Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 220
Filtrer
1.
Nucleic Acids Res ; 2024 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-38966993

RÉSUMÉ

Human antigen R (HuR) is an RNA binding protein mainly involved in maintaining the stability and controlling the translation of mRNAs, critical for immune response, cell survival, proliferation and apoptosis. Although HuR is a nuclear protein, its mRNA translational-related function occurs at the cytoplasm, where the oligomeric form of HuR is more abundant. However, the regulation of nucleo-cytoplasmic transport of HuR and its connection with protein oligomerization remain unclear. In this work, we describe the phosphorylation of Tyr5 as a new hallmark for HuR activation. Our biophysical, structural and computational assays using phosphorylated and phosphomimetic HuR proteins demonstrate that phosphorylation of Tyr5 at the disordered N-end stretch induces global changes on HuR dynamics and conformation, modifying the solvent accessible surface of the HuR nucleo-cytoplasmic shuttling (HNS) sequence and releasing regions implicated in HuR dimerization. These findings explain the preferential cytoplasmic accumulation of phosphorylated HuR in HeLa cells, aiding to comprehend the mechanisms underlying HuR nucleus-cytoplasm shuttling and its later dimerization, both of which are relevant in HuR-related pathogenesis.

2.
Int J Biol Macromol ; 274(Pt 1): 133163, 2024 Jun 13.
Article de Anglais | MEDLINE | ID: mdl-38878927

RÉSUMÉ

Polycomb groups (PcGs) are transcriptional repressors, formed by a complex of several proteins, involved in multicellular development and cancer epigenetics. One of these proteins is the E3 ubiquitin-protein ligase RING1 (or RING1B), associated with the regulation of transcriptional repression and responsible for monoubiquitylation of the histone H2A. On the other hand, PADI4 is one of the human isoforms of a family of enzymes implicated in the conversion of arginine to citrulline, and it is also involved in the development of glioblastoma, among other types of cancers. In this work, we showed the association of PADI4 and RING1B in the nucleus and cytosol in several cancer cell lines by using immunofluorescence and proximity ligation assays. Furthermore, we demonstrated that binding was hampered in the presence of GSK484, an enzymatic PADI4 inhibitor, suggesting that RING1B could bind to the active site of PADI4, as confirmed by protein-protein docking simulations. In vitro and in silico findings showed that binding to PADI4 occurred for the isolated fragments corresponding to both the N-terminal (residues 1-221) and C-terminal (residues 228-336) regions of RING1B. Binding to PADI4 was also hampered by GSK484, as shown by isothermal titration calorimetry (ITC) experiments for the sole N-terminal region, and by both NMR and ITC for the C-terminal one. The dissociation constants between PADI4 and any of the two isolated RING1B fragments were in the low micromolar range (~2-10 µM), as measured by fluorescence and ITC. The interaction between RING1B and PADI4 might imply citrullination of the former, leading to several biological consequences, as well as being of potential therapeutic relevance for improving cancer treatment with the generation of new antigens.

3.
Int J Mol Sci ; 25(11)2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38892306

RÉSUMÉ

The development of specific antiviral therapies targeting SARS-CoV-2 remains fundamental because of the continued high incidence of COVID-19 and limited accessibility to antivirals in some countries. In this context, dark chemical matter (DCM), a set of drug-like compounds with outstanding selectivity profiles that have never shown bioactivity despite being extensively assayed, appears to be an excellent starting point for drug development. Accordingly, in this study, we performed a high-throughput screening to identify inhibitors of the SARS-CoV-2 main protease (Mpro) using DCM compounds as ligands. Multiple receptors and two different docking scoring functions were employed to identify the best molecular docking poses. The selected structures were subjected to extensive conventional and Gaussian accelerated molecular dynamics. From the results, four compounds with the best molecular behavior and binding energy were selected for experimental testing, one of which presented inhibitory activity with a Ki value of 48 ± 5 µM. Through virtual screening, we identified a significant starting point for drug development, shedding new light on DCM compounds.


Sujet(s)
Antiviraux , Protéases 3C des coronavirus , Simulation de docking moléculaire , Simulation de dynamique moléculaire , Inhibiteurs de protéases , SARS-CoV-2 , SARS-CoV-2/effets des médicaments et des substances chimiques , SARS-CoV-2/enzymologie , Protéases 3C des coronavirus/antagonistes et inhibiteurs , Protéases 3C des coronavirus/composition chimique , Protéases 3C des coronavirus/métabolisme , Antiviraux/pharmacologie , Antiviraux/composition chimique , Humains , Inhibiteurs de protéases/pharmacologie , Inhibiteurs de protéases/composition chimique , COVID-19/virologie , Découverte de médicament/méthodes , Tests de criblage à haut débit/méthodes , Évaluation préclinique de médicament/méthodes , Liaison aux protéines , Ligands
4.
Biomolecules ; 14(5)2024 May 07.
Article de Anglais | MEDLINE | ID: mdl-38785968

RÉSUMÉ

Plakophilin 1 (PKP1), a member of the p120ctn subfamily of the armadillo (ARM)-repeat-containing proteins, is an important structural component of cell-cell adhesion scaffolds although it can also be ubiquitously found in the cytoplasm and the nucleus. RYBP (RING 1A and YY1 binding protein) is a multifunctional intrinsically disordered protein (IDP) best described as a transcriptional regulator. Both proteins are involved in the development and metastasis of several types of tumors. We studied the binding of the armadillo domain of PKP1 (ARM-PKP1) with RYBP by using in cellulo methods, namely immunofluorescence (IF) and proximity ligation assay (PLA), and in vitro biophysical techniques, namely fluorescence, far-ultraviolet (far-UV) circular dichroism (CD), and isothermal titration calorimetry (ITC). We also characterized the binding of the two proteins by using in silico experiments. Our results showed that there was binding in tumor and non-tumoral cell lines. Binding in vitro between the two proteins was also monitored and found to occur with a dissociation constant in the low micromolar range (~10 µM). Finally, in silico experiments provided additional information on the possible structure of the binding complex, especially on the binding ARM-PKP1 hot-spot. Our findings suggest that RYBP might be a rescuer of the high expression of PKP1 in tumors, where it could decrease the epithelial-mesenchymal transition in some cancer cells.


Sujet(s)
Protéines intrinsèquement désordonnées , Plakophilines , Liaison aux protéines , Humains , Plakophilines/métabolisme , Plakophilines/génétique , Plakophilines/composition chimique , Protéines intrinsèquement désordonnées/métabolisme , Protéines intrinsèquement désordonnées/composition chimique , Protéines intrinsèquement désordonnées/génétique , Protéines de répression/métabolisme , Protéines de répression/composition chimique , Protéines de répression/génétique , Protéines à domaine armadillo/métabolisme , Protéines à domaine armadillo/composition chimique , Protéines à domaine armadillo/génétique , Domaines protéiques , Dichroïsme circulaire
5.
Heliyon ; 10(7): e27982, 2024 Apr 15.
Article de Anglais | MEDLINE | ID: mdl-38689973

RÉSUMÉ

Objectives: The rise of antibiotic-resistant Streptococcus pneumoniae (Sp) poses a significant global health threat, urging the quest for novel antimicrobial solutions. We have discovered that the human hormone l-thyroxine has antibacterial properties. In order to explore its drugability we perform here the characterization of a series of l-thyroxine analogues and describe the structural determinants influencing their antibacterial efficacy. Method: We performed a high-throughput screening of a library of compounds approved for use in humans, complemented with ITC assays on purified Sp-flavodoxin, to pinpoint molecules binding to this protein. Antimicrobial in vitro susceptibility assays of the hit compound (l-thyroxine) as well as of 13 l-thyroxine analogues were done against a panel of Gram-positive and Gram-negative bacteria. Toxicity of compounds on HepG2 cells was also assessed. A combined structure-activity and computational docking analysis was carried out to uncover functional groups crucial for the antimicrobial potency of these compounds. Results: Human l-thyroxine binds to Sp-flavodoxin, forming a 1:1 complex of low micromolar Kd. While l-thyroxine specifically inhibited Sp growth, some derivatives displayed activity against other Gram-positive bacteria like Staphylococcus aureus and Enterococcus faecalis, while remaining inactive against Gram-negative pathogens. Neither l-thyroxine nor some selected derivatives exhibited toxicity to HepG2 cells. Conclusions: l-thyroxine derivatives targeting bacterial flavodoxins represent a new and promising class of antimicrobials.

6.
Nucleic Acids Res ; 52(7): 3636-3653, 2024 Apr 24.
Article de Anglais | MEDLINE | ID: mdl-38321951

RÉSUMÉ

MeCP2 is a general regulator of transcription involved in the repression/activation of genes depending on the local epigenetic context. It acts as a chromatin regulator and binds with exquisite specificity to gene promoters. The set of epigenetic marks recognized by MeCP2 has been already established (mainly, cytosine modifications in CpG and CpA), as well as many of the constituents of its interactome. We unveil a new set of interactions for MeCP2 with the four canonical nucleosomal histones. MeCP2 interacts with high affinity with H2A, H2B, H3 and H4. In addition, Rett syndrome associated mutations in MeCP2 and histone epigenetic marks modulate these interactions. Given the abundance and the structural/functional relevance of histones and their involvement in epigenetic regulation, this new set of interactions and its modulating elements provide a new addition to the 'alphabet' for this epigenetic reader.


Sujet(s)
Épigenèse génétique , Histone , Protéine-2 de liaison au CpG méthylé , Nucléosomes , Protéine-2 de liaison au CpG méthylé/métabolisme , Protéine-2 de liaison au CpG méthylé/génétique , Nucléosomes/métabolisme , Histone/métabolisme , Humains , Liaison aux protéines , Syndrome de Rett/génétique , Syndrome de Rett/métabolisme , Mutation , Animaux
7.
Microbiol Spectr ; 11(6): e0281123, 2023 Dec 12.
Article de Anglais | MEDLINE | ID: mdl-37909787

RÉSUMÉ

IMPORTANCE: Small proteins containing fewer than 70 amino acids, which were previously disregarded due to computational prediction and biochemical detection challenges, have gained increased attention in the scientific community in recent years. However, the number of functionally characterized small proteins, especially in archaea, is still limited. Here, by using biochemical and genetic approaches, we demonstrate a crucial role of the small protein sP36 in the nitrogen metabolism of M. mazei, which modulates the ammonium transporter AmtB1 according to nitrogen availability. This modulation might represent an ancient archaeal mechanism of AmtB1 inhibition, in contrast to the well-studied uridylylation-dependent regulation in bacteria.


Sujet(s)
Composés d'ammonium , Protéines d'archée , Methanosarcina/génétique , Methanosarcina/métabolisme , Protéines d'archée/génétique , Protéines d'archée/métabolisme , Bactéries/métabolisme , Azote/métabolisme , Composés d'ammonium/métabolisme
8.
Molecules ; 28(22)2023 Nov 14.
Article de Anglais | MEDLINE | ID: mdl-38005300

RÉSUMÉ

MDM2 is an E3 ubiquitin ligase which is crucial for the degradation and inhibition of the key tumor-suppressor protein p53. In this work, we explored the stability and the conformational features of the N-terminal region of MDM2 (N-MDM2), through which it binds to the p53 protein as well as other protein partners. The isolated domain possessed a native-like conformational stability in a narrow pH range (7.0 to 10.0), as shown by intrinsic and 8-anilinonapthalene-1-sulfonic acid (ANS) fluorescence, far-UV circular dichroism (CD), and size exclusion chromatography (SEC). Guanidinium chloride (GdmCl) denaturation followed by intrinsic and ANS fluorescence, far-UV CD and SEC at physiological pH, and differential scanning calorimetry (DSC) and thermo-fluorescence experiments showed that (i) the conformational stability of isolated N-MDM2 was very low; and (ii) unfolding occurred through the presence of several intermediates. The presence of a hierarchy in the unfolding intermediates was also evidenced through DSC and by simulating the unfolding process with the help of computational techniques based on constraint network analysis (CNA). We propose that the low stability of this protein is related to its inherent flexibility and its ability to interact with several molecular partners through different routes.


Sujet(s)
Pliage des protéines , Protéine p53 suppresseur de tumeur , Dénaturation des protéines , Conformation des protéines , Dichroïsme circulaire , Concentration en ions d'hydrogène , Spectrométrie de fluorescence , Calorimétrie différentielle à balayage
9.
Eur J Med Chem ; 261: 115837, 2023 Dec 05.
Article de Anglais | MEDLINE | ID: mdl-37837673

RÉSUMÉ

The aggregation of wild-type transthyretin (TTR) and over 130 genetic TTR variants underlies a group of lethal disorders named TTR amyloidosis (ATTR). TTR chemical chaperones are molecules that hold great promise to modify the course of ATTR progression. In previous studies, we combined rational design and molecular dynamics simulations to generate a series of TTR selective kinetic stabilizers displaying exceptionally high affinities. In an effort to endorse the previously developed molecules with optimal pharmacokinetic properties, we conducted structural design optimization, leading to the development of PITB. PITB binds with high affinity to TTR, effectively inhibiting tetramer dissociation and aggregation of both the wild-type protein and the two most prevalent disease-associated TTR variants. Importantly, PITB selectively binds and stabilizes TTR in plasma, outperforming tolcapone, a drug currently undergoing clinical trials for ATTR. Pharmacokinetic studies conducted on mice confirmed that PITB exhibits encouraging pharmacokinetic properties, as originally intended. Furthermore, PITB demonstrates excellent oral bioavailability and lack of toxicity. These combined attributes position PITB as a lead compound for future clinical trials as a disease-modifying therapy for ATTR.


Sujet(s)
Neuropathies amyloïdes familiales , Préalbumine , Souris , Animaux , Préalbumine/métabolisme , Neuropathies amyloïdes familiales/traitement médicamenteux , Neuropathies amyloïdes familiales/métabolisme , Tolcapone/usage thérapeutique , Simulation de dynamique moléculaire
10.
Front Plant Sci ; 14: 1227492, 2023.
Article de Anglais | MEDLINE | ID: mdl-37746012

RÉSUMÉ

All known photosynthetic cyanobacteria carry a cytochrome c 6 protein that acts transferring electrons from cytochrome b 6 f complex to photosystem I, in photosynthesis, or cytochrome c oxidase, in respiration. In most of the cyanobacteria, at least one homologue to cytochrome c 6 is found, the so-called cytochrome c 6B or cytochrome c 6C. However, the function of these cytochrome c 6-like proteins is still unknown. Recently, it has been proposed a common origin of these proteins as well as the reclassification of the cytochrome c 6C group as c 6B, renaming the new joint group as cytochrome c 6BC. Another homologue to cytochrome c 6 has not been classified yet, the formerly called cytochrome c 6-3, which is present in the heterocyst-forming filamentous cyanobacteria Nostoc sp. PCC 7119. In this work, we propose the inclusion of this group as an independent group in the genealogy of cytochrome c 6-like proteins with significant differences from cytochrome c 6 and cytochrome c 6BC, with the proposed name cytochrome c 6D. To support this proposal, new data about phylogeny, genome localisation and functional properties of cytochrome c 6-like proteins is provided. Also, we have analysed the interaction of cytochrome c 6-like proteins with cytochrome f by isothermal titration calorimetry and by molecular docking, concluding that c 6-like proteins could interact with cytochrome b 6 f complex in a similar fashion as cytochrome c 6. Finally, we have analysed the reactivity of cytochrome c 6-like proteins with membranes enriched in terminal oxidases of cyanobacteria by oxygen uptake experiments, concluding that cytochrome c 6D is able to react with the specific copper-oxidase of the heterocysts, the cytochrome c oxidase 2.

11.
Protein Sci ; 32(8): e4723, 2023 08.
Article de Anglais | MEDLINE | ID: mdl-37409874

RÉSUMÉ

PADI4 is one of the human isoforms of a family of enzymes implicated in the conversion of arginine to citrulline. MDM2 is an E3 ubiquitin ligase which is crucial for down-regulation of degradation of the tumor suppressor gene p53. Given the relationship between both PADI4 and MDM2 with p53-signaling pathways, we hypothesized they may interact directly, and this interaction could be relevant in the context of cancer. Here, we showed their association in the nucleus and cytosol in several cancer cell lines. Furthermore, binding was hampered in the presence of GSK484, an enzymatic PADI4 inhibitor, suggesting that MDM2 could bind to the active site of PADI4, as confirmed by in silico experiments. In vitro and in silico studies showed that the isolated N-terminal region of MDM2, N-MDM2, interacted with PADI4, and residues Thr26, Val28, Phe91 and Lys98 were more affected by the presence of the enzyme. Moreover, the dissociation constant between N-MDM2 and PADI4 was comparable to the IC50 of GSK484 from in cellulo experiments. The interaction between MDM2 and PADI4 might imply MDM2 citrullination, with potential therapeutic relevance for improving cancer treatment, due to the generation of new antigens.


Sujet(s)
Tumeurs , Protéine p53 suppresseur de tumeur , Humains , Protéine p53 suppresseur de tumeur/composition chimique , Ubiquitin-protein ligases/composition chimique , Protein-arginine deiminases/métabolisme , Lignée cellulaire , Liaison aux protéines , Protéines proto-oncogènes c-mdm2/métabolisme
12.
Int J Biol Macromol ; 246: 125632, 2023 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-37399862

RÉSUMÉ

RYBP (Ring1 and YY 1 binding protein) is a multifunctional, intrinsically disordered protein (IDP), best described as a transcriptional regulator. It exhibits a ubiquitin-binding functionality, binds to other transcription factors, and has a key role during embryonic development. RYBP, which folds upon binding to DNA, has a Zn-finger domain at its N-terminal region. By contrast, PADI4 is a well-folded protein and it is one the human isoforms of a family of enzymes implicated in the conversion of arginine to citrulline. As both proteins intervene in signaling pathways related to cancer development and are found in the same localizations within the cell, we hypothesized they may interact. We observed their association in the nucleus and cytosol in several cancer cell lines, by using immunofluorescence (IF) and proximity ligation assays (PLAs). Binding also occurred in vitro, as measured by isothermal titration calorimetry (ITC) and fluorescence, with a low micromolar affinity (~1 µM). AlphaFold2-multimer (AF2) results indicate that PADI4's catalytic domain interacts with the Arg53 of RYBP docking into its active site. As RYBP sensitizes cells to PARP (Poly (ADP-ribose) polymerase) inhibitors, we applied them in combination with an enzymatic inhibitor of PADI4 observing a change in cell proliferation, and the hampering of the interaction of both proteins. This study unveils for the first time the possible citrullination of an IDP, and suggests that this new interaction, whether it involves or not citrullination of RYBP, might have implications in cancer development and progression.


Sujet(s)
Tumeurs , Facteurs de transcription , Humains , Facteurs de transcription/génétique , Lignée cellulaire , Tumeurs/génétique , Épigenèse génétique , Protéines de répression/génétique
13.
Cancers (Basel) ; 15(7)2023 Mar 24.
Article de Anglais | MEDLINE | ID: mdl-37046613

RÉSUMÉ

(1) Background: About 50% of prescribed colonoscopies report no pathological findings. A secondary screening test after fecal immunochemical test positivity (FIT+) would be required. Considering thermal liquid biopsy (TLB) as a potential secondary test, the aim of this work was to study possible interferences of colonoscopy bowel preparation on TLB outcome on a retrospective study; (2) Methods: Three groups were studied: 1/514 FIT(+) patients enrolled in a colorectal screening program (CN and CP with normal and pathological colonoscopy, respectively), with blood samples obtained just before colonoscopy and after bowel preparation; 2/55 patients from the CN group with blood sample redrawn after only standard 8-10 h fasting and no bowel preparation (CNR); and 3/55 blood donors from the biobank considered as a healthy control group; (3) Results: The results showed that from the 514 patients undergoing colonoscopy, 247 had CN and 267 had CP. TLB parameters in these two groups were similar but different from those of the blood donors. The resampled patients (with normal colonoscopy and no bowel preparation) had similar TLB parameters to those of the blood donors. TLB parameters together with fluorescence spectra and other serum indicators (albumin and C-reactive protein) confirmed the statistically significant differences between normal colonoscopy patients with and without bowel preparation; (4) Conclusions: Bowel preparation seemed to alter serum protein levels and altered TLB parameters (different from a healthy subject). The diagnostic capability of other liquid-biopsy-based methods might also be compromised. Blood extraction after bowel preparation for colonoscopy should be avoided.

14.
Front Mol Biosci ; 10: 1167348, 2023.
Article de Anglais | MEDLINE | ID: mdl-37056721

RÉSUMÉ

Enzymes catalysing sequential reactions have developed different mechanisms to control the transport and flux of reactants and intermediates along metabolic pathways, which usually involve direct transfer of metabolites from an enzyme to the next one in a cascade reaction. Despite the fact that metabolite or substrate channelling has been widely studied for reactant molecules, such information is seldom available for cofactors in general, and for flavins in particular. Flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) act as cofactors in flavoproteins and flavoenzymes involved in a wide range of physiologically relevant processes in all type of organisms. Homo sapiens riboflavin kinase (RFK) catalyses the biosynthesis of the flavin mononucleotide cofactor, and might directly interplay with its flavin client apo-proteins prior to the cofactor transfer. Non-etheless, none of such complexes has been characterized at molecular or atomic level so far. Here, we particularly evaluate the interaction of riboflavin kinase with one of its potential FMN clients, pyridoxine-5'-phosphate oxidase (PNPOx). The interaction capacity of both proteins is assessed by using isothermal titration calorimetry, a methodology that allows to determine dissociation constants for interaction in the micromolar range (in agreement with the expected transient nature of the interaction). Moreover, we show that; i) both proteins become thermally stabilized upon mutual interaction, ii) the tightly bound FMN product can be transferred from RFK to the apo-form of PNPOx producing an efficient enzyme, and iii) the presence of the apo-form of PNPOx slightly enhances RFK catalytic efficiency. Finally, we also show a computational study to predict likely RFK-PNPOx binding modes that can envisage coupling between the FMN binding cavities of both proteins for the potential transfer of FMN.

15.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 13.
Article de Anglais | MEDLINE | ID: mdl-37111342

RÉSUMÉ

Over 750 million cases of COVID-19, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), have been reported since the onset of the global outbreak. The need for effective treatments has spurred intensive research for therapeutic agents based on pharmaceutical repositioning or natural products. In light of prior studies asserting the bioactivity of natural compounds of the autochthonous Peruvian flora, the present study focuses on the identification SARS-CoV-2 Mpro main protease dimer inhibitors. To this end, a target-based virtual screening was performed over a representative set of Peruvian flora-derived natural compounds. The best poses obtained from the ensemble molecular docking process were selected. These structures were subjected to extensive molecular dynamics steps for the computation of binding free energies along the trajectory and evaluation of the stability of the complexes. The compounds exhibiting the best free energy behaviors were selected for in vitro testing, confirming the inhibitory activity of Hyperoside against Mpro, with a Ki value lower than 20 µM, presumably through allosteric modulation.

16.
Sci Adv ; 9(10): eade9948, 2023 03 10.
Article de Anglais | MEDLINE | ID: mdl-36897942

RÉSUMÉ

Strategies to activate abscisic acid (ABA) receptors and boost ABA signaling by small molecules that act as ABA receptor agonists are promising biotechnological tools to enhance plant drought tolerance. Protein structures of crop ABA receptors might require modifications to improve recognition of chemical ligands, which in turn can be optimized by structural information. Through structure-based targeted design, we have combined chemical and genetic approaches to generate an ABA receptor agonist molecule (iSB09) and engineer a CsPYL1 ABA receptor, named CsPYL15m, which efficiently binds iSB09. This optimized receptor-agonist pair leads to activation of ABA signaling and marked drought tolerance. No constitutive activation of ABA signaling and hence growth penalty was observed in transformed Arabidopsis thaliana plants. Therefore, conditional and efficient activation of ABA signaling was achieved through a chemical-genetic orthogonal approach based on iterative cycles of ligand and receptor optimization driven by the structure of ternary receptor-ligand-phosphatase complexes.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Acide abscissique/métabolisme , Protéines d'Arabidopsis/génétique , Ligands , Sécheresses , Arabidopsis/génétique , Protéines de transport/métabolisme , Régulation de l'expression des gènes végétaux
17.
PNAS Nexus ; 2(2): pgac312, 2023 Feb.
Article de Anglais | MEDLINE | ID: mdl-36845352

RÉSUMÉ

The Apoptosis-Inducing Factor (AIF) is a moonlighting flavoenzyme involved in the assembly of mitochondrial respiratory complexes in healthy cells, but also able to trigger DNA cleavage and parthanatos. Upon apoptotic-stimuli, AIF redistributes from the mitochondria to the nucleus, where upon association with other proteins such as endonuclease CypA and histone H2AX, it is proposed to organize a DNA-degradosome complex. In this work, we provide evidence for the molecular assembly of this complex as well as for the cooperative effects among its protein components to degrade genomic DNA into large fragments. We have also uncovered that AIF has nuclease activity that is stimulated in the presence of either Mg2+ or Ca2+. Such activity allows AIF by itself and in cooperation with CypA to efficiently degrade genomic DNA. Finally, we have identified TopIB and DEK motifs in AIF as responsible for its nuclease activity. These new findings point, for the first time, to AIF as a nuclease able to digest nuclear dsDNA in dying cells, improving our understanding of its role in promoting apoptosis and opening paths for the development of new therapeutic strategies.

19.
Int J Biol Macromol ; 232: 123373, 2023 Mar 31.
Article de Anglais | MEDLINE | ID: mdl-36702223

RÉSUMÉ

Hydroxymethylated cytosine (5hmC) is a stable DNA epigenetic mark recognized by methyl-CpG binding protein 2 (MeCP2), which acts as a transcriptional regulator and a global chromatin-remodeling element. Because 5hmC triggers a gene regulation response markedly different from that produced by methylated cytosine (5mC), both modifications must affect DNA structure and/or DNA interaction with MeCP2 differently. MeCP2 is a six-domain intrinsically disordered protein (IDP) with two domains responsible for dsDNA binding: methyl-CpG binding domain (MBD) and intervening domain (ID). Here we report the detailed thermodynamic characterization of the interaction of hmCpG-DNA with MeCP2. We find that hmCpG-DNA interacts with MeCP2 in a distinctly different mode with a particular thermodynamic signature, compared to methylated or unmethylated DNA. In addition, we find evidence for Rett syndrome-associated mutations altering the interaction of MeCP2 with dsDNA in a cytosine modification-specific manner which may correlate with disease onset time and clinical severity score.


Sujet(s)
Chromatine , ADN , Cytosine , Épigénomique , Thermodynamique
20.
Plant Commun ; 4(3): 100512, 2023 05 08.
Article de Anglais | MEDLINE | ID: mdl-36575800

RÉSUMÉ

Isoprenoids are a very large and diverse family of metabolites required by all living organisms. All isoprenoids derive from the double-bond isomers isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), which are produced by the methylerythritol 4-phosphate (MEP) pathway in bacteria and plant plastids. It has been reported that IPP and DMAPP feedback-regulate the activity of deoxyxylulose 5-phosphate synthase (DXS), a dimeric enzyme that catalyzes the main flux-controlling step of the MEP pathway. Here we provide experimental insights into the underlying mechanism. Isothermal titration calorimetry and dynamic light scattering approaches showed that IPP and DMAPP can allosterically bind to DXS in vitro, causing a size shift. In silico ligand binding site analysis and docking calculations identified a potential allosteric site in the contact region between the two monomers of the active DXS dimer. Modulation of IPP and DMAPP contents in vivo followed by immunoblot analyses confirmed that high IPP/DMAPP levels resulted in monomerization and eventual aggregation of the enzyme in bacterial and plant cells. Loss of the enzymatically active dimeric conformation allows a fast and reversible reduction of DXS activity in response to a sudden increase or decrease in IPP/DMAPP supply, whereas aggregation and subsequent removal of monomers that would otherwise be available for dimerization appears to be a more drastic response in the case of persistent IPP/DMAPP overabundance (e.g., by a blockage in their conversion to downstream isoprenoids). Our results represent an important step toward understanding the regulation of the MEP pathway and rational design of biotechnological endeavors aimed at increasing isoprenoid contents in microbial and plant systems.


Sujet(s)
Plantes , Terpènes , Rétroaction , Terpènes/métabolisme , Plantes/métabolisme , Phosphates
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...