Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Vet Microbiol ; 297: 110203, 2024 Jul 30.
Article de Anglais | MEDLINE | ID: mdl-39089141

RÉSUMÉ

Many cattle infected with Mycoplasma bovis remain healthy while others develop severe chronic respiratory disease. We hypothesized that inflammatory stimuli such as co-pathogens worsen disease outcomes in M. bovis-infected calves. Calves (n=24) were intrabronchially inoculated with M. bovis and either killed bacterial lysate, transient M. haemolytica infection, or saline. Caseonecrotic lesions developed in 7/7 animals given M. haemolytica and M. bovis compared to 2/8 given M. bovis with no inflammatory stimulus, and 6/9 animals given bacterial lysate and M. bovis (P=0.01). Animals receiving M. haemolytica and M. bovis had more caseonecrotic foci in lungs than those receiving M. bovis with no inflammatory stimulus (median = 21 vs 0; P = 0.01), with an intermediate response (median = 5) in animals given bacterial lysate. In addition to caseonecrotic foci, infected animals developed neutrophilic bronchiolitis that appeared to develop into caseonecrotic foci, peribronchiolar lymphocytic cuffs that were not associated with the other lesions, and 4 animals with bronchiolitis obliterans. The data showed that transient lung inflammation at the time of M. bovis infection provoked the development of caseonecrotic bronchopneumonia, and the severity of inflammation influenced the number of caseonecrotic foci that developed. In contrast, caseonecrotic lesions were few or absent in M. bovis-infected calves without a concurrent inflammatory stimulus. These studies provide insight into how caseonecrotic lesions develop within the lung of M. bovis-infected calves. This and other studies suggest that controlling co-pathogens and harmful inflammatory responses in animals infected with M. bovis could potentially minimize development of M. bovis caseonecrotic bronchopneumonia.

2.
J Transl Med ; 22(1): 524, 2024 May 31.
Article de Anglais | MEDLINE | ID: mdl-38822345

RÉSUMÉ

BACKGROUND: Olfactory neuroblastoma is a rare malignancy of the anterior skull base typically treated with surgery and adjuvant radiation. Although outcomes are fair for low-grade disease, patients with high-grade, recurrent, or metastatic disease oftentimes respond poorly to standard treatment methods. We hypothesized that an in-depth evaluation of the olfactory neuroblastoma tumor immune microenvironment would identify mechanisms of immune evasion in high-grade olfactory neuroblastoma as well as rational targetable mechanisms for future translational immunotherapeutic approaches. METHODS: Multispectral immunofluorescence and RNAScope evaluation of the tumor immune microenvironment was performed on forty-seven clinically annotated olfactory neuroblastoma samples. A retrospective chart review was performed and clinical correlations assessed. RESULTS: A significant T cell infiltration was noted in olfactory neuroblastoma samples with a stromal predilection, presence of myeloid-derived suppressor cells, and sparse natural killer cells. A striking decrease was observed in MHC-I expression in high-grade olfactory neuroblastoma compared to low-grade disease, representing a mechanism of immune evasion in high-grade disease. Mechanistically, the immune effector stromal predilection appears driven by low tumor cell MHC class II (HLA-DR), CXCL9, and CXCL10 expression as those tumors with increased tumor cell expression of each of these mediators correlated with significant increases in T cell infiltration. CONCLUSION: These data suggest that immunotherapeutic strategies that augment tumor cell expression of MHC class II, CXCL9, and CXCL10 may improve parenchymal trafficking of immune effector cells in olfactory neuroblastoma and augment immunotherapeutic responses.


Sujet(s)
Chimiokine CXCL10 , Chimiokine CXCL9 , Esthésioneuroblastome olfactif , Antigènes HLA-DR , Immunothérapie , Microenvironnement tumoral , Humains , Esthésioneuroblastome olfactif/thérapie , Esthésioneuroblastome olfactif/anatomopathologie , Esthésioneuroblastome olfactif/immunologie , Chimiokine CXCL10/métabolisme , Immunothérapie/méthodes , Femelle , Mâle , Adulte d'âge moyen , Chimiokine CXCL9/métabolisme , Microenvironnement tumoral/immunologie , Antigènes HLA-DR/métabolisme , Sujet âgé , Tumeurs du nez/thérapie , Tumeurs du nez/anatomopathologie , Tumeurs du nez/immunologie , Adulte , Régulation de l'expression des gènes tumoraux
3.
Mol Cancer Ther ; 23(8): 1109-1123, 2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-38657228

RÉSUMÉ

Disruption of DNA damage repair via impaired homologous recombination is characteristic of Ewing sarcoma (EWS) cells. We hypothesize that this disruption results in increased reliance on nonhomologous end joining to repair DNA damage. In this study, we investigated if pharmacologic inhibition of the enzyme responsible for nonhomologous end joining, the DNA-PK holoenzyme, alters the response of EWS cells to genotoxic standard of care chemotherapy. We used analyses of cell viability and proliferation to investigate the effects of clinical DNA-PK inhibitors (DNA-PKi) in combination with six therapeutic or experimental agents for EWS. We performed calculations of synergy using the Loewe additivity model. Immunoblotting evaluated treatment effects on DNA-PK, DNA damage, and apoptosis. Flow cytometric analyses evaluated effects on cell cycle and fate. We used orthotopic xenograft models to interrogate tolerability, drug mechanism, and efficacy in vivo. DNA-PKi demonstrated on-target activity, reducing phosphorylated DNA-PK levels in EWS cells. DNA-PKi sensitized EWS cell lines to agents that function as topoisomerase 2 (TOP2) poisons and enhanced the DNA damage induced by TOP2 poisons. Nanomolar concentrations of single-agent TOP2 poisons induced G2M arrest and little apoptotic response while adding DNA-PKi-mediated apoptosis. In vivo, the combination of AZD7648 and etoposide had limited tolerability but resulted in enhanced DNA damage, apoptosis, and EWS tumor shrinkage. The combination of DNA-PKi with standard of care TOP2 poisons in EWS models is synergistic, enhances DNA damage and cell death, and may form the basis of a promising future therapeutic strategy for EWS.


Sujet(s)
DNA-activated protein kinase , Sarcome d'Ewing , Animaux , Humains , Souris , Apoptose/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Prolifération cellulaire/effets des médicaments et des substances chimiques , Altération de l'ADN , DNA-activated protein kinase/antagonistes et inhibiteurs , DNA-activated protein kinase/métabolisme , Inhibiteurs de protéines kinases/pharmacologie , Inhibiteurs de protéines kinases/usage thérapeutique , Sarcome d'Ewing/traitement médicamenteux , Sarcome d'Ewing/anatomopathologie , Norme de soins , Tests d'activité antitumorale sur modèle de xénogreffe
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE