev RNA ; 9(6): e1489, 2018 11.
Article de Anglais | MEDLINE | ID: mdl-29921017

RÉSUMÉ

Eukaryotic RNA can carry more than 100 different types of chemical modifications. Early studies have been focused on modifications of highly abundant RNA, such as ribosomal RNA and transfer RNA, but recent technical advances have made it possible to also study messenger RNA (mRNA). Subsequently, mRNA modifications, namely methylation, have emerged as key players in eukaryotic gene expression regulation. The most abundant and widely studied internal mRNA modification is N6 -methyladenosine (m6 A), but the list of mRNA chemical modifications continues to grow as fast as interest in this field. Over the past decade, transcriptome-wide studies combined with advanced biochemistry and the discovery of methylation writers, readers, and erasers revealed roles for mRNA methylation in the regulation of nearly every aspect of the mRNA life cycle and in diverse cellular, developmental, and disease processes. Although large parts of mRNA function are linked to its cytoplasmic stability and regulation of its translation, a number of studies have begun to provide evidence for methylation-regulated nuclear processes. In this review, we summarize the recent advances in RNA methylation research and highlight how these new findings have contributed to our understanding of methylation-dependent RNA processing in the nucleus. This article is categorized under: RNA Processing > RNA Editing and Modification RNA Processing > Splicing Regulation/Alternative Splicing RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.


Sujet(s)
Précurseurs des ARN/métabolisme , ARN messager/métabolisme , Animaux , Noyau de la cellule/métabolisme , Épigenèse génétique , Humains , Méthylation , Transcriptome
14.
RNA Biol ; 15(6): 829-831, 2018.
Article de Anglais | MEDLINE | ID: mdl-29671387

RÉSUMÉ

The genetic alphabet consists of the four letters: C, A, G, and T in DNA and C,A,G, and U in RNA. Triplets of these four letters jointly encode 20 different amino acids out of which proteins of all organisms are built. This system is universal and is found in all kingdoms of life. However, bases in DNA and RNA can be chemically modified. In DNA, around 10 different modifications are known, and those have been studied intensively over the past 20 years. Scientific studies on DNA modifications and proteins that recognize them gave rise to the large field of epigenetic and epigenomic research. The outcome of this intense research field is the discovery that development, ageing, and stem-cell dependent regeneration but also several diseases including cancer are largely controlled by the epigenetic state of cells. Consequently, this research has already led to the first FDA approved drugs that exploit the gained knowledge to combat disease. In recent years, the ~150 modifications found in RNA have come to the focus of intense research. Here we provide a perspective on necessary and expected developments in the fast expanding area of RNA modifications, termed epitranscriptomics.


Sujet(s)
ADN tumoral , Épigenèse génétique , Épigénomique/normes , Analyse de profil d'expression de gènes/normes , Régulation de l'expression des gènes tumoraux , Tumeurs , ARN tumoral , Transcriptome , ADN tumoral/génétique , ADN tumoral/métabolisme , Europe , Analyse de profil d'expression de gènes/méthodes , Humains , Tumeurs/génétique , Tumeurs/métabolisme , ARN tumoral/génétique , ARN tumoral/métabolisme
15.
Nucleic Acids Res ; 45(19): 11356-11370, 2017 Nov 02.
Article de Anglais | MEDLINE | ID: mdl-28977517

RÉSUMÉ

N6-methyladenosine (m6A) is the most abundant base modification found in messenger RNAs (mRNAs). The discovery of FTO as the first m6A mRNA demethylase established the concept of reversible RNA modification. Here, we present a comprehensive transcriptome-wide analysis of RNA demethylation and uncover FTO as a potent regulator of nuclear mRNA processing events such as alternative splicing and 3΄ end mRNA processing. We show that FTO binds preferentially to pre-mRNAs in intronic regions, in the proximity of alternatively spliced (AS) exons and poly(A) sites. FTO knockout (KO) results in substantial changes in pre-mRNA splicing with prevalence of exon skipping events. The alternative splicing effects of FTO KO anti-correlate with METTL3 knockdown suggesting the involvement of m6A. Besides, deletion of intronic region that contains m6A-linked DRACH motifs partially rescues the FTO KO phenotype in a reporter system. All together, we demonstrate that the splicing effects of FTO are dependent on the catalytic activity in vivo and are mediated by m6A. Our results reveal for the first time the dynamic connection between FTO RNA binding and demethylation activity that influences several mRNA processing events.


Sujet(s)
Régions 3' non traduites/génétique , Alpha-ketoglutarate-dependent dioxygenase FTO/génétique , Épissage alternatif , Précurseurs des ARN/génétique , Adénosine/analogues et dérivés , Adénosine/métabolisme , Alpha-ketoglutarate-dependent dioxygenase FTO/métabolisme , Exons/génétique , Analyse de profil d'expression de gènes/méthodes , Cellules HEK293 , Humains , Introns/génétique , Methyltransferases/génétique , Methyltransferases/métabolisme , Mutagenèse dirigée , Mutation , Poly A/génétique , Liaison aux protéines , Précurseurs des ARN/métabolisme
16.
EMBO J ; 35(20): 2179-2191, 2016 10 17.
Article de Anglais | MEDLINE | ID: mdl-27647875

RÉSUMÉ

Uridylation of various cellular RNA species at the 3' end has been generally linked to RNA degradation. In mammals, uridylated pre-let-7 miRNAs and mRNAs are targeted by the 3' to 5' exoribonuclease DIS3L2. Mutations in DIS3L2 have been associated with Perlman syndrome and with Wilms tumor susceptibility. Using in vivo cross-linking and immunoprecipitation (CLIP) method, we discovered the DIS3L2-dependent cytoplasmic uridylome of human cells. We found a broad spectrum of uridylated RNAs including rRNAs, snRNAs, snoRNAs, tRNAs, vault, 7SL, Y RNAs, mRNAs, lncRNAs, and transcripts from pseudogenes. The unifying features of most of these identified RNAs are aberrant processing and the presence of stable secondary structures. Most importantly, we demonstrate that uridylation mediates DIS3L2 degradation of short RNA polymerase II-derived RNAs. Our findings establish the role of DIS3L2 and oligouridylation as the cytoplasmic quality control for highly structured ncRNAs.


Sujet(s)
Exoribonucleases/métabolisme , ARN non traduit/métabolisme , Lignée cellulaire , Exoribonucleases/génétique , Humains , Immunoprécipitation , Nucleotidyltransferases/métabolisme
17.
Nucleic Acids Res ; 43(8): 4236-48, 2015 Apr 30.
Article de Anglais | MEDLINE | ID: mdl-25852104

RÉSUMÉ

The Nuclear Exosome Targeting (NEXT) complex is a key cofactor of the mammalian nuclear exosome in the removal of Promoter Upstream Transcripts (PROMPTs) and potentially aberrant forms of other noncoding RNAs, such as snRNAs. NEXT is composed of three subunits SKIV2L2, ZCCHC8 and RBM7. We have recently identified the NEXT complex in our screen for oligo(U) RNA-binding factors. Here, we demonstrate that NEXT displays preference for U-rich pyrimidine sequences and this RNA binding is mediated by the RNA recognition motif (RRM) of the RBM7 subunit. We solved the structure of RBM7 RRM and identified two phenylalanine residues that are critical for interaction with RNA. Furthermore, we showed that these residues are required for the NEXT interaction with snRNAs in vivo. Finally, we show that depletion of components of the NEXT complex alone or together with exosome nucleases resulted in the accumulation of mature as well as extended forms of snRNAs. Thus, our data suggest a new scenario in which the NEXT complex is involved in the surveillance of snRNAs and/or biogenesis of snRNPs.


Sujet(s)
Petit ARN nucléaire/métabolisme , Protéines de liaison à l'ARN/composition chimique , Protéines de liaison à l'ARN/métabolisme , Motifs d'acides aminés , Séquence nucléotidique , Cellules HEK293 , Cellules HeLa , Humains , Oligoribonucléotides/métabolisme , Liaison aux protéines , Sous-unités de protéines/composition chimique , Sous-unités de protéines/métabolisme , Petit ARN nucléaire/composition chimique , Protéines de liaison à l'ARN/analyse , Nucléotides uridyliques/métabolisme
18.
Mol Cell ; 55(3): 467-81, 2014 Aug 07.
Article de Anglais | MEDLINE | ID: mdl-25066235

RÉSUMÉ

The Nrd1-Nab3-Sen1 (NNS) complex is essential for controlling pervasive transcription and generating sn/snoRNAs in S. cerevisiae. The NNS complex terminates transcription of noncoding RNA genes and promotes exosome-dependent processing/degradation of the released transcripts. The Trf4-Air2-Mtr4 (TRAMP) complex polyadenylates NNS target RNAs and favors their degradation. NNS-dependent termination and degradation are coupled, but the mechanism underlying this coupling remains enigmatic. Here we provide structural and functional evidence demonstrating that the same domain of Nrd1p interacts with RNA polymerase II and Trf4p in a mutually exclusive manner, thus defining two alternative forms of the NNS complex, one involved in termination and the other in degradation. We show that the Nrd1-Trf4 interaction is required for optimal exosome activity in vivo and for the stimulation of polyadenylation of NNS targets by TRAMP in vitro. We propose that transcription termination and RNA degradation are coordinated by switching between two alternative partners of the NNS complex.


Sujet(s)
DNA-directed DNA polymerase/métabolisme , RNA polymerase II/métabolisme , ARN fongique/métabolisme , ARN non traduit/métabolisme , Protéines de liaison à l'ARN/composition chimique , Protéines de Saccharomyces cerevisiae/composition chimique , Protéines de Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/génétique , Terminaison de la transcription , Sites de fixation , DNA-directed DNA polymerase/composition chimique , Exosomes/métabolisme , Spectroscopie par résonance magnétique , Modèles moléculaires , Conformation d'acide nucléique , Polyadénylation , Stabilité de l'ARN , Protéines de liaison à l'ARN/métabolisme
19.
RNA ; 19(12): 1632-8, 2013 Dec.
Article de Anglais | MEDLINE | ID: mdl-24141620

RÉSUMÉ

The mechanisms of gene expression regulation by miRNAs have been extensively studied. However, the regulation of miRNA function and decay has long remained enigmatic. Only recently, 3' uridylation via LIN28A-TUT4/7 has been recognized as an essential component controlling the biogenesis of let-7 miRNAs in stem cells. Although uridylation has been generally implicated in miRNA degradation, the nuclease responsible has remained unknown. Here, we identify the Perlman syndrome-associated protein DIS3L2 as an oligo(U)-binding and processing exoribonuclease that specifically targets uridylated pre-let-7 in vivo. This study establishes DIS3L2 as the missing component of the LIN28-TUT4/7-DIS3L2 pathway required for the repression of let-7 in pluripotent cells.


Sujet(s)
Exoribonucleases/physiologie , microARN/métabolisme , Précurseurs des ARN/métabolisme , Animaux , Séquence nucléotidique , Cellules cultivées , Cellules souches embryonnaires/enzymologie , Techniques de knock-down de gènes , Cellules HEK293 , Cellules HeLa , Humains , Souris , microARN/génétique , Liaison aux protéines , Précurseurs des ARN/génétique , Stabilité de l'ARN , Petit ARN interférent/génétique
20.
Genes Dev ; 26(17): 1891-6, 2012 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-22892239

RÉSUMÉ

Recruitment of appropriate RNA processing factors to the site of transcription is controlled by post-translational modifications of the C-terminal domain (CTD) of RNA polymerase II (RNAP II). Here, we report the solution structure of the Ser5 phosphorylated (pSer5) CTD bound to Nrd1. The structure reveals a direct recognition of pSer5 by Nrd1 that requires the cis conformation of the upstream pSer5-Pro6 peptidyl-prolyl bond of the CTD. Mutations at the complex interface diminish binding affinity and impair processing or degradation of noncoding RNAs. These findings underpin the interplay between covalent and noncovalent changes in the CTD structure that constitute the CTD code.


Sujet(s)
Proline/métabolisme , RNA polymerase II/métabolisme , Protéines de liaison à l'ARN/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/enzymologie , Sérine/métabolisme , Survie cellulaire , Modèles moléculaires , Phosphorylation , Liaison aux protéines , Structure tertiaire des protéines , ARN non traduit/métabolisme , Protéines de liaison à l'ARN/composition chimique , Saccharomyces cerevisiae/cytologie , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/composition chimique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE