Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Heliyon ; 9(8): e18387, 2023 Aug.
Article de Anglais | MEDLINE | ID: mdl-37520997

RÉSUMÉ

Studies on the environmental impact of nanoplastics face challenges in plastic analysis and a scarcity of nanoplastic materials necessary for the development of analytical techniques and experiments on biota impact. Here we provide detailed procedures for obtaining nanoparticles suspended in water for the most commonly used polymers: Polypropylene (PP), Polyvinylchloride (PVC), Low- and High-Density Polyethylene (PE-LD, PE-HD), and Polystyrene (PS). We dissolved larger size material to reprecipitate nanoparticles. For all plastic types, we obtained nanoparticles with a size between 50 and 300 nm, and a mainly spherical morphology. We verified that no irreversible agglomeration or coalescence of the particles occurred after 5 days of storage. The concentrations obtained in the final carrier solution were of the order of 109 particles mL-1. To prevent the persistence of reagents in the final carrier solution, a filtration step was implemented at the end of the process. The method proved unsuitable for Polyethylene Terephthalate (PET).

2.
Water Environ Res ; 92(11): 1874-1887, 2020 Nov.
Article de Anglais | MEDLINE | ID: mdl-32301533

RÉSUMÉ

Thermal decomposition process was used to obtain modified photocatalytic and/or photoluminescence properties of bismuth phosphate polymorphs. The precursor BiPO4 , 0.7H2 O was synthesized by a coprecipitation route. The observed polymorphs were the hexagonal P31 21 hydrate phase BiPO4 , 0.7H2 O at 25°C, a mix system of hexagonal and monoclinic P21 /n phases at 200°C and 400°C, a mix system of monoclinic phases P21 /n and P21 /m at 600°C, and a unique monoclinic phase P21 /m at 900°C. The X-ray diffraction analyses allowed evidencing lattice deformations due to structural defects. The photocatalytic activities in the presence of rhodamine B in aqueous solution were determined using UV light irradiation. The best photocatalytic efficiencies were observed with the mix systems resulting from thermal decomposition at 400 and 600°C. Photoluminescence experiments performed under UV-laser light irradiation revealed unexpected emissions in the green-orange range, with optimal intensities for the mix systems observed at 400°C. The role of structural defects resulting from decomposition process is discussed. PRACTITIONER POINTS: Thermal decomposition is used to introduce structural defects in BiPO4 polymorphs The BiPO4 intermediate systems are used to photodegrade rhodamine B Active species trapping experiments are performed Photoluminescence experiments highlight green-orange emissions Structural defects are at the origin of this photoluminescence.


Sujet(s)
Lumière , Rayons ultraviolets , Eau
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...