Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 68
Filtrer
1.
Front Cell Infect Microbiol ; 14: 1425624, 2024.
Article de Anglais | MEDLINE | ID: mdl-39145307

RÉSUMÉ

Type IV pili (T4P) are versatile proteinaceous protrusions that mediate diverse bacterial processes, including adhesion, motility, and biofilm formation. Aeromonas hydrophila, a Gram-negative facultative anaerobe, causes disease in a wide range of hosts. Previously, we reported the presence of a unique Type IV class C pilus, known as tight adherence (Tad), in virulent Aeromonas hydrophila (vAh). In the present study, we sought to functionalize the role of Tad pili in the pathogenicity of A. hydrophila ML09-119. Through a comprehensive comparative genomics analysis of 170 A. hydrophila genomes, the conserved presence of the Tad operon in vAh isolates was confirmed, suggesting its potential contribution to pathogenicity. Herein, the entire Tad operon was knocked out from A. hydrophila ML09-119 to elucidate its specific role in A. hydrophila virulence. The absence of the Tad operon did not affect growth kinetics but significantly reduced virulence in catfish fingerlings, highlighting the essential role of the Tad operon during infection. Biofilm formation of A. hydrophila ML09-119 was significantly decreased in the Tad operon deletant. Absence of the Tad operon had no effect on sensitivity to other environmental stressors, including hydrogen peroxide, osmolarity, alkalinity, and temperature; however, it was more sensitive to low pH conditions. Scanning electron microscopy revealed that the Tad mutant had a rougher surface structure during log phase growth than the wildtype strain, indicating the absence of Tad impacts the outer surface of vAh during cell division, of which the biological consequences are unknown. These findings highlight the role of Tad in vAh pathogenesis and biofilm formation, signifying the importance of T4P in bacterial infections.


Sujet(s)
Aeromonas hydrophila , Biofilms , Fimbriae bactériens , Maladies des poissons , Infections bactériennes à Gram négatif , Opéron , Aeromonas hydrophila/génétique , Aeromonas hydrophila/pathogénicité , Aeromonas hydrophila/physiologie , Biofilms/croissance et développement , Fimbriae bactériens/génétique , Fimbriae bactériens/métabolisme , Virulence/génétique , Animaux , Infections bactériennes à Gram négatif/microbiologie , Maladies des poissons/microbiologie , Adhérence bactérienne/génétique , Poissons-chats/microbiologie , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , Techniques de knock-out de gènes
2.
Microbiol Resour Announc ; 13(6): e0115623, 2024 Jun 11.
Article de Anglais | MEDLINE | ID: mdl-38647329

RÉSUMÉ

The complete genome sequence is reported for Vibrio harveyi isolate K2014767, isolated from a captive Caribbean spiny lobster (Panulirus argus) during a species-specific mortality event in a public display aquarium in the United States.

3.
Appl Environ Microbiol ; 90(5): e0234923, 2024 May 21.
Article de Anglais | MEDLINE | ID: mdl-38597602

RÉSUMÉ

Piscine lactococcosis is a significant threat to cultured and wild fish populations worldwide. The disease typically presents as a per-acute to acute hemorrhagic septicemia causing high morbidity and mortality, recalcitrant to antimicrobial treatment or management interventions. Historically, the disease was attributed to the gram-positive pathogen Lactococcus garvieae. However, recent work has revealed three distinct lactococcosis-causing bacteria (LCB)-L. garvieae, L. petauri, and L. formosensis-which are phenotypically and genetically similar, leading to widespread misidentification. An update on our understanding of lactococcosis and improved methods for identification are urgently needed. To this end, we used representative isolates from each of the three LCB species to compare currently available and recently developed molecular and phenotypic typing assays, including whole-genome sequencing (WGS), end-point and quantitative PCR (qPCR) assays, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), API 20 Strep and Biolog systems, fatty acid methyl ester analysis (FAME), and Sensititre antimicrobial profiling. Apart from WGS, sequencing of the gyrB gene was the only method capable of consistent and accurate identification to the species and strain level. A qPCR assay based on a putative glycosyltransferase gene was also able to distinguish L. petauri from L. garvieae/formosensis. Biochemical tests and MALDI-TOF MS showed some species-specific patterns in sugar and fatty acid metabolism or protein profiles but should be complemented by additional analyses. The LCB demonstrated overlap in host and geographic range, but there were relevant differences in host specificity, regional prevalence, and antimicrobial susceptibility impacting disease treatment and prevention. IMPORTANCE: Lactococcosis affects a broad range of host species, including fish from cold, temperate, and warm freshwater or marine environments, as well as several terrestrial animals, including humans. As such, lactococcosis is a disease of concern for animal and ecosystem health. The disease is endemic in European and Asian aquaculture but is rapidly encroaching on ecologically and economically important fish populations across the Americas. Piscine lactococcosis is difficult to manage, with issues of vaccine escape, ineffective antimicrobial treatment, and the development of carrier fish or biofilms leading to recurrent outbreaks. Our understanding of the disease is also widely outdated. The accepted etiologic agent of lactococcosis is Lactococcus garvieae. However, historical misidentification has masked contributions from two additional species, L. petauri and L. formosensis, which are indistinguishable from L. garvieae by common diagnostic methods. This work is the first comprehensive characterization of all three agents and provides direct recommendations for species-specific diagnosis and management.


Sujet(s)
Maladies des poissons , Infections bactériennes à Gram positif , Lactococcus , Lactococcus/génétique , Lactococcus/isolement et purification , Lactococcus/classification , Animaux , Maladies des poissons/microbiologie , Infections bactériennes à Gram positif/microbiologie , Infections bactériennes à Gram positif/médecine vétérinaire , Poissons/microbiologie , Séquençage du génome entier , Spectrométrie de masse MALDI
4.
Dis Aquat Organ ; 157: 45-59, 2024 Feb 01.
Article de Anglais | MEDLINE | ID: mdl-38299849

RÉSUMÉ

White sturgeon Acipenser transmontanus is the primary species used for caviar and sturgeon meat production in the USA. An important pathogen of white sturgeon is acipenserid herpesvirus 2 (AciHV-2). In this study, 4 archived isolates from temporally discrete natural outbreaks spanning the past 30 yr were sequenced via Illumina and Oxford Nanopore Technologies platforms. Assemblies of approximately 134 kb were obtained for each isolate, and the putative ATPase subunit of the terminase gene was selected as a potential quantitative PCR (qPCR) target based on sequence conservation among AciHV-2 isolates and low sequence homology with other important viral pathogens. The qPCR was repeatable and reproducible, with a linear dynamic range covering 5 orders of magnitude, an efficiency of approximately 96%, an R2 of 0.9872, and an analytical sensitivity of 103 copies per reaction after 35 cycles. There was no cross-reaction with other known viruses or closely related sturgeon species, and no inhibition by sturgeon DNA. Clinical accuracy was assessed from white sturgeon juveniles exposed to AciHV-2 by immersion. Viral culture (gold standard) and qPCR were in complete agreement for both cell culture negative and cell culture positive samples, indicating that this assay has 100% relative accuracy compared to cell culture during an active outbreak. The availability of a whole-genome sequence for AciHV-2 and a highly specific and sensitive qPCR assay for detection of AciHV-2 in white sturgeon lays a foundation for further studies on host-pathogen interactions while providing a specific and rapid test for AciHV-2 in captive and wild populations.


Sujet(s)
Poissons , Génome viral , Herpesviridae , Animaux , Poissons/virologie , Herpesviridae/génétique , Herpesviridae/isolement et purification
5.
J Fish Dis ; 47(4): e13910, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38153008

RÉSUMÉ

Enteric septicemia of catfish (ESC), caused by the gram-negative enteric bacteria Edwardsiella ictaluri, is a significant threat to catfish aquaculture in the southeastern United States. Antibiotic intervention can reduce mortality; however, antibiotic use results in an imbalance, or dysbiosis, of the gut microbiota, which may increase susceptibility of otherwise healthy fish to enteric infections. Herein, recovery of the intestinal microbiota and survivability of channel catfish in response to ESC challenge was evaluated following a 10-day course of florfenicol and subsequent probiotic or prebiotic supplementation. Following completion of florfenicol therapy, fish were transitioned to a basal diet or diets supplemented with a probiotic or prebiotic for the remainder of the study. Digesta was collected on Days 0, 4, 8 and 12, beginning on the first day after cessation of antibiotic treatment, and gut microbiota was characterized by Illumina sequencing of the 16S rRNA gene (V4 region). Remaining fish were challenged with E. ictaluri and monitored for 32 days post-challenge. Florfenicol administration resulted in dysbiosis characterized by inflated microbial diversity, which began to recover in terms of diversity and composition 4 days after cessation of florfenicol administration. Fish fed the probiotic diet had higher survival in response to ESC challenge than the prebiotic (p = .019) and negative control (p = .029) groups.


Sujet(s)
Poissons-chats , Infections à Enterobacteriaceae , Maladies des poissons , Microbiome gastro-intestinal , Ictaluridae , Probiotiques , Thiamphénicol/analogues et dérivés , Animaux , Edwardsiella ictaluri/physiologie , Prébiotiques , Dysbiose , ARN ribosomique 16S , Maladies des poissons/traitement médicamenteux , Maladies des poissons/prévention et contrôle , Maladies des poissons/microbiologie , Antibactériens/pharmacologie , Compléments alimentaires , Infections à Enterobacteriaceae/traitement médicamenteux , Infections à Enterobacteriaceae/prévention et contrôle , Infections à Enterobacteriaceae/médecine vétérinaire
6.
G3 (Bethesda) ; 13(9)2023 08 30.
Article de Anglais | MEDLINE | ID: mdl-37335943

RÉSUMÉ

Atlantic salmon (Salmo salar) in Northeastern US and Eastern Canada has high economic value for the sport fishing and aquaculture industries. Large differences exist between the genomes of Atlantic salmon of European origin and North American (N.A.) origin. Given the genetic and genomic differences between the 2 lineages, it is crucial to develop unique genomic resources for N.A. Atlantic salmon. Here, we describe the resources that we recently developed for genomic and genetic research in N.A. Atlantic salmon aquaculture. Firstly, a new single nucleotide polymorphism (SNP) database for N.A. Atlantic salmon consisting of 3.1 million putative SNPs was generated using data from whole-genome resequencing of 80 N.A. Atlantic salmon individuals. Secondly, a high-density 50K SNP array enriched for the genic regions of the genome and containing 3 sex determination and 61 putative continent of origin markers was developed and validated. Thirdly, a genetic map composed of 27 linkage groups with 36K SNP markers was generated from 2,512 individuals in 141 full-sib families. Finally, a chromosome-level de novo genome assembly from a male N.A. Atlantic salmon from the St. John River aquaculture strain was generated using PacBio long reads. Information from Hi-C proximity ligation sequences and Bionano optical mapping was used to concatenate the contigs into scaffolds. The assembly contains 1,755 scaffolds and only 1,253 gaps, with a total length of 2.83 Gb and N50 of 17.2 Mb. A BUSCO analysis detected 96.2% of the conserved Actinopterygii genes in the assembly, and the genetic linkage information was used to guide the formation of 27 chromosome sequences. Comparative analysis with the reference genome assembly of the European Atlantic salmon confirmed that the karyotype differences between the 2 lineages are caused by a fission in chromosome Ssa01 and 3 chromosome fusions including the p arm of chromosome Ssa01 with Ssa23, Ssa08 with Ssa29, and Ssa26 with Ssa28. The genomic resources we have generated for Atlantic salmon provide a crucial boost for genetic research and for management of farmed and wild populations in this highly valued species.


Sujet(s)
Salmo salar , Humains , Animaux , Mâle , Salmo salar/génétique , Rivières , Polymorphisme de nucléotide simple , Caryotype , Aquaculture , Amérique du Nord
7.
BMC Biol ; 21(1): 67, 2023 04 03.
Article de Anglais | MEDLINE | ID: mdl-37013528

RÉSUMÉ

BACKGROUND: Channel catfish and blue catfish are the most important aquacultured species in the USA. The species do not readily intermate naturally but F1 hybrids can be produced through artificial spawning. F1 hybrids produced by mating channel catfish female with blue catfish male exhibit heterosis and provide an ideal system to study reproductive isolation and hybrid vigor. The purpose of the study was to generate high-quality chromosome level reference genome sequences and to determine their genomic similarities and differences. RESULTS: We present high-quality reference genome sequences for both channel catfish and blue catfish, containing only 67 and 139 total gaps, respectively. We also report three pericentric chromosome inversions between the two genomes, as evidenced by long reads across the inversion junctions from distinct individuals, genetic linkage mapping, and PCR amplicons across the inversion junctions. Recombination rates within the inversional segments, detected as double crossovers, are extremely low among backcross progenies (progenies of channel catfish female × F1 hybrid male), suggesting that the pericentric inversions interrupt postzygotic recombination or survival of recombinants. Identification of channel catfish- and blue catfish-specific genes, along with expansions of immunoglobulin genes and centromeric Xba elements, provides insights into genomic hallmarks of these species. CONCLUSIONS: We generated high-quality reference genome sequences for both blue catfish and channel catfish and identified major chromosomal inversions on chromosomes 6, 11, and 24. These perimetric inversions were validated by additional sequencing analysis, genetic linkage mapping, and PCR analysis across the inversion junctions. The reference genome sequences, as well as the contrasted chromosomal architecture should provide guidance for the interspecific breeding programs.


Sujet(s)
Ictaluridae , Humains , Animaux , Mâle , Femelle , Ictaluridae/génétique , Inversion chromosomique , Liaison génétique , Génome , Cartographie chromosomique
8.
Front Microbiol ; 14: 1303235, 2023.
Article de Anglais | MEDLINE | ID: mdl-38361579

RÉSUMÉ

Erysipelothrix spp., including E. rhusiopathiae, are zoonotic bacterial pathogens that can cause morbidity and mortality in mammals, fish, reptiles, birds, and humans. The southern sea otter (SSO; Enhydra lutris nereis) is a federally-listed threatened species for which infectious disease is a major cause of mortality. We estimated the frequency of detection of these opportunistic pathogens in dead SSOs, described pathology associated with Erysipelothrix infections in SSOs, characterized the genetic diversity and antimicrobial susceptibility of SSO isolates, and evaluated the virulence of two novel Erysipelothrix isolates from SSOs using an in vivo fish model. From 1998 to 2021 Erysipelothrix spp. were isolated from six of >500 necropsied SSOs. Erysipelothrix spp. were isolated in pure culture from three cases, while the other three were mixed cultures. Bacterial septicemia was a primary or contributing cause of death in five of the six cases. Other pathology observed included suppurative lymphadenopathy, fibrinosuppurative arteritis with thrombosis and infarction, bilateral uveitis and endophthalmitis, hypopyon, petechia and ecchymoses, mucosal infarction, and suppurative meningoencephalitis and ventriculitis. Short to long slender Gram-positive or Gram-variable bacterial rods were identified within lesions, alone or with other opportunistic bacteria. All six SSO isolates had the spaA genotype-four isolates clustered with spaA E. rhusiopathiae strains from various terrestrial and marine animal hosts. Two isolates did not cluster with any known Erysipelothrix spp.; whole genome sequencing revealed a novel Erysipelothrix species and a novel E. rhusiopathiae subspecies. We propose the names Erysipelothrix enhydrae sp. nov. and Erysipelothrix rhusiopathiae ohloneorum ssp. nov. respectively. The type strains are E. enhydrae UCD-4322-04 and E. rhusiopathiae ohloneorum UCD-4724-06, respectively. Experimental injection of tiger barbs (Puntigrus tetrazona) resulted in infection and mortality from the two novel Erysipelothrix spp. Antimicrobial susceptibility testing of Erysipelothrix isolates from SSOs shows similar susceptibility profiles to isolates from other terrestrial and aquatic animals. This is the first description of the pathology, microbial characteristics, and genetic diversity of Erysipelothrix isolates recovered from diseased SSOs. Methods presented here can facilitate case recognition, aid characterization of Erysipelothrix isolates, and illustrate assessment of virulence using fish models.

9.
Animals (Basel) ; 12(23)2022 Nov 22.
Article de Anglais | MEDLINE | ID: mdl-36496751

RÉSUMÉ

The lake sturgeon (Acipenser fulvescens; LST) is the only native sturgeon species in the Great Lakes (GL), but due to multiple factors, their current populations are estimated to be <1% of historical abundances. Little is known about infectious diseases affecting GL-LST in hatchery and wild settings. Therefore, a two-year disease surveillance study was undertaken, resulting in the detection and first in vitro isolation of a herpesvirus from grossly apparent cutaneous lesions in wild adult LST inhabiting two GL watersheds (Erie and Huron). Histological and ultrastructural examination of lesions revealed proliferative epidermitis associated with herpesvirus-like virions. A virus with identical ultrastructural characteristics was recovered from cells inoculated with lesion tissues. Partial DNA polymerase gene sequencing placed the virus within the Family Alloherpesviridae, with high similarity to a lake sturgeon herpesvirus (LSHV) from Wisconsin, USA. Genomic comparisons revealed ~84% Average Nucleotide Identity between the two isolates, leading to the proposed classification of LSHV-1 (Wisconsin) and LSHV-2 (Michigan) for the two viruses. When naïve juvenile LST were immersion-exposed to LSHV-2, severe disease and ~33% mortality occurred, with virus re-isolated from representative skin lesions, fulfilling Rivers' postulates. Results collectively show LSHV-2 is associated with epithelial changes in wild adult LST, disease and mortality in juvenile LST, and is a potential threat to GL-LST conservation.

10.
J Parasitol ; 108(2): 132-140, 2022 Mar 01.
Article de Anglais | MEDLINE | ID: mdl-35312005

RÉSUMÉ

An abundance of morphologically variable Henneguya species complicates the understanding of disease relationships between ictalurid catfish and myxozoan (Phylum: Cnidaria) parasites on North American aquaculture operations. Henneguya ictaluri, the cause of proliferative gill disease (PGD) in channel and hybrid catfish, is arguably the most important parasite of commercial catfish aquaculture in the southeastern United States. While research indicates arrested development and limited sporogenesis of H. ictaluri in channel (Ictalurus punctatus) × blue (Ictalurus furcatus) hybrid catfish, incidents of PGD persist in hybrid production systems. This work investigated the influence of fish host on myxozoan community composition and diversity within naturally infected gill tissues from diagnostic case submissions to the Aquatic Research and Diagnostic Laboratory in Stoneville, Mississippi, from 2017 to 2019. Gills collected from farm-raised catfish with clinical PGD were subjected to metagenomic amplicon sequencing of the myxozoan 18S SSU rDNA gene diagnostic variable region 3 (DVR3). Myxozoan community composition significantly differed between channel and hybrid catfish PGD cases, with channel catfish having more diverse community structures. Channel catfish gills had a greater relative abundance of H. ictaluri in 2017 and 2019, while no differences were observed in 2018. Importantly, H. ictaluri was present in all channel and hybrid catfish PGD cases across all years; however, H. ictaluri was not the most abundant myxozoan in almost half the cases examined, suggesting other myxozoan species may also contribute to PGD pathology. The detection of numerous known and unclassified myxozoan sequences in addition to H. ictaluri provides evidence PGD may involve mixed species infections. Furthermore, the presence of numerous unclassified myxozoan sequences in gill samples from clinical PGD cases indicates the number of described species from U.S. farm-raised catfish vastly underestimates the true myxozoan diversity present within the varied pond microcosms associated with catfish aquaculture.


Sujet(s)
Poissons-chats , Maladies des poissons , Ictaluridae , Myxozoa , Parasites , Parasitoses animales , Animaux , Aquaculture , Maladies des poissons/parasitologie , Branchies/parasitologie , Ictaluridae/parasitologie , Mississippi/épidémiologie , Myxozoa/génétique , Parasitoses animales/parasitologie
11.
Syst Parasitol ; 99(1): 41-62, 2022 02.
Article de Anglais | MEDLINE | ID: mdl-35028798

RÉSUMÉ

Previous morphological and histological data are supplemented with molecular and ultrastructural data for a Henneguya sp. isolated from farm-raised channel catfish Ictalurus punctatus in Mississippi, USA. Myxospores were cryptic, encapsulated within a thin layer of epithelium in the gill lamellae with spore measurements consistent with the original description of Henneguya postexilis Minchew, 1977. Myxospores were 42.7-49.1 µm in total length with spore bodies 12.1-17.2 × 3.6-4.8 × 2.9-3 µm. Polar capsules were of unequal length, with the longer capsule being 4.4-6.7 × 1.1-1.6 µm and the shorter capsule being 4.4-6.4 × 1.1-1.6 µm. Polar tubules had 6-8 turns. Caudal processes were 25.7-38.1 µm in length. Spores were encapsulated in a thin layer of epithelium in the gill lamellae. Molecular data from the most commonly used markers for myxozoan identification and phylogeny, partial 18S small subunit ribosomal gene (SSU), partial 28S large subunit ribosomal gene (LSU), and elongation factor 2 (EF2) were generated for H. postexilis. Additionally, novel data for LSU and EF2 were generated for archived myxozoan specimens from farm-raised catfish (H. mississippiensis, H. ictaluri, H. exilis, H. adiposa, H. sutherlandi, H. bulbosus, Unicauda fimbrethilae), as well as archived specimens from wild fish (H. laseeae [from Pylodictis olivaris], Hennegoides flockae [from Aphredoderus sayanus], Myxobolus cloutmani [from Cycleptus elongatus]. These include the first EF2 sequence data for the genera Hennegoides and Unicauda. Phylogenetic analyses using these data placed H. postexilis in well supported clades with other ictalurid-infecting Henneguya species. Phylogenetic signal assessments on these analyses suggest that while SSU provided the greatest phylogenetic signal, LSU yielded comparable signal, supporting previous work implying this region may be underutilised in reconstructing myxobolid phylogenies.


Sujet(s)
Maladies des poissons , Ictaluridae , Myxozoa , Parasites , Parasitoses animales , Animaux , Maladies des poissons/parasitologie , Branchies/parasitologie , Ictaluridae/parasitologie , Myxozoa/génétique , Parasitoses animales/parasitologie , Phylogenèse , Spécificité d'espèce
12.
Syst Appl Microbiol ; 45(2): 126293, 2022 Apr.
Article de Anglais | MEDLINE | ID: mdl-35026686

RÉSUMÉ

Flavobacterium columnare is the causative agent of columnaris disease in freshwater fish and four discrete genetic groups exist within the species, suggesting that the species designation requires revision. The present study determined the taxonomic status of the four genetic groups of F. columnare using polyphasic and phylogenomic approaches and included five representative isolates from each genetic group (including type strain ATCC 23463T; genetic group 1). 16S rRNA gene sequence analysis revealed genetic group 2 isolate AL-02-36T, genetic group 3 isolate 90-106T, and genetic group 4 isolate Costa Rica 04-02-TNT shared less than <98.8 % sequence identity to F. columnare ATCC 23463T. Phylogenetic analyses of 16S rRNA and gyrB genes using different methodologies demonstrated the four genetic groups formed well-supported and distinct clades within the genus Flavobacterium. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (GGDC) values between F. columnare ATCC 23463T, genetic group 2 isolate AL-02-36T, genetic group 3 isolate 90-106T, and genetic group 4 isolate Costa Rica 04-02-TNT were less than 90.84% and 42.7%, respectively. Biochemical and physiological characteristics were similar among the four genetic groups; however, quantitative differences in fatty acid profiles were detected and MALDI-TOF analyses demonstrated numerous distinguishing peaks unique to each genetic group. Chemotaxonomic, MALDI-TOF characterization and ANI/GGDC calculations afforded differentiation between the genetic groups, indicating each group is a discrete species. Herein, the names F. covae sp. nov. (AL-02-36T), F. davisii sp. nov. (90-106T), and F. oreochromis sp. nov. (Costa Rica 04-02-TNT) are proposed to represent genetic groups 2, 3, and 4, respectively.


Sujet(s)
Acides gras , Flavobacterium , Animaux , Techniques de typage bactérien , Composition en bases nucléiques , ADN bactérien/génétique , Acides gras/analyse , Hybridation d'acides nucléiques , Phylogenèse , ARN ribosomique 16S/génétique , Analyse de séquence d'ADN
13.
J Fish Dis ; 44(11): 1725-1751, 2021 Nov.
Article de Anglais | MEDLINE | ID: mdl-34251059

RÉSUMÉ

The bacterium Edwardsiella piscicida causes significant losses in global aquaculture, particularly channel (Ictalurus punctatus) × blue (I. furcatus) hybrid catfish cultured in the south-eastern United States. Emergence of E. piscicida in hybrid catfish is worrisome given current industry trends towards increased hybrid production. The project objectives were to assess intraspecific genetic variability of E. piscicida isolates recovered from diseased channel and hybrid catfish in Mississippi; and determine virulence associations among genetic variants. Repetitive extragenic palindromic sequence-based PCR (rep-PCR) using ERIC I and II primers was used to screen 158 E. piscicida diagnostic case isolates. A subsample of 39 E. piscicida isolates, representing predominant rep-PCR profiles, was further characterized using BOX and (GTG)5 rep-PCR primers, virulence gene assessment and multilocus sequence analysis (MLSA) targeting housekeeping genes gyrb, pgi and phoU. The MLSA provided greater resolution than rep-PCR, revealing 5 discrete phylogroups that correlated similarly with virulence gene profiles. Virulence assessments using E. piscicida representatives from each MLSA group resulted in 14-day cumulative mortality ranging from 22% to 54% and 63 to 72% in channel and hybrid fingerlings, respectively. Across all phylogroups, mortality was higher in hybrid catfish (p < .05), supporting previous work indicating E. piscicida is an emerging threat to hybrid catfish aquaculture in the south-eastern United States.


Sujet(s)
Poissons-chats/microbiologie , Edwardsiella/génétique , Infections à Enterobacteriaceae/médecine vétérinaire , Maladies des poissons/microbiologie , Animaux , Aquaculture , Techniques de typage bactérien , Edwardsiella/pathogénicité , Tests de sensibilité microbienne , Mississippi , Typage par séquençage multilocus , Phylogenèse , Virulence
14.
Microbiol Resour Announc ; 10(18)2021 May 06.
Article de Anglais | MEDLINE | ID: mdl-33958406

RÉSUMÉ

In 2015 and 2016, a previously unrecognized Francisella sp. was isolated from disease outbreaks in maricultured spotted rose snapper (Lutjanus guttatus) on the Pacific coast of Central America. Polyphasic analysis demonstrated these bacteria differed from any known Francisella spp. Here, the complete genomes from the recently described Francisella marina strains are released.

15.
G3 (Bethesda) ; 11(4)2021 04 15.
Article de Anglais | MEDLINE | ID: mdl-33616628

RÉSUMÉ

Currently, there is still a need to improve the contiguity of the rainbow trout reference genome and to use multiple genetic backgrounds that will represent the genetic diversity of this species. The Arlee doubled haploid line was originated from a domesticated hatchery strain that was originally collected from the northern California coast. The Canu pipeline was used to generate the Arlee line genome de-novo assembly from high coverage PacBio long-reads sequence data. The assembly was further improved with Bionano optical maps and Hi-C proximity ligation sequence data to generate 32 major scaffolds corresponding to the karyotype of the Arlee line (2 N = 64). It is composed of 938 scaffolds with N50 of 39.16 Mb and a total length of 2.33 Gb, of which ∼95% was in 32 chromosome sequences with only 438 gaps between contigs and scaffolds. In rainbow trout the haploid chromosome number can vary from 29 to 32. In the Arlee karyotype the haploid chromosome number is 32 because chromosomes Omy04, 14 and 25 are divided into six acrocentric chromosomes. Additional structural variations that were identified in the Arlee genome included the major inversions on chromosomes Omy05 and Omy20 and additional 15 smaller inversions that will require further validation. This is also the first rainbow trout genome assembly that includes a scaffold with the sex-determination gene (sdY) in the chromosome Y sequence. The utility of this genome assembly is shown through the improved annotation of the duplicated genome loci that harbor the IGH genes on chromosomes Omy12 and Omy13.


Sujet(s)
Oncorhynchus mykiss , Animaux , Génome , Oncorhynchus mykiss/génétique , Processus de détermination du sexe , Chromosome Y
16.
Int J Syst Evol Microbiol ; 70(2): 857-867, 2020 Feb.
Article de Anglais | MEDLINE | ID: mdl-31682217

RÉSUMÉ

A recently described emergent disease of ornamental fish has been associated with an Erysipelothrix species positive for the surface protective antigen (spa) C gene. Whole genome sequencing was performed on five spaC Erysipelothrix isolates from diseased ornamental fish. In addition, these spaC Erysipelothrix isolates were compared to spaA-, spaB- and other spaC-positive Erysipelothrix species isolated from terrestrial and marine mammals, birds and fish using multi-locus sequence analysis (MLSA). The genomes of fish pathogenic spaC isolates were genetically distinct from Erysipelothrix rhusiopathiae, sharing 86.61-86.94 % average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values of 31.6-32.2 %, but 99.01-99.11 % ANI and 90.8-91.9 % dDDH values with the uncharacterized spaC-positive Erysipelothrix sp. strain 2 isolated from swine. The findings indicate the spaC-positive fish and swine isolates are conspecific and represent a previously unrecognized taxon. While phylogenies inferred from MLSA sequences confirm this conclusion, slight genetic differences between the spaC fish isolates and swine strain 2 were indicated. Bath immersion challenge trials were conducted using tiger barbs (Puntigrus tetrazona) exposed by immersion to 107 c.f.u. ml-1 of three fish pathogenic spaC Erysipelothrix species, and three spaA and two spaB E. rhusiopathiae isolates as a model of infection. Thirty days post-challenge, cumulative mean percentage survival was 37 % for the spaA, 100 % for the spaB and 13 % for the spaC isolates, revealing differences in virulence among the various spa genotypes in fish. Genetic findings and observed differences in virulence demonstrate the fish pathogenic spaC isolates represent a novel species, for which the name Erysipelothrix piscisicarius sp. nov. is proposed. The type strain is E. piscisicarius 15TAL0474T (=NRRL B-65533T=ATCC-TSD-175T=DSM 110099T).


Sujet(s)
Cyprinidae/microbiologie , Infections à Erysipelothrix/anatomopathologie , Erysipelothrix/classification , Phylogenèse , Animaux , Techniques de typage bactérien , Composition en bases nucléiques , ADN bactérien/génétique , Erysipelothrix/isolement et purification , Erysipelothrix/pathogénicité , Acides gras/composition chimique , Typage par séquençage multilocus , Hybridation d'acides nucléiques , ARN ribosomique 16S/génétique , Analyse de séquence d'ADN , Suidae , Virulence
17.
Article de Anglais | MEDLINE | ID: mdl-31828047

RÉSUMÉ

Edwardsiella piscicida is a pathogenic bacterium responsible for significant losses in important wild and cultured fish species. E. piscicida strain MS-18-199 recovered from a diseased hybrid catfish from East Mississippi and showed resistance to florfenicol, chloramphenicol, oxytetracycline, doxycycline, erythromycin, tetracycline, azitromycin, spectinomycin, sulfonamide, and bacitracin. To explore the mechanisms of resistance in E. piscicida strain MS-18-199, genomic DNA was extracted and subjected to whole genome sequencing (WGS) using a combination of long (Oxford Nanopore) and short (Illumina) reads. The genome of strain MS-18-199 revealed a novel plasmid named pEPMS-18199. The 117,448 bp plasmid contains several antimicrobial resistance (AMR) elements/genes, including florfenicol efflux pump (floR), tetracycline efflux pump (tetA), tetracycline repressor protein (tetR), sulfonamide resistance (sul2), aminoglycoside O-phosphotransferase aph(6)-Id (strB), and aminoglycoside O-phosphotransferase aph(3)-Ib (strA). Two genes, arsA and arsD, that encode protein components related to transport/resistance to arsenic were also found in pEPMS-18199. In addition, pEPMS-18199 carried twelve conjugative transfer genes (tra), eight transposases and insertion elements, two plasmid stability proteins, two replication proteins, and three partitioning proteins (par system). Results from mobilization and stability experiments revealed that pEPMS-18199 is highly stable in the host cell and could be transferred to Escherichia coli and Edwardsiella ictaluri by conjugation. To our knowledge, this is the first detection of a multidrug resistance (MDR) conjugative plasmid in E. piscicida in the United States. Careful tracking of this plasmid in the aquaculture system is warranted. Knowledge regarding the molecular mechanisms of AMR in aquaculture is important for antimicrobial stewardship.


Sujet(s)
Conjugaison génétique , Edwardsiella/classification , Edwardsiella/physiologie , Infections à Enterobacteriaceae/microbiologie , Plasmides/génétique , Antibactériens/pharmacologie , Biologie informatique/méthodes , Éléments transposables d'ADN , Edwardsiella/effets des médicaments et des substances chimiques , Dosage génique , Génome bactérien , Génomique/méthodes , Tests de sensibilité microbienne
18.
Data Brief ; 23: 103689, 2019 Apr.
Article de Anglais | MEDLINE | ID: mdl-30788401

RÉSUMÉ

Aeromonas are Gram-negative, non-spore forming rods belonging to the family Aeromonadaceae within the class Gammaproteobacteria. These facultative anaerobic bacteria are ubiquitous in aquatic environments and have a broad host range. We present here the complete genome sequence of multidrug-resistant A. veronii strain MS-18-37 isolated from diseased catfish. The genome size of this strain is 4,683,931, with a G+C content of 58.60%. Annotation reveals multiple genes that encode antibiotic resistance. The complete genome sequence of A. veronii strain MS-18-37 will provide a genetic basis for understanding molecular mechanisms of antimicrobial resistance and exchange in Aeromonas.

19.
BMC Biol ; 17(1): 6, 2019 01 25.
Article de Anglais | MEDLINE | ID: mdl-30683095

RÉSUMÉ

BACKGROUND: Sex determination mechanisms in teleost fish broadly differ from mammals and birds, with sex chromosomes that are far less differentiated and recombination often occurring along the length of the X and Y chromosomes, posing major challenges for the identification of specific sex determination genes. Here, we take an innovative approach of comparative genome analysis of the genomic sequences of the X chromosome and newly sequenced Y chromosome in the channel catfish. RESULTS: Using a YY channel catfish as the sequencing template, we generated, assembled, and annotated the Y genome sequence of channel catfish. The genome sequence assembly had a contig N50 size of 2.7 Mb and a scaffold N50 size of 26.7 Mb. Genetic linkage and GWAS analyses placed the sex determination locus within a genetic distance less than 0.5 cM and physical distance of 8.9 Mb. However, comparison of the channel catfish X and Y chromosome sequences showed no sex-specific genes. Instead, comparative RNA-Seq analysis between females and males revealed exclusive sex-specific expression of an isoform of the breast cancer anti-resistance 1 (BCAR1) gene in the male during early sex differentiation. Experimental knockout of BCAR1 gene converted genetic males (XY) to phenotypic females, suggesting BCAR1 as a putative sex determination gene. CONCLUSIONS: We present the first Y chromosome sequence among teleost fish, and one of the few whole Y chromosome sequences among vertebrate species. Comparative analyses suggest that sex-specific isoform expression through alternative splicing may underlie sex determination processes in the channel catfish, and we identify BCAR1 as a potential sex determination gene.


Sujet(s)
Ictaluridae/génétique , Processus de détermination du sexe/génétique , Chromosome Y , Animaux , Cartographie chromosomique , Femelle , Liaison génétique , Génome , Mâle , Analyse de séquence d'ADN
20.
Fish Shellfish Immunol ; 84: 1134-1144, 2019 Jan.
Article de Anglais | MEDLINE | ID: mdl-30414491

RÉSUMÉ

IgM transcripts from different mucosal and systemic tissues from a single adult channel catfish have been evaluated. Arrayed heavy chain cDNA libraries from each of these different mucosal and systemic tissues were separately constructed, hybridized with VH family specific probes and a variety of approaches were used to define their structural relationships. Baseline hybridization studies indicated that the tissue libraries had different VH expression patterns, and sequencing studies indicated this was not simply due to varying proportions of the same B cell population. In the systemic tissues of PBL, spleen, and anterior kidney >95% of the sequenced clones in the arrayed libraries represented different heavy chain rearrangements. Diversity was also found in the mucosal libraries of skin, gill lamellae, and two non-adjoining regions of the intestine, but additional populations were identified which indicated localized clonal expansion. Various clonal sets were characterized in detail, and their genealogies indicated somatic mutation accompanied localized clonal expansion with some members undergoing additional mutations and expansion after migration to different mucosal sites. PCR analyses indicated these mucosal clonal sets were more abundant within different mucosal tissues rather than in the systemic tissues. These studies indicate that the mucosal immune system in fish can express B cell transcripts differently from those found systemically. These studies further indicate that the mucosal immune system is interconnected with clonal B cells migrating between different mucosal tissues, results which yield new insight into immune diversity in early vertebrate phylogeny.


Sujet(s)
Lymphocytes B/physiologie , Mouvement cellulaire , Prolifération cellulaire , Ictaluridae/immunologie , Immunité muqueuse/physiologie , Muqueuse/métabolisme , Animaux
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE