Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Bioengineering (Basel) ; 10(8)2023 Aug 17.
Article de Anglais | MEDLINE | ID: mdl-37627859

RÉSUMÉ

BACKGROUND: The recent development of deep neural network models for the analysis of breast images has been a breakthrough in computer-aided diagnostics (CAD). Contrast-enhanced mammography (CEM) is a recent mammography modality providing anatomical and functional imaging of the breast. Despite the clinical benefits it could bring, only a few research studies have been conducted around deep-learning (DL) based CAD for CEM, especially because the access to large databases is still limited. This study presents the development and evaluation of a CEM-CAD for enhancing lesion detection and breast classification. MATERIALS & METHODS: A deep learning enhanced cancer detection model based on a YOLO architecture has been optimized and trained on a large CEM dataset of 1673 patients (7443 images) with biopsy-proven lesions from various hospitals and acquisition systems. The evaluation was conducted using metrics derived from the free receiver operating characteristic (FROC) for the lesion detection and the receiver operating characteristic (ROC) to evaluate the overall breast classification performance. The performances were evaluated for different types of image input and for each patient background parenchymal enhancement (BPE) level. RESULTS: The optimized model achieved an area under the curve (AUROC) of 0.964 for breast classification. Using both low-energy and recombined image as inputs for the DL model shows greater performance than using only the recombined image. For the lesion detection, the model was able to detect 90% of all cancers with a false positive (non-cancer) rate of 0.128 per image. This study demonstrates a high impact of BPE on classification and detection performance. CONCLUSION: The developed CEM CAD outperforms previously published papers and its performance is comparable to radiologist-reported classification and detection capability.

2.
Bioengineering (Basel) ; 10(5)2023 Apr 27.
Article de Anglais | MEDLINE | ID: mdl-37237603

RÉSUMÉ

Recent progress in deep learning (DL) has revived the interest on DL-based computer aided detection or diagnosis (CAD) systems for breast cancer screening. Patch-based approaches are one of the main state-of-the-art techniques for 2D mammogram image classification, but they are intrinsically limited by the choice of patch size, as there is no unique patch size that is adapted to all lesion sizes. In addition, the impact of input image resolution on performance is not yet fully understood. In this work, we study the impact of patch size and image resolution on the classifier performance for 2D mammograms. To leverage the advantages of different patch sizes and resolutions, a multi patch-size classifier and a multi-resolution classifier are proposed. These new architectures perform multi-scale classification by combining different patch sizes and input image resolutions. The AUC is increased by 3% on the public CBIS-DDSM dataset and by 5% on an internal dataset. Compared with a baseline single patch size and single resolution classifier, our multi-scale classifier reaches an AUC of 0.809 and 0.722 in each dataset.

3.
Biomed Phys Eng Express ; 9(3)2023 03 01.
Article de Anglais | MEDLINE | ID: mdl-36758233

RÉSUMÉ

This paper proposes a robust longitudinal registration method for Contrast Enhanced Spectral Mammography in monitoring neoadjuvant chemotherapy. Because breast texture intensity changes with the treatment, a non-rigid registration procedure with local intensity compensations is developed. The approach allows registering the low energy images of the exams acquired before and after the chemotherapy. The measured motion is then applied to the corresponding recombined images. The difference of registered images, called residual, makes vanishing the breast texture that did not changed between the two exams. Consequently, this registered residual allows identifying local density and iodine changes, especially in the lesion area. The method is validated with a synthetic NAC case where ground truths are available. Then the procedure is applied to 51 patients with 208 CESM image pairs acquired before and after the chemotherapy treatment. The proposed registration converged in all 208 cases. The intensity-compensated registration approach is evaluated with different mathematical metrics and through the repositioning of clinical landmarks (RMSE: 5.9 mm) and outperforms state-of-the-art registration techniques.


Sujet(s)
Produits de contraste , Traitement néoadjuvant , Humains , Région mammaire/imagerie diagnostique , Mammographie/méthodes
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...