Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
AMB Express ; 14(1): 105, 2024 Sep 28.
Article de Anglais | MEDLINE | ID: mdl-39341984

RÉSUMÉ

A bacterial consortium was isolated from a soil in Noblejas (Toledo, Spain) with a long history of mixed hydrocarbons pollution, by enrichment cultivation. Serial cultures of hydrocarbons polluted soil samples were grown in a minimal medium using diesel (1 mL/L) as the sole carbon and energy source. The bacterial composition of the Noblejas Consortium (NC) was determined by sequencing 16S rRNA gene amplicon libraries. The consortium contained around 50 amplicon sequence variants (ASVs) and the major populations belonged to the genera Pseudomonas, Enterobacter, Delftia, Stenotrophomonas, Achromobacter, Acinetobacter, Novosphingobium, Allorhizobium-Neorhizobium-Rhizobium, Ochrobactrum and Luteibacter. All other genera were below 1%. Metagenomic analysis of NC has shown a high abundance of genes encoding enzymes implicated in aliphatic and (poly) aromatic hydrocarbons degradation, and almost all pathways for hydrocarbon degradation are represented. Metagenomic analysis has also allowed the construction of metagenome assembled genomes (MAGs) for the major players of NC. Metatranscriptomic analysis has shown that several of the ASVs are implicated in hydrocarbon degradation, being Pseudomonas, Acinetobacter and Delftia the most active populations.

2.
Genes (Basel) ; 14(11)2023 Oct 24.
Article de Anglais | MEDLINE | ID: mdl-38002922

RÉSUMÉ

The model rhizobacterium Pseudomonas ogarae F113, a relevant plant growth-promoting bacterium, encodes three different Type VI secretion systems (T6SS) in its genome. In silico analysis of its genome revealed the presence of a genetic auxiliary module containing a gene encoding an orphan VgrG protein (VgrG5a) that is not genetically linked to any T6SS structural cluster, but is associated with genes encoding putative T6SS-related proteins: a possible adaptor Tap protein, followed by a putative effector, Tfe8, and its putative cognate immunity protein, Tfi8. The bioinformatic analysis of the VgrG5a auxiliary module has revealed that this cluster is only present in several subgroups of the P. fluorescens complex of species. An analysis of the mutants affecting the vgrG5a and tfe8 genes has shown that the module is involved in bacterial killing. To test whether Tfe8/Tfi8 constitute an effector-immunity pair, the genes encoding Tfe8 and Tfi8 were cloned and expressed in E. coli, showing that the ectopic expression of tfe8 affected growth. The growth defect was suppressed by tfi8 ectopic expression. These results indicate that Tfe8 is a bacterial killing effector, while Tfi8 is its cognate immunity protein. The Tfe8 protein sequence presents homology to the proteins of the MATE family involved in drug extrusion. The Tfe8 effector is a membrane protein with 10 to 12 transmembrane domains that could destabilize the membranes of target cells by the formation of pores, revealing the importance of these effectors for bacterial interaction. Tfe8 represents a novel type of a T6SS effector present in pseudomonads.


Sujet(s)
Systèmes de sécrétion de type VI , Systèmes de sécrétion de type VI/génétique , Systèmes de sécrétion de type VI/métabolisme , Escherichia coli/métabolisme , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , Séquence d'acides aminés , Pseudomonas/génétique , Pseudomonas/métabolisme
3.
Sci Rep ; 11(1): 5772, 2021 03 11.
Article de Anglais | MEDLINE | ID: mdl-33707614

RÉSUMÉ

The genome of Pseudomonas fluorescens F113, a model rhizobacterium and a plant growth-promoting agent, encodes three putative type VI secretion systems (T6SSs); F1-, F2- and F3-T6SS. Bioinformatic analysis of the F113 T6SSs has revealed that they belong to group 3, group 1.1, and group 4a, respectively, similar to those previously described in Pseudomonas aeruginosa. In addition, in silico analyses allowed us to identify genes encoding a total of five orphan VgrG proteins and eight putative effectors (Tfe), some with their cognate immunity protein (Tfi) pairs. Genes encoding Tfe and Tfi are found in the proximity of P. fluorescens F113 vgrG, hcp, eagR and tap genes. RNA-Seq analyses in liquid culture and rhizosphere have revealed that F1- and F3-T6SS are expressed under all conditions, indicating that they are active systems, while F2-T6SS did not show any relevant expression under the tested conditions. The analysis of structural mutants in the three T6SSs has shown that the active F1- and F3-T6SSs are involved in interbacterial killing while F2 is not active in these conditions and its role is still unknown.. A rhizosphere colonization analysis of the double mutant affected in the F1- and F3-T6SS clusters showed that the double mutant was severely impaired in persistence in the rhizosphere microbiome, revealing the importance of these two systems for rhizosphere adaption.


Sujet(s)
Adaptation physiologique , Viabilité microbienne , Microbiote , Pseudomonas fluorescens/métabolisme , Rhizosphère , Systèmes de sécrétion de type VI/métabolisme , Régulation de l'expression des gènes bactériens , Famille multigénique , Phylogenèse , Domaines protéiques , Pseudomonas fluorescens/cytologie , Pseudomonas fluorescens/génétique , Systèmes de sécrétion de type VI/composition chimique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE