Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 60
Filtrer
1.
Sensors (Basel) ; 24(7)2024 Mar 29.
Article de Anglais | MEDLINE | ID: mdl-38610427

RÉSUMÉ

Flexibility in performing various movements like standing, walking, and turning is crucial for navigating dynamic environments in daily life. Individuals with essential tremor often experience movement difficulties that can affect these postural transitions, limiting mobility and independence. Yet, little research has examined the performance of postural transitions in people with essential tremor. Therefore, we assessed postural transition performance using two versions of the timed up and go test: the standard version and a more complex water-carry version. We examined the total duration of the standard and water-carry timed up and go in 15 people with and 15 people without essential tremor. We also compared the time taken for each phase (sit-to-stand phase, straight-line walk phase, stand-to-sit phase) and the turning velocity between groups. Our findings revealed decreased performance across all phases of standard and water-carry timed up and go assessments. Further, both ET and non-ET groups exhibited reduced performance during the water-carry timed up and go compared to the standard timed up and go. Evaluating specific phases of the timed up and go offers valuable insights into functional movement performance in essential tremor, permitting more tailored therapeutic interventions to improve functional performance during activities of daily living.


Sujet(s)
Tremblement essentiel , Humains , Activités de la vie quotidienne , Équilibre postural , Études ergonomiques , Eau
2.
Ann Neurol ; 95(6): 1205-1219, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38501317

RÉSUMÉ

OBJECTIVE: The aim of this study was to investigate the cognitive effects of unilateral directional versus ring subthalamic nucleus deep brain stimulation (STN DBS) in patients with advanced Parkinson's disease. METHODS: We examined 31 participants who underwent unilateral STN DBS (left n = 17; right n = 14) as part of an National Institutes of Health (NIH)-sponsored randomized, double-blind, crossover study contrasting directional versus ring stimulation. All participants received unilateral DBS implants in the hemisphere more severely affected by motor parkinsonism. Measures of cognition included verbal fluency, auditory-verbal memory, and response inhibition. We used mixed linear models to contrast the effects of directional versus ring stimulation and implant hemisphere on longitudinal cognitive function. RESULTS: Crossover analyses showed no evidence for group-level changes in cognitive performance related to directional versus ring stimulation. Implant hemisphere, however, impacted cognition in several ways. Left STN participants had lower baseline verbal fluency than patients with right implants (t [20.66 = -2.50, p = 0.02]). Verbal fluency declined after left (p = 0.013) but increased after right STN DBS (p < 0.001), and response inhibition was faster following right STN DBS (p = 0.031). Regardless of hemisphere, delayed recall declined modestly over time versus baseline (p = 0.001), and immediate recall was unchanged. INTERPRETATION: Directional versus ring STN DBS did not differentially affect cognition. Similar to prior bilateral DBS studies, unilateral left stimulation worsened verbal fluency performance. In contrast, unilateral right STN surgery increased performance on verbal fluency and response inhibition tasks. Our findings raise the hypothesis that unilateral right STN DBS in selected patients with predominant right brain motor parkinsonism could mitigate declines in verbal fluency associated with the bilateral intervention. ANN NEUROL 2024;95:1205-1219.


Sujet(s)
Cognition , Études croisées , Stimulation cérébrale profonde , Maladie de Parkinson , Noyau subthalamique , Humains , Stimulation cérébrale profonde/effets indésirables , Stimulation cérébrale profonde/méthodes , Maladie de Parkinson/thérapie , Maladie de Parkinson/physiopathologie , Mâle , Femelle , Adulte d'âge moyen , Sujet âgé , Méthode en double aveugle , Cognition/physiologie
3.
Cereb Cortex ; 34(1)2024 01 14.
Article de Anglais | MEDLINE | ID: mdl-38124548

RÉSUMÉ

Why does unilateral deep brain stimulation improve motor function bilaterally? To address this clinical observation, we collected parallel neural recordings from sensorimotor cortex (SMC) and the subthalamic nucleus (STN) during repetitive ipsilateral, contralateral, and bilateral hand movements in patients with Parkinson's disease. We used a cross-validated electrode-wise encoding model to map electromyography data to the neural signals. Electrodes in the STN encoded movement at a comparable level for both hands, whereas SMC electrodes displayed a strong contralateral bias. To examine representational overlap across the two hands, we trained the model with data from one condition (contralateral hand) and used the trained weights to predict neural activity for movements produced with the other hand (ipsilateral hand). Overall, between-hand generalization was poor, and this limitation was evident in both regions. A similar method was used to probe representational overlap across different task contexts (unimanual vs. bimanual). Task context was more important for the STN compared to the SMC indicating that neural activity in the STN showed greater divergence between the unimanual and bimanual conditions. These results indicate that SMC activity is strongly lateralized and relatively context-free, whereas the STN integrates contextual information with the ongoing behavior.


Sujet(s)
Stimulation cérébrale profonde , Maladie de Parkinson , Cortex sensorimoteur , Noyau subthalamique , Humains , Noyau subthalamique/physiologie , Main/physiologie , Mouvement/physiologie , Maladie de Parkinson/thérapie , Stimulation cérébrale profonde/méthodes
4.
Front Neuroinform ; 17: 1156818, 2023.
Article de Anglais | MEDLINE | ID: mdl-37415779

RÉSUMÉ

Deep brain stimulation (DBS) is a widely used clinical therapy that modulates neuronal firing in subcortical structures, eliciting downstream network effects. Its effectiveness is determined by electrode geometry and location as well as adjustable stimulation parameters including pulse width, interstimulus interval, frequency, and amplitude. These parameters are often determined empirically during clinical or intraoperative programming and can be altered to an almost unlimited number of combinations. Conventional high-frequency stimulation uses a continuous high-frequency square-wave pulse (typically 130-160 Hz), but other stimulation patterns may prove efficacious, such as continuous or bursting theta-frequencies, variable frequencies, and coordinated reset stimulation. Here we summarize the current landscape and potential clinical applications for novel stimulation patterns.

5.
medRxiv ; 2023 Mar 01.
Article de Anglais | MEDLINE | ID: mdl-36909562

RÉSUMÉ

Objective: To investigate hemispheric effects of directional versus ring subthalamic nucleus (STN) deep brain stimulation (DBS) surgery on cognitive function in patients with advanced Parkinson's disease (PD). Methods: We examined 31 PD patients (Left STN n = 17; Right STN n = 14) who underwent unilateral subthalamic nucleus (STN) DBS as part of a NIH-sponsored randomized, cross-over, double-blind (ring vs directional) clinical trial. Outcome measures were tests of verbal fluency, auditory-verbal memory, and response inhibition. First, all participants were pooled together to study the effects of directional versus ring stimulation. Then, we stratified the groups by surgery hemisphere and studied the longitudinal changes in cognition post-unilateral STN DBS. Results: Relative to pre-DBS cognitive baseline performances, there were no group changes in cognition following unilateral DBS for either directional or ring stimulation. However, assessment of unilateral DBS by hemisphere revealed a different pattern. The left STN DBS group had lower verbal fluency than the right STN group (t(20.66 = -2.50, p = 0.02). Over a period of eight months post-DBS, verbal fluency declined in the left STN DBS group (p = 0.013) and improved in the right STN DBS group over time (p < .001). Similarly, response inhibition improved following right STN DBS (p = 0.031). Immediate recall did not significantly differ over time, nor was it affected by implant hemisphere, but delayed recall equivalently declined over time for both left and right STN DBS groups (left STN DBS p = 0.001, right STN DBS differ from left STN DBS p = 0.794). Conclusions: Directional and ring DBS did not differentially or adversely affect cognition over time. Regarding hemisphere effects, verbal fluency decline was observed in those who received left STN DBS, along with the left and right STN DBS declines in delayed memory. The left STN DBS verbal fluency decrement is consistent with prior bilateral DBS research, likely reflecting disruption of the basal-ganglia-thalamocortical network connecting STN and inferior frontal gyrus. Interestingly, we found an improvement in verbal fluency and response inhibition following right STN DBS. It is possible that unilateral STN DBS, particularly in the right hemisphere, may mitigate cognitive decline.

6.
Sci Data ; 10(1): 83, 2023 02 09.
Article de Anglais | MEDLINE | ID: mdl-36759619

RÉSUMÉ

Data sharing is becoming ubiquitous and can be advantageous for most biomedical research. However, some data are inherently more amenable to sharing than others. For example, human intracranial neurophysiology recordings and associated multimodal data have unique features that warrant special considerations. The associated data are heterogeneous, difficult to compare, highly specific, and collected from small cohorts with treatment resistant conditions, posing additional complications when attempting to perform generalizable analyses across projects. We present the Data Archive for the BRAIN Initiative (DABI) and describe features of the platform that are designed to overcome these and other challenges. DABI is a data repository and portal for BRAIN Initiative projects that collect human and animal intracranial recordings, and it allows users to search, visualize, and analyze multimodal data from these projects. The data providers maintain full control of data sharing privileges and can organize and manage their data with a user-friendly and intuitive interface. We discuss data privacy and security concerns, example analyses from two DABI datasets, and future goals for DABI.

7.
Front Hum Neurosci ; 16: 958703, 2022.
Article de Anglais | MEDLINE | ID: mdl-35992943

RÉSUMÉ

Directional deep brain stimulation (DBS) contacts provide greater spatial flexibility for therapy than traditional ring-shaped electrodes, but little is known about longitudinal changes of impedance and orientation. We measured monopolar and bipolar impedance of DBS contacts in 31 patients who underwent unilateral subthalamic nucleus deep brain stimulation as part of a randomized study (SUNDIAL, NCT03353688). At different follow-up visits, patients were assigned new stimulation configurations and impedance was measured. Additionally, we measured the orientation of the directional lead during surgery, immediately after surgery, and 1 year later. Here we contrast impedances in directional versus ring contacts with respect to local anatomy, active stimulation contact(s), and over time. Directional contacts display larger impedances than ring contacts. Impedances generally increase slightly over the first year of therapy, save for a transient decrease immediately post-surgery under general anesthesia during pulse generator placement. Local impedances decrease at active stimulation sites, and contacts in closest proximity to internal capsule display higher impedances than other anatomic sites. DBS leads rotate slightly in the immediate postoperative period (typically less than the angle of a single contact) but otherwise remain stable over the following year. These data provide useful information for setting clinical stimulation parameters over time.

8.
Mov Disord ; 37(8): 1683-1692, 2022 08.
Article de Anglais | MEDLINE | ID: mdl-35702056

RÉSUMÉ

BACKGROUND: Dystonia is an understudied motor feature of Parkinson's disease (PD). Although considerable efforts have focused on brain oscillations related to the cardinal symptoms of PD, whether dystonia is associated with specific electrophysiological features is unclear. OBJECTIVE: The objective of this study was to investigate subcortical and cortical field potentials at rest and during contralateral hand and foot movements in patients with PD with and without dystonia. METHODS: We examined the prevalence and distribution of dystonia in patients with PD undergoing deep brain stimulation surgery.  During surgery, we recorded intracranial electrophysiology from the motor cortex and directional electrodes in the subthalamic nucleus (STN) both at rest and during self-paced repetitive contralateral hand and foot movements. Wavelet transforms and mixed models characterized changes in spectral content in patients with and without dystonia. RESULTS: Dystonia was highly prevalent at enrollment (61%) and occurred most commonly in the foot. Regardless of dystonia status, cortical recordings display beta (13-30 Hz) desynchronization during movements versus rest, while STN signals show increased power in low frequencies (6.0 ± 3.3 and 4.2 ± 2.9 Hz peak frequencies for hand and foot movements, respectively). Patients with PD with dystonia during deep brain stimulation surgery displayed greater M1 beta power at rest and STN low-frequency power during movements versus those without dystonia. CONCLUSIONS: Spectral power in motor cortex and STN field potentials differs markedly during repetitive limb movements, with cortical beta desynchronization and subcortical low-frequency synchronization, especially in patients with PD with dystonia. Greater knowledge on field potential dynamics in human motor circuits can inform dystonia pathophysiology in PD and guide novel approaches to therapy. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Sujet(s)
Stimulation cérébrale profonde , Dystonie , Troubles dystoniques , Maladie de Parkinson , Noyau subthalamique , Dystonie/étiologie , Humains , Noyau subthalamique/physiologie
10.
Mov Disord ; 37(7): 1483-1494, 2022 07.
Article de Anglais | MEDLINE | ID: mdl-35385165

RÉSUMÉ

BACKGROUND: Primary dystonia is conventionally considered as a motor disorder, though an emerging literature reports associated cognitive dysfunction. OBJECTIVES: Here, we conducted meta-analyses on studies comparing clinical measures of cognition in persons with primary dystonia and healthy controls (HCs). METHODS: We searched PubMed, Embase, Cochrane Library, Scopus, and PsycINFO (January 2000-October 2020). Analyses were modeled under random effects. We used Hedge's g as a bias-corrected estimate of effect size, where negative values indicate lower performance in dystonia versus controls. Between-study heterogeneity and bias were primarily assessed with Cochran's Q, I2 , and Egger's regression. RESULTS: From 866 initial results, 20 studies met criteria for analysis (dystonia n = 739, controls n = 643; 254 effect sizes extracted). Meta-analysis showed a significant combined effect size of primary dystonia across all studies (g = -0.56, P < 0.001), with low heterogeneity (Q = 25.26, P = 0.15, I2  = 24.78). Within-domain effects of primary dystonia were motor speed = -0.84, nonmotor speed = -0.83, global cognition = -0.65, language = -0.54, executive functioning = -0.53, learning/memory = -0.46, visuospatial/construction = -0.44, and simple/complex attention = -0.37 (P-values <0.01). High heterogeneity was observed in the motor/nonmotor speed and learning/memory domains. There was no evidence of publication bias. Moderator analyses were mostly negative but possibly underpowered. Blepharospasm samples showed worse performance than other focal/cervical dystonias. Those with inherited (ie, genetic) disease etiology demonstrated worse performance than acquired. CONCLUSIONS: Dystonia patients consistently demonstrated lower performances on neuropsychological tests versus HCs. Effect sizes were generally moderate in strength, clustering around -0.50 SD units. Within the speed domain, results suggested cognitive slowing beyond effects from motor symptoms. Overall, findings indicate dystonia patients experience multidomain cognitive difficulties, as detected by neuropsychological tests. © 2022 International Parkinson and Movement Disorder Society.


Sujet(s)
Dystonie , Troubles dystoniques , Cognition , Fonction exécutive , Humains , Tests neuropsychologiques
11.
Compr Psychiatry ; 113: 152291, 2022 02.
Article de Anglais | MEDLINE | ID: mdl-34952304

RÉSUMÉ

BACKGROUND: Sensory over-responsivity (SOR) refers to excessively intense and/or prolonged behavioral responses to environmental stimuli typically perceived as non-aversive. SOR is prevalent in several neurodevelopmental disorders, including chronic tic disorders (CTDs) and obsessive-compulsive disorder (OCD). Few studies have examined the extent and clinical correlates of SOR across disorders, limiting insights into the phenomenon's transdiagnostic clinical and biological relevance. Such cross-disorder comparisons are of particular interest for CTDs and OCD given their frequent co-occurrence. OBJECTIVE: We sought to compare the magnitude of SOR between adults with CTD and adults with OCD and to identify the clinical factors most strongly associated with SOR across these disorders. METHODS: We enrolled 207 age- and sex-matched participants across four diagnostic categories: CTD without OCD (designated "CTD/OCD-"; n = 37), CTD with OCD ("CTD/OCD+"; n = 32), OCD without tic disorder ("OCD"; n = 69), and healthy controls (n = 69). Participants completed a self-report battery of rating scales assessing SOR (Sensory Gating Inventory, SGI), obsessive-compulsive symptoms (Dimensional Obsessive-Compulsive Scale, DOCS), inattention and hyperactivity (Adult ADHD Self-Report Screening Scale for DSM-5, ASRS-5), anxiety (Generalized Anxiety Disorder-7), and depression (Patient Health Questionnaire-9). CTD participants were also administered the Yale Global Tic Severity Scale (YGTSS). To examine between-group differences in SOR, we compared SGI score across all groups and between pairs of groups. To examine the relationship of SOR with other clinical factors, we performed multivariable linear regression. RESULTS: CTD/OCD-, CTD/OCD+, and OCD participants were 86.7%, 87.6%, and 89.5%, respectively, more likely to have higher SGI total scores than healthy controls. SGI total score did not differ between CTD/OCD-, CTD/OCD+, and OCD groups. In the regression model of log-transformed SGI total score, OCD diagnosis, DOCS score, and ASRS-5 score each contributed significantly to model goodness-of-fit, whereas CTD diagnosis and YGTSS total tic score did not. CONCLUSION: SOR is prevalent in adults with CTD and in adults with OCD but does not significantly differ in magnitude between these disorders. Across CTD, OCD, and healthy control adult populations, SOR is independently associated with both obsessive-compulsive and ADHD symptoms, suggesting a transdiagnostic relationship between these sensory and psychiatric manifestations. Future cross-disorder, longitudinal, and translational research is needed to clarify the role and prognostic import of SOR in CTDs, OCD, and other neurodevelopmental disorders.


Sujet(s)
Trouble obsessionnel compulsif , Troubles des tics , Adulte , Anxiété , Comorbidité , Diagnostic and stastistical manual of mental disorders (USA) , Humains , Trouble obsessionnel compulsif/diagnostic , Trouble obsessionnel compulsif/épidémiologie , Troubles des tics/diagnostic , Troubles des tics/épidémiologie
12.
Clin Neurol Neurosurg ; 207: 106747, 2021 08.
Article de Anglais | MEDLINE | ID: mdl-34237680

RÉSUMÉ

BACKGROUND: Deep brain stimulation (DBS) is an effective treatment for motor disturbance in people with primary dystonia (PWD). Numerous factors are considered by an interdisciplinary consensus conference before deciding candidacy for DBS surgery (e.g., demographic, medical, cognitive, and behavioral factors). However, little is known about which of these factors are associated with PWD DBS surgery consensus conference decisions. OBJECTIVE: Our goal was to examine whether pre-operative demographic, medical, and cognitive/behavioral variables are associated DBS consensus conference decisions in patients with dystonia. METHODS: Thirty-two PWD completed comprehensive presurgery workup included neurological and neuropsychological exams, and neuroimaging in consideration for DBS surgery. An interdisciplinary conference committee either recommended or did not recommend DBS surgery based upon these data. Demographic and medical data (e.g., dystonia disease characteristics, medical comorbidities, medications) were also collected. We also examined impact from cardiovascular disease factors, using a Revised Cardiac Risk Index. PWD were grouped based on DBS conference decision (eligible: n = 21, ineligible: n = 11) and compared across demographic, medical, and cognitive/behavioral variables. RESULTS: Across clinical variables, PWD who were deemed ineligible for DBS surgery had a higher Revised Cardiac Risk Index. PWD who were classified as ineligible displayed lower global cognitive functioning, working memory, phonemic fluency, memory retrieval, and cognitive flexibility. CONCLUSIONS: Consensus decision making regarding DBS surgery eligibility involves a multifactorial process. We found that deficits in executive functioning were associated with the DBS consensus committee decision. We also observed elevated cardiac risk among these individuals, likely reflecting the relation between vascular health and cognition. Implications, and clinical and scientific applications of these findings are discussed.


Sujet(s)
Prise de décision clinique/méthodes , Consensus , Stimulation cérébrale profonde/méthodes , Troubles dystoniques/chirurgie , Adulte , Sujet âgé , Femelle , Humains , Mâle , Adulte d'âge moyen
13.
Med Sci Monit ; 27: e931468, 2021 Jun 29.
Article de Anglais | MEDLINE | ID: mdl-34183640

RÉSUMÉ

BACKGROUND Research indicates intermittent theta burst stimulation (iTBS) is a potential treatment of post-stroke aphasia. MATERIAL AND METHODS In this double-blind, sham-controlled trial (NCT01512264) participants were randomized to receive 3 weeks of sham (G0), 1 week of iTBS/2 weeks of sham (G1), 2 weeks of iTBS/1 week of sham (G2), or 3 weeks of iTBS (G3). FMRI localized residual language function in the left hemisphere; iTBS was applied to the maximum fMRI activation in the residual language cortex in the left frontal lobe. FMRI and aphasia testing were conducted pre-treatment, at ≤1 week after completing treatment, and at 3 months follow-up. RESULTS 27/36 participants completed the trial. We compared G0 to each of the individual treatment group and to all iTBS treatment groups combined (G1₋3). In individual groups, participants gained (of moderate or large effect sizes; some significant at P<0.05) on the Boston Naming Test (BNT), the Semantic Fluency Test (SFT), and the Aphasia Quotient of the Western Aphasia Battery-Revised (WAB-R AQ). In G1₋3, BNT, and SFT improved immediately after treatment, while the WAB-R AQ improved at 3 months. Compared to G0, the other groups showed greater fMRI activation in both hemispheres and non-significant increases in language lateralization to the left hemisphere. Changes in IFG connectivity were noted with iTBS, showing differences between time-points, with some of them correlating with the behavioral measures. CONCLUSIONS The results of this pilot trial support the hypothesis that iTBS applied to the ipsilesional hemisphere can improve aphasia and result in cortical plasticity.


Sujet(s)
Aphasie , Accident vasculaire cérébral/complications , Stimulation magnétique transcrânienne/méthodes , Adulte , Sujet âgé , Sujet âgé de 80 ans ou plus , Aphasie/étiologie , Aphasie/thérapie , Humains , Mâle , Adulte d'âge moyen , Projets pilotes , Jeune adulte
14.
Ann Clin Transl Neurol ; 8(5): 1010-1023, 2021 05.
Article de Anglais | MEDLINE | ID: mdl-33826240

RÉSUMÉ

OBJECTIVE: To investigate local short-term neuroplasticity elicited by subthalamic, thalamic, and pallidal deep brain stimulation (DBS) for movement disorders. METHODS: During DBS surgery, we delivered pairs of stimulus pulses with both circular and directional leads across 90 interstimulus intervals in 17 participants and recorded local field potentials from unused contacts on the implanted electrode array. We removed the stimulus artifact, validated the neural origin of the underlying signals, and examined short-term plasticity as a function of interstimulus interval and DBS target, using linear mixed effects models. RESULTS: DBS evokes short latency local field potentials that are readily detected with both circular and directional leads at all stimulation targets (0.31 ± 0.10 msec peak latency, mean ± SD). Peak amplitude, area, and latency are modified strongly by interstimulus interval (P < 0.001) and display absolute and relative refractory periods (0.56 ± 0.08 and 2.94 ± 1.05 msec, respectively). We also identified later oscillatory activity in the subthalamic-pallidal circuit (4.50 ± 1.11 msec peak latency) that displays paired pulse facilitation (present in 5/8 subthalamic, 4/5 pallidal, and 0/6 thalamic trajectories, P = 0.018, Fisher's exact test), and correlates with resting beta frequency power (P < 0.001), therapeutic DBS frequencies, and stimulation sites chosen later for therapy in the ambulatory setting (P = 0.031). INTERPRETATION: Paired DBS pulses synchronize local circuit electrophysiology and elicit short-term neuroplasticity in the subthalamic-pallidal circuit. Collectively, these responses likely represent the earliest detectable interaction between the DBS pulse and local neuronal tissue in humans. Evoked subcortical field potentials could serve as a predictive biomarker to guide the implementation of next-generation directional and adaptive stimulation devices.


Sujet(s)
Stimulation cérébrale profonde , Tremblement essentiel/thérapie , Globus pallidus/physiopathologie , Plasticité neuronale/physiologie , Maladie de Parkinson/thérapie , Noyau subthalamique/physiopathologie , Noyaux ventraux du thalamus/physiopathologie , Sujet âgé , Sujet âgé de 80 ans ou plus , Électrocorticographie , Phénomènes électrophysiologiques/physiologie , Femelle , Humains , Mâle , Adulte d'âge moyen
15.
Neuropsychiatr Dis Treat ; 16: 2591-2601, 2020.
Article de Anglais | MEDLINE | ID: mdl-33173296

RÉSUMÉ

BACKGROUND: Sensory hypersensitivity, defined as heightened awareness of and reactivity to external stimuli, is a bothersome symptom that affects up to 80% of adults with Tourette syndrome (TS). Such widespread prevalence suggests sensory hypersensitivity is a core feature of the disorder, but its severity and association with other clinical features of TS remain largely unexplored. Complicating matters, sensory hypersensitivity has been observed in two neurodevelopmental disorders commonly comorbid with TS: obsessive-compulsive disorder (OCD) and attention deficit hyperactivity disorder (ADHD). OBJECTIVE: We sought to measure sensory hypersensitivity in TS patients relative to healthy controls and to investigate the relationship of sensory hypersensitivity with OCD and ADHD symptoms in the context of TS. METHODS: We recruited 34 adults with TS or chronic tic disorder to undergo evaluation with the Yale Global Tic Severity Scale (YGTSS) and a battery of validated self-report instruments assessing sensory hypersensitivity (Sensory Gating Inventory, SGI; Sensory Perception Quotient, SPQ), premonitory urge (Premonitory Urge to Tic Scale, PUTS), OCD (Dimensional Obsessive-Compulsive Scale, DOCS), and ADHD (Adult ADHD Self-Report Screening Scale for DSM-5, ASRS-V). Age- and sex-matched healthy controls were recruited to complete SGI and psychiatric measures. RESULTS: SGI and SPQ scores strongly correlated (r s = -0.73, p < 0.0001) within patients. SGI total score was significantly higher in patients versus controls (119.0 vs 67.6, U =-5.3, p < 0.0001), indicating greater sensory hypersensitivity in the tic disorder group. SGI score correlated modestly with PUTS, DOCS, and ASRS-V scores but not with YGTSS total tic score. Hierarchical linear regression analysis revealed that, of the tested variables, only DOCS score contributed significantly to mean SGI score, with ß ranging from 1.03 (p = 0.044) to 1.41 (p = 0.001). A simple linear regression model with DOCS as the independent variable accounted for 31.9% of SGI score variance. CONCLUSION: Sensory hypersensitivity is prominent in adults with tic disorder and is independently associated with obsessive-compulsive symptom severity.

16.
Gait Posture ; 82: 68-74, 2020 10.
Article de Anglais | MEDLINE | ID: mdl-32906005

RÉSUMÉ

BACKGROUND: Impaired dynamic balance control increases fall risk and contributes to immobility in individuals with Parkinson's disease (PD). It is unclear whether higher-level neural processes of the central nervous system contribute to impaired balance control. RESEARCH QUESTION: Are dopamine-mediated neural processes of the higher-level central nervous system important for dynamic balance control in PD? METHODS: 21 individuals with idiopathic PD performed step-threshold assessments before and after self-administered dopaminergic medication. Individuals withstood progressively larger postural perturbations, during which they were explicitly instructed to avoid stepping to recover balance. The perturbation magnitude which elicited stepping responses on four consecutive trials is referred to as the step-threshold. Dynamic balance control was quantified as the minimum margin of stability captured during the largest sub-threshold trial (i.e., the maximum amount of compensated postural instability during the task). We compared dynamic balance between off and on medication states and between individuals who exhibited motor adaptive behavior and those who did not. RESULTS: Dopaminergic medications significantly improved step-thresholds and allowed individuals to withstand greater amounts of instability without stepping, indicating dopamine-mediated improvement in dynamic balance control. Individuals who displayed behavioral evidence for higher-level neural processes (motor adaptation across repeated perturbations) displayed superior dynamic balance control versus those who did not. Anteroposterior ground reaction forces captured during perturbations suggest that individuals alter force profiles to avoid stepping at ∼200 ms after perturbation onset-a latency consistent with a transcortical process. SIGNIFICANCE: Combined, our results indicate that higher-level, dopamine-mediated neural processes are responsible for dynamic balance control in PD. We hypothesize that this process incorporates sensorimotor integration, motor response initiation/inhibition, and goal- and reward-driven behaviors. Interventions targeting these processes may improve dynamic postural control in individuals with PD.


Sujet(s)
Dopamine/usage thérapeutique , Maladie de Parkinson/traitement médicamenteux , Sujet âgé , Femelle , Humains , Mâle , Adulte d'âge moyen
17.
J Neurosurg ; 135(1): 279-283, 2020 Aug 07.
Article de Anglais | MEDLINE | ID: mdl-32764176

RÉSUMÉ

OBJECTIVE: The objective of this study was to determine the incidence of seizures following deep brain stimulation (DBS) electrode implantation and to evaluate factors associated with postoperative seizures. METHODS: The authors performed a single-center retrospective case-control study. The outcome of interest was seizure associated with DBS implantation. Univariate analyses were performed using the Student t-test for parametric continuous outcomes. The authors used the Kruskal-Wallis test or Wilcoxon rank-sum test for nonparametric continuous outcomes, chi-square statistics for categorical outcomes, and multivariate logistic regression for binomial variables. RESULTS: A total of 814 DBS electrode implantations were performed in 645 patients (478 [58.7%] in men and 520 [63.9%] in patients with Parkinson's disease). In total, 22 (3.4%) patients who had undergone 23 (2.8%) placements experienced seizure. Of the 23 DBS implantation-related seizures, 21 were new-onset seizures (3.3% of 645 patients) and 2 were recurrence or worsening of a prior seizure disorder. Among the 23 cases with postimplantation-related seizure, epilepsy developed in 4 (17.4%) postoperatively; the risk of DBS-associated epilepsy was 0.50% per DBS electrode placement and 0.63% per patient. Nine (39.1%) implantation-related seizures had associated postoperative radiographic abnormalities. Multivariate analyses suggested that age at surgery conferred a modest increased risk for postoperative seizures (OR 1.06, 95% CI 1.02-1.10). Sex, primary diagnosis, electrode location and sidedness, and the number of trajectories were not significantly associated with seizures after DBS surgery. CONCLUSIONS: Seizures associated with DBS electrode placement are uncommon, typically occur early within the postoperative period, and seldom lead to epilepsy. This study suggests that patient characteristics, such as age, may play a greater role than perioperative variables in determining seizure risk. Multiinstitutional studies may help better define and mitigate the risk of seizures after DBS surgery.

18.
Front Hum Neurosci ; 14: 54, 2020.
Article de Anglais | MEDLINE | ID: mdl-32292333

RÉSUMÉ

The Seventh Annual Deep Brain Stimulation (DBS) Think Tank held on September 8th of 2019 addressed the most current: (1) use and utility of complex neurophysiological signals for development of adaptive neurostimulation to improve clinical outcomes; (2) Advancements in recent neuromodulation techniques to treat neuropsychiatric disorders; (3) New developments in optogenetics and DBS; (4) The use of augmented Virtual reality (VR) and neuromodulation; (5) commercially available technologies; and (6) ethical issues arising in and from research and use of DBS. These advances serve as both "markers of progress" and challenges and opportunities for ongoing address, engagement, and deliberation as we move to improve the functional capabilities and translational value of DBS. It is in this light that these proceedings are presented to inform the field and initiate ongoing discourse. As consistent with the intent, and spirit of this, and prior DBS Think Tanks, the overarching goal is to continue to develop multidisciplinary collaborations to rapidly advance the field and ultimately improve patient outcomes.

19.
Clin Neurophysiol ; 131(6): 1221-1229, 2020 06.
Article de Anglais | MEDLINE | ID: mdl-32299006

RÉSUMÉ

OBJECTIVE: Here, we investigate whether cortical activation predicts motor side effects of deep brain stimulation (DBS) and whether these potential biomarkers have utility under general anesthesia. METHODS: We recorded scalp potentials elicited by DBS during surgery (n = 11), both awake and under general anesthesia, and in an independent ambulatory cohort (n = 8). Across a range of stimulus configurations, we measured the amplitude and timing of short- and long-latency response components and linked them to motor side effects. RESULTS: Regardless of anesthesia state, in both cohorts, DBS settings with capsular side effects elicited early responses with peak latencies clustering at <1 ms. This early response was preserved under anesthesia in all participants (11/11). In contrast, the long-latency components were suppressed completely in 6/11 participants. Finally, the latency of the earliest response could predict the presence of postoperative motor side effects both awake and under general anesthesia (84.8% and 75.8% accuracy, awake and under anesthesia, respectively). CONCLUSION: DBS elicits short-latency cortical activation, both awake and under general anesthesia, which appears to reveal interactions between the stimulus and the corticospinal tract. SIGNIFICANCE: Short-latency evoked cortical activity can potentially be used to aid both DBS lead placement and post-operative programming.


Sujet(s)
Stimulation cérébrale profonde , Potentiels évoqués/physiologie , Cortex moteur/physiopathologie , Maladie de Parkinson/physiopathologie , Noyau subthalamique/physiopathologie , Sujet âgé , Marqueurs biologiques , Électroencéphalographie , Électromyographie , Femelle , Humains , Mâle , Adulte d'âge moyen , Muscles squelettiques/physiopathologie , Complications postopératoires/diagnostic , Complications postopératoires/physiopathologie , Facteurs temps
20.
Front Neurosci ; 14: 41, 2020.
Article de Anglais | MEDLINE | ID: mdl-32082113

RÉSUMÉ

INTRODUCTION: Cognitive symptoms from Parkinson's disease cause severe disability and significantly limit quality of life. Little is known about mechanisms of cognitive impairment in PD, although aberrant oscillatory activity in basal ganglia-thalamo-prefrontal cortical circuits likely plays an important role. While continuous high-frequency deep brain stimulation (DBS) improves motor symptoms, it is generally ineffective for cognitive symptoms. Although we lack robust treatment options for these symptoms, recent studies with transcranial magnetic stimulation (TMS), applying intermittent theta-burst stimulation (iTBS) to dorsolateral prefrontal cortex (DLPFC), suggest beneficial effects for certain aspects of cognition, such as memory or inhibitory control. While TMS is non-invasive, its results are transient and require repeated application. Subcortical DBS targets have strong reciprocal connections with prefrontal cortex, such that iTBS through the permanently implanted lead might represent a more durable solution. Here we demonstrate safety and feasibility for delivering iTBS from the DBS electrode and explore changes in DLPFC electrophysiology. METHODS: We enrolled seven participants with medically refractory Parkinson's disease who underwent DBS surgery targeting either the subthalamic nucleus (STN) or globus pallidus interna (GPi). We temporarily placed an electrocorticography strip over DLPFC through the DBS burr hole. After placement of the DBS electrode into either GPi (n = 3) or STN (n = 4), awake subjects rested quietly during iTBS (three 50-Hz pulses delivered at 5 Hz for 2 s, followed by 8 s of rest). We contrasted power spectra in DLPFC local field potentials during iTBS versus at rest, as well as between iTBS and conventional high-frequency stimulation (HFS). RESULTS: Dominant frequencies in DLPFC at rest varied among subjects and along the subdural strip electrode, though they were generally localized in theta (3-8 Hz) and/or beta (10-30 Hz) ranges. Both iTBS and HFS were well-tolerated and imperceptible. iTBS increased theta-frequency activity more than HFS. Further, GPi stimulation resulted in significantly greater theta-power versus STN stimulation in our sample. CONCLUSION: Acute subcortical iTBS from the DBS electrode was safe and well-tolerated. This novel stimulation pattern delivered from the GPi may increase theta-frequency power in ipsilateral DLPFC. Future studies will confirm these changes in DLPFC activity during iTBS and evaluate whether they are associated with improvements in cognitive or behavioral symptoms from PD.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...