Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 64
Filtrer
1.
Nature ; 2024 Jun 05.
Article de Anglais | MEDLINE | ID: mdl-38838737

RÉSUMÉ

Synaptic vesicles are organelles with a precisely defined protein and lipid composition1,2, yet the molecular mechanisms for the biogenesis of synaptic vesicles are mainly unknown. Here, we discovered a well-defined interface between the synaptic vesicle V-ATPase and synaptophysin by in situ cryo-electron tomography and single particle cryo-electron microscopy of functional synaptic vesicles isolated from mouse brains3. The synaptic vesicle V-ATPase is an ATP-dependent proton pump that establishes the protein gradient across the synaptic vesicle, which in turn drives the uptake of neurotransmitters4,5. Synaptophysin6 and its paralogs synaptoporin7 and synaptogyrin8 belong to a family of abundant synaptic vesicle proteins whose function is still unclear. We performed structural and functional studies of synaptophysin knockout mice, confirming the identity of synaptophysin as an interaction partner with the V-ATPase. Although there is little change in the conformation of the V-ATPase upon interaction with synaptophysin, the presence of synaptophysin in synaptic vesicles profoundly affects the copy number of V-ATPases. This effect on the topography of synaptic vesicles suggests that synaptophysin assists in their biogenesis. In support of this model, we observed that synaptophysin knockout mice exhibit severe seizure susceptibility, suggesting an imbalance of neurotransmitter release as a physiological consequence of the absence of synaptophysin.

2.
Nat Prod Res ; : 1-10, 2024 Jun 02.
Article de Anglais | MEDLINE | ID: mdl-38824425

RÉSUMÉ

The sciatic nerve is the largest sensorimotor nerve within the peripheral nervous system (PNS), possessing the ability to produce endogenous neurotrophins. Compound nerve action potentials (CNAPs) are regarded as a physiological/pathological indicator to identify nerve activity in signal transduction of the PNS. Astragaloside (AST), a small-molecule saponin purified from Astragalus membranaceus, is widely used to treat chronic disease. Nonetheless, the regulatory effects of AST on the sciatic nerve remain unknown. Therefore, the present investigation was undertaken to study the effect of AST on CNAPs of frog sciatic nerves. Here, AST depressed the conduction velocity and amplitude of CNAPs. Importantly, the AST-induced responses could be blocked by a Ca2+-free medium, or by applying all Ca2+ channel antagonists (CdCl2/LaCl3) or L-type Ca2+ channel blockers (nifedipine/diltiazem), but not the T-type and P-type Ca2+ channel antagonist (NiCl2). Altogether, these findings suggested that AST may attenuate the CNAPs of frog sciatic nerves in vitro via the L-type Ca2+-channel dependent mechanisms.

3.
Cell Rep ; 43(5): 114026, 2024 May 20.
Article de Anglais | MEDLINE | ID: mdl-38809756

RÉSUMÉ

Synaptic vesicle docking and priming are dynamic processes. At the molecular level, SNAREs (soluble NSF attachment protein receptors), synaptotagmins, and other factors are critical for Ca2+-triggered vesicle exocytosis, while disassembly factors, including NSF (N-ethylmaleimide-sensitive factor) and α-SNAP (soluble NSF attachment protein), disassemble and recycle SNAREs and antagonize fusion under some conditions. Here, we introduce a hybrid fusion assay that uses synaptic vesicles isolated from mouse brains and synthetic plasma membrane mimics. We included Munc18, Munc13, complexin, NSF, α-SNAP, and an ATP-regeneration system and maintained them continuously-as in the neuron-to investigate how these opposing processes yield fusogenic synaptic vesicles. In this setting, synaptic vesicle association is reversible, and the ATP-regeneration system produces the most synchronous Ca2+-triggered fusion, suggesting that disassembly factors perform quality control at the early stages of synaptic vesicle association to establish a highly fusogenic state. We uncovered a functional role for Munc13 ancillary to the MUN domain that alleviates an α-SNAP-dependent inhibition of Ca2+-triggered fusion.

4.
Front Public Health ; 12: 1371825, 2024.
Article de Anglais | MEDLINE | ID: mdl-38699422

RÉSUMÉ

Aims: To investigate the association between socioeconomic position (SEP) and sensory impairments (SIs). Methods: We used data from the China Health and Retirement Longitudinal Study (CHARLS) (2015). Logistic regressions estimated the odds ratio for associations of SEP with SIs. In addition, Mendelian randomization (MR) analysis was conducted to assess the causal relationship between them with the inverse variance weighting (IVW) estimator. MR-Egger, simple median, weighted median, maximum likelihood, and robust adjusted profile score were employed for sensitivity analyses. Results: In the observational survey, we enrolled 19,690 individuals aged 45 and above. SEP was negatively associated with SIs. Adjusted odds of vision impairment were higher for illiterate (1.50; 95%CI: 1.19, 1.91), less than elementary school diploma (1.76; 95%CI: 1.39, 2.25), middle school diploma (1.53; 95%CI: 1.21, 1.93) and lower income (all p < 0.001). The odds of hearing impairment were significantly higher for people with less than a high school diploma than those with a college degree or higher diploma, for agricultural workers than non-agricultural workers, and for people in low-income families (p < 0.01). The MR analysis also showed that occupation was associated with HI (1.04, 95%CI: 1.01, 1.09, p < 0.05) using IVW. Conclusion: We found that both observational and causal evidence supports the theory that SEP can result in SIs and that timely discovery, targeted management, and education can prevent SIs among middle-aged and older adults.


Sujet(s)
Analyse de randomisation mendélienne , Humains , Chine/épidémiologie , Mâle , Femelle , Adulte d'âge moyen , Sujet âgé , Études longitudinales , Classe sociale , Troubles sensitifs/épidémiologie , Facteurs socioéconomiques , Peuples d'Asie de l'Est
5.
Curr Res Physiol ; 7: 100121, 2024.
Article de Anglais | MEDLINE | ID: mdl-38572021

RÉSUMÉ

Synaptic vesicles specific to inhibitory GABA-releasing neurons are critical for regulating neuronal excitability. To study the specific molecular composition, architecture, and function of inhibitory synaptic vesicles, we have developed a new method to isolate and purify GABA synaptic vesicles from mouse brains. GABA synaptic vesicles were immunoisolated from mouse brain tissue using an engineered fragment antigen-binding region (Fab) against the vesicular GABA transporter (vGAT) and purified. Western blot analysis confirmed that the GABA synaptic vesicles were specifically enriched for vGAT and largely depleted of contaminants from other synaptic vesicle types, such as vesicular glutamate transporter (vGLUT1), and other cellular organelles. This degree of purity was achieved despite the relatively low abundance of vGAT vesicles compared to the total synaptic vesicle pool in mammalian brains. Cryo-electron microscopy images of these isolated GABA synaptic vesicles revealed intact morphology with circular shape and protruding proteinaceous densities. The GABA synaptic vesicles are functional, as assessed by a hybrid (ex vivo/in vitro) vesicle fusion assay, and they undergo synchronized fusion with synthetic plasma membrane mimic vesicles in response to Ca2+-triggering, but, as a negative control, not to Mg2+-triggering. Our immunoisolation method could also be applied to other types of vesicles.

6.
Front Pharmacol ; 15: 1375585, 2024.
Article de Anglais | MEDLINE | ID: mdl-38650627

RÉSUMÉ

The incidence of inflammatory bowel disease (IBD) and the associated risk of colon cancer are increasing globally. Traditional Chinese medicine (TCM) treatment has unique advantages. The Sishen Pill, a common Chinese patented drug used to treat abdominal pain and diarrhea, consists mainly of Psoraleae Fructus, Myristicae Semen, Euodiae Fructus, and Schisandra Chinensis. Modern research has confirmed that Sishen Pill and its active secondary metabolites, such as psoralen, myristicin, evodiamine, and schisandrin, can improve intestinal inflammation and exert antitumor pharmacological effects. Common mechanisms in treating IBD and colon cancer mainly include regulating inflammation-related signaling pathways such as nuclear factor-kappa B, mitogen-activated protein kinase, phosphatidylinositol 3-kinase, NOD-like receptor heat protein domain-related protein 3, and wingless-type MMTV integration site family; NF-E2-related factor 2 and hypoxia-inducible factor 1α to inhibit oxidative stress; mitochondrial autophagy and endoplasmic reticulum stress; intestinal immune cell differentiation and function through the Janus kinase/signal transducer and activator of transcription pathway; and improving the gut microbiota and intestinal barrier. Overall, existing evidence suggests the potential of the Sishen pill to improve IBD and suppress inflammation-to-cancer transformation. However, large-scale randomized controlled clinical studies and research on the safety of these clinical applications are urgently required.

7.
bioRxiv ; 2024 Mar 06.
Article de Anglais | MEDLINE | ID: mdl-38496494

RÉSUMÉ

Post-translational modifications (PTMs) of α-synuclein (α-syn) such as acetylation and phosphorylation play important yet distinct roles in regulating α-syn conformation, membrane binding, and amyloid aggregation. However, how PTMs regulate α-syn function in presynaptic terminals remains unclear. Previously, we reported that α-syn clusters synaptic vesicles (SV) 1, and neutral phospholipid lysophosphatidylcholine (LPC) can mediate this clustering 2. Here, based on our previous findings, we further demonstrate that N-terminal acetylation, which occurs under physiological condition and is irreversible in mammalian cells, significantly enhances the functional activity of α-syn in clustering SVs. Mechanistic studies reveal that this enhancement is caused by the N-acetylation-promoted insertion of α-syn's N-terminus and increased intermolecular interactions on the LPC-containing membrane. Our work demonstrates that N-acetylation fine-tunes α-syn-LPC interaction for mediating α-syn's function in SV clustering.

8.
Small ; 20(22): e2309900, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38312091

RÉSUMÉ

All-hydrogel supercapacitors are emerging as promising power sources for next-generation wearable electronics due to their intrinsic mechanical flexibility, eco-friendliness, and enhanced safety. However, the insufficient interfacial adhesion between the electrode and electrolyte and the frozen hydrogel matrices at subzero temperatures largely limit the practical applications of all-hydrogel supercapacitors. Here, an all-hydrogel supercapacitor is reported with robust interfacial contact and anti-freezing property, fabricated by in situ polymerizing hydrogel electrolyte onto hydrogel electrodes. The robust interfacial adhesion is developed by the synergistic effect of a tough hydrogel matrix and topological entanglements. Meanwhile, the incorporation of zinc chloride (ZnCl2) in the hydrogel electrolyte prevents the freezing of water solvents and endows the all-hydrogel supercapacitor with mechanical flexibility and fatigue resistance across a wide temperature range of 20 °C to -60 °C. Such all-hydrogel supercapacitor demonstrates satisfactory low-temperature electrochemical performance, delivering a high energy density of 11 mWh cm-2 and excellent cycling stability with a capacitance retention of 90% over 10000 cycles at -40 °C. Notably, the fabricated all-hydrogel supercapacitor can endure dynamic deformations and operate well under 2000 tension cycles even at -40 °C, without experiencing delamination and electrochemical failure. This work offers a promising strategy for flexible energy storage devices with low-temperature adaptability.

9.
J Ethnopharmacol ; 324: 117733, 2024 Apr 24.
Article de Anglais | MEDLINE | ID: mdl-38218504

RÉSUMÉ

ETHNOPHARMACOLOGICAL RELEVANCE: Ginger is a "medicine-food homology" natural herb and has a longstanding medicinal background in treating intestinal diseases. Its remarkable bioactivities, including anti-inflammatory, antioxidant, immunoregulatory, flora regulatory, intestinal protective, and anticancer properties, make it a promising natural medicine for colorectal cancer (CRC) prevention and treatment. AIM OF THE REVIEW: The purpose is to review the relevant literature on ginger and pharmacodynamic components for CRC prevention and treatment, summarize the possible mechanisms of ginger from clinical studies and animal and in vitro experiments, to provide theoretical support for the use of ginger preparations in the daily prevention and clinical treatment of CRC. MATERIALS AND METHODS: Literatures about ginger and CRC were searched from electronic databases, such as PubMed, Web of Science, ScienceDirect, Google Scholar and China National Knowledge Infrastructure (CNKI). RESULTS: This article summarizes the molecular mechanisms of ginger and its pharmacodynamic components in the prevention and treatment of CRC, including anti-inflammatory, antioxidant, immunoregulatory, flora regulatory, intestinal protective, inhibit CRC cell proliferation, induce CRC cell cycle blockage, promote CRC cell apoptosis, suppress CRC cell invasion and migration, enhance the anticancer effect of chemotherapeutic drugs. CONCLUSIONS: Ginger has potential for daily prevention and clinical treatment of CRC.


Sujet(s)
Tumeurs colorectales , Zingiber officinale , Animaux , Antioxydants/pharmacologie , Intestins , Tumeurs colorectales/traitement médicamenteux , Tumeurs colorectales/prévention et contrôle , Tumeurs colorectales/métabolisme , Anti-inflammatoires/usage thérapeutique , Extraits de plantes/pharmacologie , Extraits de plantes/usage thérapeutique , Extraits de plantes/composition chimique
10.
Nat Biomed Eng ; 8(1): 11-29, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-36658343

RÉSUMÉ

Current healthcare practices are reactive and use limited physiological and clinical information, often collected months or years apart. Moreover, the discovery and profiling of blood biomarkers in clinical and research settings are constrained by geographical barriers, the cost and inconvenience of in-clinic venepuncture, low sampling frequency and the low depth of molecular measurements. Here we describe a strategy for the frequent capture and analysis of thousands of metabolites, lipids, cytokines and proteins in 10 µl of blood alongside physiological information from wearable sensors. We show the advantages of such frequent and dense multi-omics microsampling in two applications: the assessment of the reactions to a complex mixture of dietary interventions, to discover individualized inflammatory and metabolic responses; and deep individualized profiling, to reveal large-scale molecular fluctuations as well as thousands of molecular relationships associated with intra-day physiological variations (in heart rate, for example) and with the levels of clinical biomarkers (specifically, glucose and cortisol) and of physical activity. Combining wearables and multi-omics microsampling for frequent and scalable omics may facilitate dynamic health profiling and biomarker discovery.


Sujet(s)
Multi-omique , Marqueurs biologiques
11.
Genes (Basel) ; 14(12)2023 11 30.
Article de Anglais | MEDLINE | ID: mdl-38136987

RÉSUMÉ

The rice leaf folder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae), is a notorious pest of rice in Asia. The larvae and adults of C. medinalis utilize specialized chemosensory systems to adapt to different environmental odors and physiological behaviors. However, the differences in chemosensory genes between the olfactory organs of these two different developmental stages remain unclear. Here, we conducted a transcriptome analysis of larvae heads, male antennae, and female antennae in C. medinalis and identified 131 putative chemosensory genes, including 32 OBPs (8 novel OBPs), 23 CSPs (2 novel CSPs), 55 ORs (17 novel ORs), 19 IRs (5 novel IRs) and 2 SNMPs. Comparisons between larvae and adults of C. medinalis by transcriptome and RT-qPCR analysis revealed that the number and expression of chemosensory genes in larval heads were less than that of adult antennae. Only 17 chemosensory genes (7 OBPs and 10 CSPs) were specifically or preferentially expressed in the larval heads, while a total of 101 chemosensory genes (21 OBPs, 9 CSPs, 51 ORs, 18 IRs, and 2 SNMPs) were specifically or preferentially expressed in adult antennae. Our study found differences in chemosensory gene expression between larvae and adults, suggesting their specialized functions at different developmental stages of C. medinalis. These results provide a theoretical basis for screening chemosensory genes as potential molecular targets and developing novel management strategies to control C. medinalis.


Sujet(s)
Papillons de nuit , Transcriptome , Animaux , Femelle , Mâle , Transcriptome/génétique , Larve/génétique , Analyse de profil d'expression de gènes , Papillons de nuit/génétique , Asie
12.
Nanomicro Lett ; 16(1): 22, 2023 Nov 20.
Article de Anglais | MEDLINE | ID: mdl-37982913

RÉSUMÉ

Solid-state zinc-ion capacitors are emerging as promising candidates for large-scale energy storage owing to improved safety, mechanical and thermal stability and easy-to-direct stacking. Hydrogel electrolytes are appealing solid-state electrolytes because of eco-friendliness, high conductivity and intrinsic flexibility. However, the electrolyte/electrode interfacial contact and anti-freezing properties of current hydrogel electrolytes are still challenging for practical applications of zinc-ion capacitors. Here, we report a class of hydrogel electrolytes that couple high interfacial adhesion and anti-freezing performance. The synergy of tough hydrogel matrix and chemical anchorage enables a well-adhered interface between hydrogel electrolyte and electrode. Meanwhile, the cooperative solvation of ZnCl2 and LiCl hybrid salts renders the hydrogel electrolyte high ionic conductivity and mechanical elasticity simultaneously at low temperatures. More significantly, the Zn||carbon nanotubes hybrid capacitor based on this hydrogel electrolyte exhibits low-temperature capacitive performance, delivering high-energy density of 39 Wh kg-1 at -60 °C with capacity retention of 98.7% over 10,000 cycles. With the benefits of the well-adhered electrolyte/electrode interface and the anti-freezing hydrogel electrolyte, the Zn/Li hybrid capacitor is able to accommodate dynamic deformations and function well under 1000 tension cycles even at -60 °C. This work provides a powerful strategy for enabling stable operation of low-temperature zinc-ion capacitors.

13.
Proc Natl Acad Sci U S A ; 120(44): e2310174120, 2023 Oct 31.
Article de Anglais | MEDLINE | ID: mdl-37883437

RÉSUMÉ

α-synuclein (α-Syn) is a presynaptic protein that is involved in Parkinson's and other neurodegenerative diseases and binds to negatively charged phospholipids. Previously, we reported that α-Syn clusters synthetic proteoliposomes that mimic synaptic vesicles. This vesicle-clustering activity depends on a specific interaction of α-Syn with anionic phospholipids. Here, we report that α-Syn surprisingly also interacts with the neutral phospholipid lysophosphatidylcholine (lysoPC). Even in the absence of anionic lipids, lysoPC facilitates α-Syn-induced vesicle clustering but has no effect on Ca2+-triggered fusion in a single vesicle-vesicle fusion assay. The A30P mutant of α-Syn that causes familial Parkinson disease has a reduced affinity to lysoPC and does not induce vesicle clustering. Taken together, the α-Syn-lysoPC interaction may play a role in α-Syn function.


Sujet(s)
Maladie de Parkinson , alpha-Synucléine , Humains , alpha-Synucléine/génétique , alpha-Synucléine/métabolisme , Vésicules synaptiques/métabolisme , Lysolécithine/métabolisme , Maladie de Parkinson/génétique , Maladie de Parkinson/métabolisme , Phospholipides/métabolisme
14.
Nat Biomed Eng ; 2023 Aug 24.
Article de Anglais | MEDLINE | ID: mdl-37620621

RÉSUMÉ

Tracking and imaging immune cells in vivo non-invasively would offer insights into the immune responses induced by vaccination. Here we report a cancer vaccine consisting of polymer-coated NaErF4/NaYF4 core-shell down-conversion nanoparticles emitting luminescence in the near-infrared spectral window IIb (1,500-1,700 nm in wavelength) and with surface-conjugated antigen (ovalbumin) and electrostatically complexed adjuvant (class-B cytosine-phosphate-guanine). Whole-body wide-field imaging of the subcutaneously injected vaccine in tumour-bearing mice revealed rapid migration of the nanoparticles to lymph nodes through lymphatic vessels, with two doses of the vaccine leading to the complete eradication of pre-existing tumours and to the prophylactic inhibition of tumour growth. The abundance of antigen-specific CD8+ T lymphocytes in the tumour microenvironment correlated with vaccine efficacy, as we show via continuous-wave imaging and lifetime imaging of two intravenously injected near-infrared-emitting probes (CD8+-T-cell-targeted NaYbF4/NaYF4 nanoparticles and H-2Kb/ovalbumin257-264 tetramer/PbS/CdS quantum dots) excited at different wavelengths, and by volumetrically visualizing the three nanoparticles via light-sheet microscopy with structured illumination. Nanoparticle-based vaccines and imaging probes emitting infrared light may facilitate the design and optimization of immunotherapies.

15.
Proc Natl Acad Sci U S A ; 120(13): e2300360120, 2023 03 28.
Article de Anglais | MEDLINE | ID: mdl-36940324

RÉSUMÉ

The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) introduced a relatively large number of mutations, including three mutations in the highly conserved heptad repeat 1 (HR1) region of the spike glycoprotein (S) critical for its membrane fusion activity. We show that one of these mutations, N969K induces a substantial displacement in the structure of the heptad repeat 2 (HR2) backbone in the HR1HR2 postfusion bundle. Due to this mutation, fusion-entry peptide inhibitors based on the Wuhan strain sequence are less efficacious. Here, we report an Omicron-specific peptide inhibitor designed based on the structure of the Omicron HR1HR2 postfusion bundle. Specifically, we inserted an additional residue in HR2 near the Omicron HR1 K969 residue to better accommodate the N969K mutation and relieve the distortion in the structure of the HR1HR2 postfusion bundle it introduced. The designed inhibitor recovers the loss of inhibition activity of the original longHR2_42 peptide with the Wuhan strain sequence against the Omicron variant in both a cell-cell fusion assay and a vesicular stomatitis virus (VSV)-SARS-CoV-2 chimera infection assay, suggesting that a similar approach could be used to combat future variants. From a mechanistic perspective, our work suggests the interactions in the extended region of HR2 may mediate the initial landing of HR2 onto HR1 during the transition of the S protein from the prehairpin intermediate to the postfusion state.


Sujet(s)
COVID-19 , SARS-CoV-2 , Humains , SARS-CoV-2/génétique , SARS-CoV-2/métabolisme , Protéines de l'enveloppe virale/génétique , Séquence d'acides aminés , Structure secondaire des protéines , Glycoprotéine de spicule des coronavirus/métabolisme , Peptides/génétique , Peptides/pharmacologie , Peptides/composition chimique , Antirétroviraux
16.
J Biochem Mol Toxicol ; 37(6): e23329, 2023 Jun.
Article de Anglais | MEDLINE | ID: mdl-36808658

RÉSUMÉ

Doxorubicin (DOX), is a high efficiency anthracycline antitumor drug. However, the clinical application of DOX is limited mainly by dose-related adverse drug reactions. Currently, the therapeutic effects of Atorvastatin (ATO) on DOX-induced hepatotoxicity were studied in vivo. The results indicated that DOX impaired hepatic function, as measured by an increased levels of liver weight index and serum concentrations of aspartate transaminase and alanine transaminase, as well as alteration of hepatic histology. In addition, DOX increased the serum levles of triglyceride (TG) and nonestesterified fatty acid. ATO prevented these changes. Mechanical analysis revealed that ATO restored the changes of malondialdehyde, reactive oxygen radical species, glutathione peroxidase and manganese superoxide dismutase. Additionally, ATO inhibited the increased expression levels of nuclear factor-kappa B and interleukin 1ß, hence suppressing inflammation. Meanwhile, ATO inhibited cell apoptosis by dramatically decreasing the Bax/Bcl-2 ratio. In addition, ATO mitigated the lipidtoxicity by inhibiting the adipolysis of TG and accelerating hepatic lipid metabolism. Taken together, the results suggest ATO has therapeutic effect on DOX-induced hepatotoxicity via inhibition of oxidative damage, inflammatory and apoptosis. In addition, ATO attenuates DOX-induced hyperlipidemia via modulation of lipid metabolism.


Sujet(s)
Lésions hépatiques dues aux substances , Effets secondaires indésirables des médicaments , Rats , Animaux , Antioxydants/pharmacologie , Antioxydants/métabolisme , Atorvastatine/pharmacologie , Doxorubicine/toxicité , Stress oxydatif , Anti-inflammatoires/pharmacologie , Lésions hépatiques dues aux substances/traitement médicamenteux , Apoptose
17.
Stat Methods Med Res ; 32(2): 353-372, 2023 02.
Article de Anglais | MEDLINE | ID: mdl-36451621

RÉSUMÉ

Conventional hazard regression analyses frequently assume constant regression coefficients and scalar covariates. However, some covariate effects may vary with time. Moreover, medical imaging has become an increasingly important tool in screening, diagnosis, and prognosis of various diseases, given its information visualization and quantitative assessment. This study considers an additive hazards model with time-varying coefficients and imaging predictors to examine the dynamic effects of potential scalar and imaging risk factors for the failure of interest. We develop a two-stage approach that comprises the high-dimensional functional principal component analysis technique in the first stage and the counting process-based estimating equation approach in the second stage. In addition, we construct the pointwise confidence intervals for the proposed estimators and provide a significance test for the effects of scalar and imaging covariates. Simulation studies demonstrate the satisfactory performance of the proposed method. An application to the Alzheimer's disease neuroimaging initiative study further illustrates the utility of the methodology.


Sujet(s)
Modèles statistiques , Neuroimagerie , Modèles des risques proportionnels , Analyse de régression , Simulation numérique
18.
Cancer Biomark ; 36(1): 1-16, 2023.
Article de Anglais | MEDLINE | ID: mdl-35912730

RÉSUMÉ

BACKGROUND: LncRNA STK4 antisense RNA 1 (STK4-AS1) has been identified as a potential biomarker associated with multiple cancers. We proposed that STK4-AS1 plays a role in the proliferation of osteosarcoma by regulating the cell cycle. METHODS: We compared the expression of STK4-AS1, p53, and p21 in osteosarcoma vs normal samples in clinical tissues and cell lines. We determined the effect of overexpression and knockdown of STK4-AS1 in p53 expressing osteosarcoma cells U2OS, p53 muted osteosarcoma cells MG63, and osteoblast cells hFOB on p53 and p21 expression and the cell viability. For U2OS and MG63, the cell cycle was analyzed and the expression of cyclin proteins was determined. We overexpressed p53 or p21 in STK4-AS1 overexpressed cells to explore the association of STK4-AS1 and p53 in U2OS. RESULTS: The STK4-AS1 expression was higher and p53 and p21 expression were lower in osteosarcoma tissue and cells than in their non-cancer counterparts. The expression of STK4-AS1 was negatively correlated with the expression of p53 or p21. Knockdown of STK4-AS1 in U2OS decreased the cell viability, increased cells in the G0/G1 phase, decreased cells in the S and G2/M phase, decreased expression of cyclin A and B, increased p53 and p21, and had no effect on cyclin D and cyclin E, while overexpression of STK4-AS1 did the opposes. Overexpression of p53 or p21 recovered some changes caused by STK4-AS1 overexpression in U2OS. MG63 expressed no p53 and the expression of p21, cyclin A, and cyclin B, cell viability, and cell cycle were not affected by altered STK4-AS1 levels. In hFOB cells, the expression of p53 and p21 was decreased and the cell viability was increased when STK4-AS1 was overexpressed, but they were not affected when STK4-AS1 was knocked down. CONCLUSION: LncRNA STK4-AS1 promoted the cell cycle of osteosarcoma cells by inhibiting p53 expression.


Sujet(s)
Tumeurs osseuses , Ostéosarcome , ARN long non codant , Humains , ARN long non codant/métabolisme , Lignée cellulaire tumorale , Prolifération cellulaire/génétique , Apoptose/génétique , Ostéosarcome/génétique , Ostéosarcome/métabolisme , Tumeurs osseuses/génétique , Tumeurs osseuses/métabolisme , ARN antisens/génétique , Régulation de l'expression des gènes tumoraux , Protein-Serine-Threonine Kinases/génétique , Protein-Serine-Threonine Kinases/métabolisme , Protéines et peptides de signalisation intracellulaire/génétique
19.
Front Oncol ; 12: 881341, 2022.
Article de Anglais | MEDLINE | ID: mdl-36106114

RÉSUMÉ

Objective: Low-density lipoprotein receptor-related protein-1 (LRP-1) and survivin are associated with radiotherapy resistance in patients with locally advanced rectal cancer (LARC). This study aimed to evaluate the value of a radiomics model based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for the preoperative assessment of LRP-1 and survivin expressions in these patients. Methods: One hundred patients with pathologically confirmed LARC who underwent DCE-MRI before surgery between February 2017 and September 2021 were included in this retrospective study. DCE-MRI perfusion histogram parameters were calculated for the entire lesion using post-processing software (Omni Kinetics, G.E. Healthcare, China), with three quantitative parameter maps. LRP-1 and survivin expressions were assessed by immunohistochemical methods and patients were classified into low- and high-expression groups. Results: Four radiomics features were selected to construct the LRP-1 discrimination model. The LRP-1 predictive model achieved excellent diagnostic performance, with areas under the receiver operating curve (AUCs) of 0.853 and 0.747 in the training and validation cohorts, respectively. The other four radiomics characteristics were screened to construct the survivin predictive model, with AUCs of 0.780 and 0.800 in the training and validation cohorts, respectively. Decision curve analysis confirmed the clinical usefulness of the radiomics models. Conclusion: DCE-MRI radiomics models are particularly useful for evaluating LRP-1 and survivin expressions in patients with LARC. Our model has significant potential for the preoperative identification of patients with radiotherapy resistance and can serve as an essential reference for treatment planning.

20.
Proc Natl Acad Sci U S A ; 119(40): e2210990119, 2022 10 04.
Article de Anglais | MEDLINE | ID: mdl-36122200

RÉSUMÉ

Variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenge currently available coronavirus disease 2019 vaccines and monoclonal antibody therapies through epitope change on the receptor binding domain of the viral spike glycoprotein. Hence, there is a specific urgent need for alternative antivirals that target processes less likely to be affected by mutation, such as the membrane fusion step of viral entry into the host cell. One such antiviral class includes peptide inhibitors, which block formation of the so-called heptad repeat 1 and 2 (HR1HR2) six-helix bundle of the SARS-CoV-2 spike (S) protein and thus interfere with viral membrane fusion. We performed structural studies of the HR1HR2 bundle, revealing an extended, well-folded N-terminal region of HR2 that interacts with the HR1 triple helix. Based on this structure, we designed an extended HR2 peptide that achieves single-digit nanomolar inhibition of SARS-CoV-2 in cell-based and virus-based assays without the need for modifications such as lipidation or chemical stapling. The peptide also strongly inhibits all major SARS-CoV-2 variants to date. This extended peptide is ∼100-fold more potent than all previously published short, unmodified HR2 peptides, and it has a very long inhibition lifetime after washout in virus infection assays, suggesting that it targets a prehairpin intermediate of the SARS-CoV-2 S protein. Together, these results suggest that regions outside the HR2 helical region may offer new opportunities for potent peptide-derived therapeutics for SARS-CoV-2 and its variants, and even more distantly related viruses, and provide further support for the prehairpin intermediate of the S protein.


Sujet(s)
Traitements médicamenteux de la COVID-19 , Glycoprotéine de spicule des coronavirus , Antiviraux/composition chimique , Antiviraux/pharmacologie , Humains , Peptides/composition chimique , Peptides/pharmacologie , SARS-CoV-2/effets des médicaments et des substances chimiques
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...