Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 10 de 10
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Arch Med Res ; 55(2): 102958, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38290200

RÉSUMÉ

BACKGROUND: Chagas disease and cutaneous leishmaniasis, two parasitic diseases caused by Trypanosoma cruzi (T. cruzi) and Leishmania mexicana (L. mexicana), respectively, have a major global impact. Current pharmacological treatments for these diseases are limited and can cause severe side effects; thus, there is a need for new antiprotozoal drugs. METHODS: Using molecular docking, this work describes a structure-based virtual screening of an FDA-approved drug library against Trypanosoma cruzi and Leishmania mexicana glycolytic enzyme triosephosphate isomerase (TIM), which is highly conserved in these parasites. The selected compounds with potential dual inhibitory activity were tested in vitro to confirm their biological activity. RESULTS: The study showed that five compounds: nilotinib, chlorhexidine, protriptyline, cyproheptadine, and montelukast, were more active against T. cruzi, than the reference drugs, nifurtimox and benznidazole while chlorhexidine and protriptyline were the most active against L. mexicana. CONCLUSIONS: The analysis of these compounds and their structural characteristics may provide the basis for the development of new antiprotozoal agents.


Sujet(s)
Antiprotozoaires , Maladie de Chagas , Leishmaniose cutanée , Trypanosoma cruzi , Humains , Simulation de docking moléculaire , Chlorhexidine/pharmacologie , Chlorhexidine/usage thérapeutique , Protriptyline/pharmacologie , Protriptyline/usage thérapeutique , Maladie de Chagas/traitement médicamenteux , Leishmaniose cutanée/traitement médicamenteux , Antiprotozoaires/pharmacologie , Antiprotozoaires/usage thérapeutique , Antiprotozoaires/composition chimique
2.
Pharmaceutics ; 15(8)2023 Jul 29.
Article de Anglais | MEDLINE | ID: mdl-37631260

RÉSUMÉ

Cutaneous leishmaniasis (CL) is a public health problem affecting more than 98 countries worldwide. No vaccine is available to prevent the disease, and available medical treatments cause serious side effects. Additionally, treatment failure and parasite resistance have made the development of new drugs against CL necessary. In this work, a virtual screening of natural products from the BIOFACQUIM and Selleckchem databases was performed using the method of molecular docking at the triosephosphate isomerase (TIM) enzyme interface of Leishmania mexicana (L. mexicana). Finally, the in vitro leishmanicidal activity of selected compounds against two strains of L. mexicana, their cytotoxicity, and selectivity index were determined. The top ten compounds were obtained based on the docking results. Four were selected for further in silico analysis. The ADME-Tox analysis of the selected compounds predicted favorable physicochemical and toxicological properties. Among these four compounds, S-8 (IC50 = 55 µM) demonstrated a two-fold higher activity against the promastigote of both L. mexicana strains than the reference drug glucantime (IC50 = 133 µM). This finding encourages the screening of natural products as new anti-leishmania agents.

3.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 04.
Article de Anglais | MEDLINE | ID: mdl-37111300

RÉSUMÉ

Protozoan parasite diseases cause significant mortality and morbidity worldwide. Factors such as climate change, extreme poverty, migration, and a lack of life opportunities lead to the propagation of diseases classified as tropical or non-endemic. Although there are several drugs to combat parasitic diseases, strains resistant to routinely used drugs have been reported. In addition, many first-line drugs have adverse effects ranging from mild to severe, including potential carcinogenic effects. Therefore, new lead compounds are needed to combat these parasites. Although little has been studied regarding the epigenetic mechanisms in lower eukaryotes, it is believed that epigenetics plays an essential role in vital aspects of the organism, from controlling the life cycle to the expression of genes involved in pathogenicity. Therefore, using epigenetic targets to combat these parasites is foreseen as an area with great potential for development. This review summarizes the main known epigenetic mechanisms and their potential as therapeutics for a group of medically important protozoal parasites. Different epigenetic mechanisms are discussed, highlighting those that can be used for drug repositioning, such as histone post-translational modifications (HPTMs). Exclusive parasite targets are also emphasized, including the base J and DNA 6 mA. These two categories have the greatest potential for developing drugs to treat or eradicate these diseases.

4.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 03.
Article de Anglais | MEDLINE | ID: mdl-36986489

RÉSUMÉ

Leishmania mexicana (L. mexicana) is a causal agent of cutaneous leishmaniasis (CL), a "Neglected disease", for which the search for new drugs is a priority. Benzimidazole is a scaffold used to develop antiparasitic drugs; therefore, it is interesting molecule against L. mexicana. In this work, a ligand-based virtual screening (LBVS) of the ZINC15 database was performed. Subsequently, molecular docking was used to predict the compounds with potential binding at the dimer interface of triosephosphate isomerase (TIM) of L. mexicana (LmTIM). Compounds were selected on binding patterns, cost, and commercial availability for in vitro assays against L. mexicana blood promastigotes. The compounds were analyzed by molecular dynamics simulation on LmTIM and its homologous human TIM. Finally, the physicochemical and pharmacokinetic properties were determined in silico. A total of 175 molecules with docking scores between -10.8 and -9.0 Kcal/mol were obtained. Compound E2 showed the best leishmanicidal activity (IC50 = 4.04 µM) with a value similar to the reference drug pentamidine (IC50 = 2.23 µM). Molecular dynamics analysis predicted low affinity for human TIM. Furthermore, the pharmacokinetic and toxicological properties of the compounds were suitable for developing new leishmanicidal agents.

5.
Eur J Med Chem ; 252: 115290, 2023 Apr 05.
Article de Anglais | MEDLINE | ID: mdl-36958266

RÉSUMÉ

Emerging and/or re-emerging viral diseases such as dengue and Zika are a worldwide concern. Therefore, new antiviral therapeutics are necessary. In this sense, a non-structural protein with methyltransferase (MTase) activity is an attractive drug target because it plays a crucial role in dengue and Zika virus replication. Different drug strategies such as virtual screening, molecular docking, and molecular dynamics have identified new inhibitors that bind on the MTase active site. Therefore, in this review, we analyze MTase inhibitors, including S-adenosyl-L-methionine (SAM), S-adenosyl-l-homocysteine (SAH) and guanosine-5'-triphosphate (GTP) analogs, nitrogen-containing heterocycles (pyrimidine, adenosine, and pyridine), urea derivatives, and natural products. Advances in the design of MTase inhibitors could lead to the optimization of a possible single or broad-spectrum antiviral drug against dengue and Zika virus.


Sujet(s)
Arbovirus , Dengue , Infection par le virus Zika , Virus Zika , Humains , Simulation de docking moléculaire , Arbovirus/métabolisme , Protéines virales non structurales , Antiviraux/composition chimique , Methyltransferases , Dengue/traitement médicamenteux , Infection par le virus Zika/traitement médicamenteux
6.
Int J Mol Sci ; 23(21)2022 Nov 01.
Article de Anglais | MEDLINE | ID: mdl-36362102

RÉSUMÉ

American trypanosomiasis is a worldwide health problem that requires attention due to ineffective treatment options. We evaluated n-butyl and isobutyl quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives against trypomastigotes of the Trypanosoma cruzi strains NINOA and INC-5. An in silico analysis of the interactions of 1,4-di-N-oxide on the active site of trypanothione reductase (TR) and an enzyme inhibition study was carried out. The n-butyl series compound identified as T-150 had the best trypanocidal activity against T. cruzi trypomastigotes, with a 13% TR inhibition at 44 µM. The derivative T-147 behaved as a mixed inhibitor with Ki and Ki' inhibition constants of 11.4 and 60.8 µM, respectively. This finding is comparable to the TR inhibitor mepacrine (Ki = 19 µM).


Sujet(s)
Maladie de Chagas , Trypanocides , Trypanosoma cruzi , Humains , Trypanocides/pharmacologie , Trypanocides/composition chimique , Quinoxalines/composition chimique , Oxydes/pharmacologie , NADH, NADPH oxidoreductases , Maladie de Chagas/traitement médicamenteux , Antienzymes/composition chimique
7.
Int J Mol Sci ; 23(17)2022 Sep 02.
Article de Anglais | MEDLINE | ID: mdl-36077439

RÉSUMÉ

Trypanosoma cruzi (T. cruzi) is a parasite that affects humans and other mammals. T. cruzi depends on glycolysis as a source of adenosine triphosphate (ATP) supply, and triosephosphate isomerase (TIM) plays a key role in this metabolic pathway. This enzyme is an attractive target for the design of new trypanocidal drugs. In this study, a ligand-based virtual screening (LBVS) from the ZINC15 database using benzimidazole as a scaffold was accomplished. Later, a molecular docking on the interface of T. cruzi TIM (TcTIM) was performed and the compounds were grouped by interaction profiles. Subsequently, a selection of compounds was made based on cost and availability for in vitro evaluation against blood trypomastigotes. Finally, the compounds were analyzed by molecular dynamics simulation, and physicochemical and pharmacokinetic properties were determined using SwissADME software. A total of 1604 molecules were obtained as potential TcTIM inhibitors. BP2 and BP5 showed trypanocidal activity with half-maximal lytic concentration (LC50) values of 155.86 and 226.30 µM, respectively. Molecular docking and molecular dynamics simulation analyzes showed a favorable docking score of BP5 compound on TcTIM. Additionally, BP5 showed a low docking score (-5.9 Kcal/mol) on human TIM compared to the control ligand (-7.2 Kcal/mol). Both compounds BP2 and BP5 showed good physicochemical and pharmacokinetic properties as new anti-T. cruzi agents.


Sujet(s)
Trypanocides , Trypanosoma cruzi , Animaux , Benzimidazoles/composition chimique , Benzimidazoles/pharmacologie , Humains , Ligands , Mammifères/métabolisme , Simulation de docking moléculaire , Triose phosphate isomerase/métabolisme , Trypanocides/composition chimique , Trypanocides/pharmacologie , Trypanosoma cruzi/métabolisme
8.
Mol Divers ; 26(1): 39-50, 2022 Feb.
Article de Anglais | MEDLINE | ID: mdl-33216257

RÉSUMÉ

An N-acylhydrazone scaffold has been used to develop new drugs with diverse biological activities, including trypanocidal activity against different strains of Trypanosoma cruzi. However, their mechanism of action is not clear, although in T. cruzi it has been suggested that the enzyme cruzain is involved. The aim in this work was to obtain new N-propionyl-N'-benzeneacylhydrazone derivatives as potential anti-T. cruzi agents and elucidate their potential mechanism of action by a molecular docking analysis and effects on the expression of the cruzain gene. Compounds 9 and 12 were the most active agents against epimastigotes and compound 5 showed better activity than benznidazole in T. cruzi blood trypomastigotes. Additionally, compounds 9 and 12 significantly increase the expression of the cruzain gene. In summary, the in silico and in vitro data presented herein suggest that compound 9 is a cruzain inhibitor.


Sujet(s)
Trypanocides , Trypanosoma cruzi , Cysteine endopeptidases , Simulation de docking moléculaire , Protéines de protozoaire , Relation structure-activité , Trypanocides/pharmacologie
9.
Curr Med Chem ; 28(38): 7910-7936, 2021.
Article de Anglais | MEDLINE | ID: mdl-33820509

RÉSUMÉ

BACKGROUND: Molecules with a phenothiazine scaffold have been considered versatile organic structures with a wide variety of biological activities, such as antipsychotic, anticancer, antibacterial, antifungal, antiviral, anti-inflammatory, antimalarial, and trypanocidal, etc. It was first discovered in the 19th century as a histochemical dye, phenothiazine methylene blue. Since then, its derivatives have been studied, showing new activities; moreover, they have also been repurposed. OBJECTIVE: This review aims to describe the main synthetic routes of phenothiazines and, particularly, the anticancer and antiprotozoal activities reported during the second decade of the 2000s (2010 - 2020). RESULTS: Several studies on phenothiazines against cancer and protozoa have revealed that these compounds show IC50 values in the micromolar and near nanomolar range. The structural analyses have revealed that compounds bearing halogens or electron-withdrawing groups at 2-position have favorable anticancer activity. Phenothiazine dyes have shown a photosensitizing activity against trypanosomatids at a micromolar range. Tetra and pentacyclic azaphenothiazines are structures with a high broad-spectrum anticancer activity. CONCLUSION: The phenothiazine scaffold is favorable for developing anticancer agents, especially those bearing halogens and electron-withdrawing groups bound at 2-position with enhanced biological activities through a variety of aromatic, aliphatic and heterocyclic substituents in the thiazine nitrogen. Further studies are warranted along these investigation lines to attain more active anticancer and antiprotozoal compounds with minimal to negligible cytotoxicity.


Sujet(s)
Antinéoplasiques , Antiprotozoaires , Neuroleptiques , Antinéoplasiques/pharmacologie , Antiprotozoaires/pharmacologie , Neuroleptiques/pharmacologie , Chimie pharmaceutique , Humains , Phénothiazines/pharmacologie , Relation structure-activité
10.
Pak J Pharm Sci ; 32(3 Special): 1447-1452, 2019 May.
Article de Anglais | MEDLINE | ID: mdl-31551230

RÉSUMÉ

In recent decades, some quinoxaline 1,4-di-N-oxide derivatives have been shown to have better trypanocidal activity than the reference drugs; however, their mechanism of action is not yet clear, although it is suggested that they mainly produce reactive oxygen species that cause oxidative stress and parasite death. Trypanosoma cruzi relies on the enzyme trypanothione reductase, among others, to defend itself against oxidative stress. With the aim of contributing to the elucidation of the mechanism of action of quinoxaline 1,4-di-N-oxide derivatives on Trypanosoma cruzi, this study was carried out to evaluate the effect of methyl 2-amide-3-methylquinoxaline-7-carboxylate 1,4-di-N-oxide (compound M-8) on the expression of the trypanothione reductase gene in an in vitro model on Trypanosoma cruzi epimastigotes of the CL-Brener strain. The results show that compound M-8 does not cause a significant effect on the trypanothione reductase gene, suggesting a mechanism of action not related to oxidative stress.


Sujet(s)
NADH, NADPH oxidoreductases/génétique , Protéines de protozoaire/génétique , Quinoxalines/pharmacologie , Trypanocides/pharmacologie , Trypanosoma cruzi/effets des médicaments et des substances chimiques , Régulation de l'expression des gènes/effets des médicaments et des substances chimiques , Stress oxydatif/effets des médicaments et des substances chimiques , Stress oxydatif/génétique , Réaction de polymérisation en chaine en temps réel , Trypanosoma cruzi/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE