Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Animals (Basel) ; 11(9)2021 Sep 15.
Article de Anglais | MEDLINE | ID: mdl-34573664

RÉSUMÉ

In this study, we chose 17 worldwide sheep populations of eight breeds, which were intensively selected for different purposes (meat, milk, or wool), or locally-adapted breeds, in order to identify and characterize factors impacting the detection of runs of homozygosity (ROH) and heterozygosity-rich regions (HRRs) in sheep. We also applied a business intelligence (BI) tool to integrate and visualize outputs from complementary analyses. We observed a prevalence of short ROH, and a clear distinction between the ROH profiles across populations. The visualizations showed a fragmentation of medium and long ROH segments. Furthermore, we tested different scenarios for the detection of HRR and evaluated the impact of the detection parameters used. Our findings suggest that HRRs are small and frequent in the sheep genome; however, further studies with higher density SNP chips and different detection methods are suggested for future research. We also defined ROH and HRR islands and identified common regions across the populations, where genes related to a variety of traits were reported, such as body size, muscle development, and brain functions. These results indicate that such regions are associated with many traits, and thus were under selective pressure in sheep breeds raised for different purposes. Interestingly, many candidate genes detected within the HRR islands were associated with brain integrity. We also observed a strong association of high linkage disequilibrium pattern with ROH compared with HRR, despite the fact that many regions in linkage disequilibrium were not located in ROH regions.

2.
Genet Sel Evol ; 53(1): 27, 2021 Mar 12.
Article de Anglais | MEDLINE | ID: mdl-33711929

RÉSUMÉ

BACKGROUND: A cost-effective strategy to explore the complete DNA sequence in animals for genetic evaluation purposes is to sequence key ancestors of a population, followed by imputation mechanisms to infer marker genotypes that were not originally reported in a target population of animals genotyped with single nucleotide polymorphism (SNP) panels. The feasibility of this process relies on the accuracy of the genotype imputation in that population, particularly for potential causal mutations which may be at low frequency and either within genes or regulatory regions. The objective of the present study was to investigate the imputation accuracy to the sequence level in a Nellore beef cattle population, including that for variants in annotation classes which are more likely to be functional. METHODS: Information of 151 key sequenced Nellore sires were used to assess the imputation accuracy from bovine HD BeadChip SNP (~ 777 k) to whole-genome sequence. The choice of the sires aimed at optimizing the imputation accuracy of a genotypic database, comprised of about 10,000 genotyped Nellore animals. Genotype imputation was performed using two computational approaches: FImpute3 and Minimac4 (after using Eagle for phasing). The accuracy of the imputation was evaluated using a fivefold cross-validation scheme and measured by the squared correlation between observed and imputed genotypes, calculated by individual and by SNP. SNPs were classified into a range of annotations, and the accuracy of imputation within each annotation classification was also evaluated. RESULTS: High average imputation accuracies per animal were achieved using both FImpute3 (0.94) and Minimac4 (0.95). On average, common variants (minor allele frequency (MAF) > 0.03) were more accurately imputed by Minimac4 and low-frequency variants (MAF ≤ 0.03) were more accurately imputed by FImpute3. The inherent Minimac4 Rsq imputation quality statistic appears to be a good indicator of the empirical Minimac4 imputation accuracy. Both software provided high average SNP-wise imputation accuracy for all classes of biological annotations. CONCLUSIONS: Our results indicate that imputation to whole-genome sequence is feasible in Nellore beef cattle since high imputation accuracies per individual are expected. SNP-wise imputation accuracy is software-dependent, especially for rare variants. The accuracy of imputation appears to be relatively independent of annotation classification.


Sujet(s)
Bovins/génétique , Étude d'association pangénomique/méthodes , Séquençage du génome entier/méthodes , Animaux , Étude d'association pangénomique/médecine vétérinaire , Polymorphisme de nucléotide simple , Reproductibilité des résultats , Logiciel/normes , Séquençage du génome entier/médecine vétérinaire
3.
J Anim Breed Genet ; 136(1): 23-39, 2019 Jan.
Article de Anglais | MEDLINE | ID: mdl-30565335

RÉSUMÉ

The objective of the present study was to investigate the impact of considering population structure in cow genotyping strategies over the accuracy and bias of genomic predictions. A small dairy cattle population was simulated to address these objectives. Based on four main traditional designs (random, top-yield, extreme-yield and top-accuracy cows), different numbers (1,000; 2,000 and 5,000) of cows were sampled and included in the reference population. Traditional designs were replicated considering or not population structure and compared among and with a reference population containing only bulls. The inclusion of cows increased accuracy in all scenarios compared with using only bulls. Scenarios accounting for population structure when choosing cows to the reference population slightly outperformed their traditional versions by yielding higher accuracy and lower bias in genomic predictions. Building a cow-based reference population from groups of related individuals considering the frequency of individuals from those same groups in the validation population yielded promising results with applications on selection for expensive- or difficult-to-measure traits. Methods here presented may be easily implemented in both new or already established breeding programs, as they improved prediction and reduced bias in genomic evaluations while demanding no additional costs.


Sujet(s)
Sélection/méthodes , Bovins/génétique , Génotype , Animaux , Femelle , Phénotype
4.
Mol Ecol Resour ; 18(3): 435-447, 2018 May.
Article de Anglais | MEDLINE | ID: mdl-29271609

RÉSUMÉ

Cryptic relatedness is a confounding factor in genetic diversity and genetic association studies. Development of strategies to reduce cryptic relatedness in a sample is a crucial step for downstream genetic analyses. This study uses a node selection algorithm, based on network degrees of centrality, to evaluate its applicability and impact on evaluation of genetic diversity and population stratification. 1,036 Guzerá (Bos indicus) females were genotyped using Illumina Bovine SNP50 v2 BeadChip. Four strategies were compared. The first and second strategies consist on a iterative exclusion of most related individuals based on PLINK kinship coefficient (φij) and VanRaden's φij, respectively. The third and fourth strategies were based on a node selection algorithm. The fourth strategy, Network G matrix, preserved the larger number of individuals with a better diversity and representation from the initial sample. Determining the most probable number of populations was directly affected by the kinship metric. Network G matrix was the better strategy for reducing relatedness due to producing a larger sample, with more distant individuals, a more similar distribution when compared with the full data set in the MDS plots and keeping a better representation of the population structure. Resampling strategies using VanRaden's φij as a relationship metric was better to infer the relationships among individuals. Moreover, the resampling strategies directly impact the genomic inflation values in genomewide association studies. The use of the node selection algorithm also implies better selection of the most central individuals to be removed, providing a more representative sample.


Sujet(s)
Bovins/génétique , Variation génétique , Génomique/méthodes , Algorithmes , Animaux , Jeux de données comme sujet , Femelle , Techniques de génotypage/médecine vétérinaire
5.
J Dairy Sci ; 100(12): 9623-9634, 2017 Dec.
Article de Anglais | MEDLINE | ID: mdl-28987572

RÉSUMÉ

The objective of this study was to investigate different strategies for genotype imputation in a population of crossbred Girolando (Gyr × Holstein) dairy cattle. The data set consisted of 478 Girolando, 583 Gyr, and 1,198 Holstein sires genotyped at high density with the Illumina BovineHD (Illumina, San Diego, CA) panel, which includes ∼777K markers. The accuracy of imputation from low (20K) and medium densities (50K and 70K) to the HD panel density and from low to 50K density were investigated. Seven scenarios using different reference populations (RPop) considering Girolando, Gyr, and Holstein breeds separately or combinations of animals of these breeds were tested for imputing genotypes of 166 randomly chosen Girolando animals. The population genotype imputation were performed using FImpute. Imputation accuracy was measured as the correlation between observed and imputed genotypes (CORR) and also as the proportion of genotypes that were imputed correctly (CR). This is the first paper on imputation accuracy in a Girolando population. The sample-specific imputation accuracies ranged from 0.38 to 0.97 (CORR) and from 0.49 to 0.96 (CR) imputing from low and medium densities to HD, and 0.41 to 0.95 (CORR) and from 0.50 to 0.94 (CR) for imputation from 20K to 50K. The CORRanim exceeded 0.96 (for 50K and 70K panels) when only Girolando animals were included in RPop (S1). We found smaller CORRanim when Gyr (S2) was used instead of Holstein (S3) as RPop. The same behavior was observed between S4 (Gyr + Girolando) and S5 (Holstein + Girolando) because the target animals were more related to the Holstein population than to the Gyr population. The highest imputation accuracies were observed for scenarios including Girolando animals in the reference population, whereas using only Gyr animals resulted in low imputation accuracies, suggesting that the haplotypes segregating in the Girolando population had a greater effect on accuracy than the purebred haplotypes. All chromosomes had similar imputation accuracies (CORRsnp) within each scenario. Crossbred animals (Girolando) must be included in the reference population to provide the best imputation accuracies.


Sujet(s)
Bovins/génétique , Génotype , Polymorphisme de nucléotide simple , Animaux , Sélection , Femelle , Haplotypes
6.
BMC Genet ; 16: 99, 2015 Aug 07.
Article de Anglais | MEDLINE | ID: mdl-26250698

RÉSUMÉ

BACKGROUND: Genotype imputation has been used to increase genomic information, allow more animals in genome-wide analyses, and reduce genotyping costs. In Brazilian beef cattle production, many animals are resulting from crossbreeding and such an event may alter linkage disequilibrium patterns. Thus, the challenge is to obtain accurately imputed genotypes in crossbred animals. The objective of this study was to evaluate the best fitting and most accurate imputation strategy on the MA genetic group (the progeny of a Charolais sire mated with crossbred Canchim X Zebu cows) and Canchim cattle. The data set contained 400 animals (born between 1999 and 2005) genotyped with the Illumina BovineHD panel. Imputation accuracy of genotypes from the Illumina-Bovine3K (3K), Illumina-BovineLD (6K), GeneSeek-Genomic-Profiler (GGP) BeefLD (GGP9K), GGP-IndicusLD (GGP20Ki), Illumina-BovineSNP50 (50K), GGP-IndicusHD (GGP75Ki), and GGP-BeefHD (GGP80K) to Illumina-BovineHD (HD) SNP panels were investigated. Seven scenarios for reference and target populations were tested; the animals were grouped according with birth year (S1), genetic groups (S2 and S3), genetic groups and birth year (S4 and S5), gender (S6), and gender and birth year (S7). Analyses were performed using FImpute and BEAGLE software and computation run-time was recorded. Genotype imputation accuracy was measured by concordance rate (CR) and allelic R square (R(2)). RESULTS: The highest imputation accuracy scenario consisted of a reference population with males and females and a target population with young females. Among the SNP panels in the tested scenarios, from the 50K, GGP75Ki and GGP80K were the most adequate to impute to HD in Canchim cattle. FImpute reduced computation run-time to impute genotypes from 20 to 100 times when compared to BEAGLE. CONCLUSION: The genotyping panels possessing at least 50 thousands markers are suitable for genotype imputation to HD with acceptable accuracy. The FImpute algorithm demonstrated a higher efficiency of imputed markers, especially in lower density panels. These considerations may assist to increase genotypic information, reduce genotyping costs, and aid in genomic selection evaluations in crossbred animals.


Sujet(s)
Étude d'association pangénomique , Génotype , Viande rouge , Allèles , Animaux , Brésil , Sélection , Bovins , Croisements génétiques , Femelle , Déséquilibre de liaison , Mâle , Phénotype , Polymorphisme de nucléotide simple
7.
PLoS One ; 9(4): e94802, 2014.
Article de Anglais | MEDLINE | ID: mdl-24733441

RÉSUMÉ

Studies are being conducted on the applicability of genomic data to improve the accuracy of the selection process in livestock, and genome-wide association studies (GWAS) provide valuable information to enhance the understanding on the genetics of complex traits. The aim of this study was to identify genomic regions and genes that play roles in birth weight (BW), weaning weight adjusted for 210 days of age (WW), and long-yearling weight adjusted for 420 days of age (LYW) in Canchim cattle. GWAS were performed by means of the Generalized Quasi-Likelihood Score (GQLS) method using genotypes from the BovineHD BeadChip and estimated breeding values for BW, WW, and LYW. Data consisted of 285 animals from the Canchim breed and 114 from the MA genetic group (derived from crossings between Charolais sires and ½ Canchim + ½ Zebu dams). After applying a false discovery rate correction at a 10% significance level, a total of 4, 12, and 10 SNPs were significantly associated with BW, WW, and LYW, respectively. These SNPs were surveyed to their corresponding genes or to surrounding genes within a distance of 250 kb. The genes DPP6 (dipeptidyl-peptidase 6) and CLEC3B (C-type lectin domain family 3 member B) were highlighted, considering its functions on the development of the brain and skeletal system, respectively. The GQLS method identified regions on chromosome associated with birth weight, weaning weight, and long-yearling weight in Canchim and MA animals. New candidate regions for body weight traits were detected and some of them have interesting biological functions, of which most have not been previously reported. The observation of QTL reports for body weight traits, covering areas surrounding the genes (SNPs) herein identified provides more evidence for these associations. Future studies targeting these areas could provide further knowledge to uncover the genetic architecture underlying growth traits in Canchim cattle.


Sujet(s)
Bovins/croissance et développement , Bovins/génétique , Étude d'association pangénomique , Caractère quantitatif héréditaire , Animaux , Poids de naissance/génétique , Brésil , Chromosomes de mammifère/génétique , Génotype , Fonctions de vraisemblance , Polymorphisme de nucléotide simple/génétique , Sevrage
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE