Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 1.329
Filtrer
1.
Neural Regen Res ; 20(3): 740-750, 2025 Mar 01.
Article de Anglais | MEDLINE | ID: mdl-38886939

RÉSUMÉ

Lipid droplets serve as primary storage organelles for neutral lipids in neurons, glial cells, and other cells in the nervous system. Lipid droplet formation begins with the synthesis of neutral lipids in the endoplasmic reticulum. Previously, lipid droplets were recognized for their role in maintaining lipid metabolism and energy homeostasis; however, recent research has shown that lipid droplets are highly adaptive organelles with diverse functions in the nervous system. In addition to their role in regulating cell metabolism, lipid droplets play a protective role in various cellular stress responses. Furthermore, lipid droplets exhibit specific functions in neurons and glial cells. Dysregulation of lipid droplet formation leads to cellular dysfunction, metabolic abnormalities, and nervous system diseases. This review aims to provide an overview of the role of lipid droplets in the nervous system, covering topics such as biogenesis, cellular specificity, and functions. Additionally, it will explore the association between lipid droplets and neurodegenerative disorders. Understanding the involvement of lipid droplets in cell metabolic homeostasis related to the nervous system is crucial to determine the underlying causes and in exploring potential therapeutic approaches for these diseases.

2.
Article de Anglais | MEDLINE | ID: mdl-38961845

RÉSUMÉ

There are diverse pathophysiological mechanisms involved in acute kidney injury (AKI). Among them, overactivity of the renin angiotensin system (RAS) has been described. Angiotensin converting enzyme 2 (ACE2) is a tissue RAS enzyme expressed in the apical border of proximal tubules. Given the important role of ACE2 in the metabolism of Angiotensin II this study was aimed to characterize kidney and urinary ACE2 in amouse model of AKI. Ischemia reperfusion injury (IRI) was induced in C57BL/6 mice by clamping of the left renal artery followed by removal of the right kidney. In kidneys harvested 48 hours after IRI, immunostaining revealed a striking maldistribution of ACE2 including spillage into the tubular lumen and presence of ACE2 positive luminal casts in the medulla. In cortical membranes ACE2 protein and enzymatic activity were both markedly reduced (37±4 vs. 100±6 ACE2/ß-Actin, P=0.0004 and 96±14 vs. 152±6 RFU/µg protein/h P=0.006). In urine, the full-length membrane bound ACE2 protein (100kD) was markedly increased (1120±405 vs. 100±46 ACE2/µg Crea, P=0.04) and casts stained for ACE2 were recovered in the urine sediment. In AKI caused by IRI there is a marked loss of ACE2 from the apical tubular border with deposition of ACE2 positive material in the medulla and increased urinary excretion of the full length-membrane bound ACE2 protein. The deficiency of tubular ACE2 in AKI suggests that provision of this enzyme could have therapeutic applications and that its excretion in the urine may also serve as a diagnostic marker of severe proximal tubular injury.

3.
Nat Commun ; 15(1): 5470, 2024 Jun 28.
Article de Anglais | MEDLINE | ID: mdl-38937441

RÉSUMÉ

Global warming has a severe impact on the flowering time and yield of crops. Histone modifications have been well-documented for their roles in enabling plant plasticity in ambient temperature. However, the factor modulating histone modifications and their involvement in habitat adaptation have remained elusive. In this study, through genome-wide pattern analysis and quantitative-trait-locus (QTL) mapping, we reveal that BrJMJ18 is a candidate gene for a QTL regulating thermotolerance in thermotolerant B. rapa subsp. chinensis var. parachinensis (or Caixin, abbreviated to Par). BrJMJ18 encodes an H3K36me2/3 Jumonji demethylase that remodels H3K36 methylation across the genome. We demonstrate that the BrJMJ18 allele from Par (BrJMJ18Par) influences flowering time and plant growth in a temperature-dependent manner via characterizing overexpression and CRISPR/Cas9 mutant plants. We further show that overexpression of BrJMJ18Par can modulate the expression of BrFLC3, one of the five BrFLC orthologs. Furthermore, ChIP-seq and transcriptome data reveal that BrJMJ18Par can regulate chlorophyll biosynthesis under high temperatures. We also demonstrate that three amino acid mutations may account for function differences in BrJMJ18 between subspecies. Based on these findings, we propose a working model in which an H3K36me2/3 demethylase, while not affecting agronomic traits under normal conditions, can enhance resilience under heat stress in Brassica rapa.


Sujet(s)
Brassica rapa , Fleurs , Régulation de l'expression des gènes végétaux , Histone , Jumonji Domain-Containing Histone Demethylases , Protéines végétales , Locus de caractère quantitatif , Brassica rapa/génétique , Brassica rapa/métabolisme , Brassica rapa/croissance et développement , Brassica rapa/physiologie , Fleurs/génétique , Fleurs/croissance et développement , Histone/métabolisme , Jumonji Domain-Containing Histone Demethylases/métabolisme , Jumonji Domain-Containing Histone Demethylases/génétique , Protéines végétales/génétique , Protéines végétales/métabolisme , Température , Thermotolérance/génétique , Méthylation , Végétaux génétiquement modifiés , Chlorophylle/métabolisme
4.
Proc Natl Acad Sci U S A ; 121(26): e2319623121, 2024 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-38889142

RÉSUMÉ

Solid organ transplantation mobilizes myeloid cells, including monocytes and macrophages, which are central protagonists of allograft rejection. However, myeloid cells can also be functionally reprogrammed by perioperative costimulatory blockade to promote a state of transplantation tolerance. Transplantation tolerance holds promise to reduce complications from chronic immunosuppression and promote long-term survival in transplant recipients. We sought to identify different mediators of transplantation tolerance by performing single-cell RNA sequencing of acute rejecting or tolerized cardiac allografts. This led to the unbiased identification of the transcription factor, hypoxia inducible factor (HIF)-2α, in a subset of tolerogenic monocytes. Using flow cytometric analyses and mice with conditional loss or gain of function, we uncovered that myeloid cell expression of HIF-2α was required for costimulatory blockade-induced transplantation tolerance. While HIF-2α was dispensable for mobilization of tolerogenic monocytes, which were sourced in part from the spleen, it promoted the expression of colony stimulating factor 1 receptor (CSF1R). CSF1R mediates monocyte differentiation into tolerogenic macrophages and was found to be a direct transcriptional target of HIF-2α in splenic monocytes. Administration of the HIF stabilizer, roxadustat, within micelles to target myeloid cells, increased HIF-2α in splenic monocytes, which was associated with increased CSF1R expression and enhanced cardiac allograft survival. These data support further exploration of HIF-2α activation in myeloid cells as a therapeutic strategy for transplantation tolerance.


Sujet(s)
Facteurs de transcription à motif basique hélice-boucle-hélice , Transplantation cardiaque , Macrophages , Monocytes , Tolérance à la transplantation , Animaux , Souris , Macrophages/métabolisme , Macrophages/immunologie , Facteurs de transcription à motif basique hélice-boucle-hélice/métabolisme , Facteurs de transcription à motif basique hélice-boucle-hélice/génétique , Tolérance à la transplantation/immunologie , Monocytes/immunologie , Monocytes/métabolisme , Récepteur de facteur de croissance granulocyte-macrophage/métabolisme , Récepteur de facteur de croissance granulocyte-macrophage/génétique , Rejet du greffon/immunologie , Rejet du greffon/prévention et contrôle , Rejet du greffon/génétique , Souris de lignée C57BL , Régulation de l'expression des gènes/effets des médicaments et des substances chimiques , Survie du greffon/immunologie , Survie du greffon/effets des médicaments et des substances chimiques , Mâle
5.
Neurology ; 103(2): e209530, 2024 Jul 23.
Article de Anglais | MEDLINE | ID: mdl-38889383

RÉSUMÉ

BACKGROUND AND OBJECTIVES: Cardiovascular health (CVH) has been associated with cognitive decline and dementia, but the extent to which CVH affects brain health remains unclear. We investigated the association of CVH, assessed using Life's Essential 8 (LE8), with neuroimaging-based brain age and brain-predicted age difference (brain-PAD). METHODS: This longitudinal community-based study was based on UK Biobank participants aged 40-69 years who were free from dementia and other neurologic diseases at baseline. LE8 score at baseline was assessed with 8 measures and tertiled as low, moderate, and high CVH. Structural and functional brain MRI scans were performed approximately 9 years after baseline, and 1,079 measures from 6 neuroimaging modalities were used to model brain age. A Least Absolute Shrinkage and Selection Operator regression model was trained in 4,355 healthy participants and then used to calculate brain age and brain-PAD in the whole population. Data were analyzed using linear regression models. RESULTS: The study included 32,646 participants (mean age at baseline 54.74 years; 53.44% female; mean LE8 score: 71.90). In multivariable-adjusted linear regression, higher LE8 score was associated with younger brain age (ß [95% CI] -0.037 [-0.043 to -0.031]) and more negative brain-PAD (ß [95% CI] -0.043 [-0.048 to -0.038]) (brain looks younger for chronological age). Compared with high CVH, low/moderate CVH was associated with older brain age (ß [95% CI] 1.030 [0.852-1.208]/0.475 [0.303-0.647]) and increased brain-PAD (ß [95% CI] 1.193 [1.029-1.357]/0.528 [0.370-0.686]). The associations between low CVH and older brain age/brain-PAD remained similar and significant in both middle-aged (ß [95% CI] 1.199 [0.992-1.405]/1.351 [1.159-1.542]) and older adults (ß [95% CI] 0.764 [0.417-1.110]/0.948 [0.632-1.263]). DISCUSSION: Low CVH is associated with older brain age and greater brain-PAD, even among middle-aged adults. Our findings suggest that optimizing CVH could support brain health. The main limitation of our study is that the study sample was healthier than the general population, thus caution is required when generalizing our findings to other populations.


Sujet(s)
Vieillissement , Encéphale , Apprentissage machine , Imagerie par résonance magnétique , Humains , Adulte d'âge moyen , Femelle , Mâle , Sujet âgé , Encéphale/imagerie diagnostique , Adulte , Études longitudinales , Vieillissement/physiologie , Maladies cardiovasculaires/épidémiologie , Maladies cardiovasculaires/imagerie diagnostique , Neuroimagerie/méthodes , Royaume-Uni/épidémiologie
6.
RSC Adv ; 14(26): 18432-18443, 2024 Jun 06.
Article de Anglais | MEDLINE | ID: mdl-38860257

RÉSUMÉ

The presence of methyl orange (MO) and ciprofloxacin (CIP) in wastewater poses a serious threat to the environment and human health. Titanium dioxide nanoparticles (TiO2 NPs) are widely studied as photocatalysts for wastewater treatment. However, TiO2 NPs have the drawbacks of high energy required for activation, fast electron-hole pair recombination and difficulty in recovering from water. To overcome these problems, europium decorated titanium dioxide/poly(vinylidene fluoride) (Eu-TiO2/PVDF) membranes were successful prepared in this work by combining the modified sol-gel method and the immersion phase inversion method. The Eu-TiO2/PVDF membranes obtained with the increase of Eu-TiO2 NPs content during the preparation process were named M1, M2 and M3, respectively. The pure PVDF membrane without the addition of Eu-TiO2 NPs was named M0, which was prepared by the immersion phase inversion method and served as a reference. The prepared Eu-TiO2/PVDF membranes could not only adsorb MO, but also degrade CIP under visible-light irradiation. Moreover, the Eu-TiO2/PVDF membranes exhibited adsorption-photocatalytic activity towards a mixture of MO and CIP under visible-light irradiation. Last but not the least, the Eu-TiO2/PVDF membranes exhibited excellent recyclability and reusability, opening the avenue for a possible use of these membranes in sewage-treatment plants.

7.
Talanta ; 277: 126386, 2024 Jun 11.
Article de Anglais | MEDLINE | ID: mdl-38876027

RÉSUMÉ

The detection of trypsin and its inhibitors is important for both clinical diagnosis and disease treatment. Abnormal trypsin activity affects pancreatic function and leads to corresponding pathological changes in the body. Therefore, the study presented a riboflavin-induced photo-ATRP electrochemical assay of trypsin activity and its inhibitor, including detection of trypsin activity in real urine samples. Experiments were performed on indium tin oxide (ITO) electrodes modified with sulfhydryl groups of 3-mercaptopropionic acid, and target trypsin-specific cleavage of BSA-Au nanocluster (BSA-Au NCs) was followed by the modification of Au NCs to the electrodes using Au-S. The Au NCs immobilized monodeoxy-monomercapto-ß-cyclodextrin@adamantan-2-amine (SH-ß-CD@2-NH2-Ada) host-guest inclusion complexes to the electrode surfaces via Au-S. In a two-component photo-initiator system consisting of riboflavin as an initiator and ascorbic acid (AA) as a mild reducing agent under mild blue light radiation, a large number of electroactive substances were grafted onto the electrode surface to generate electrochemical signals. In addition, we have successfully realized the detection of clinical drug inhibitors of trypsin. The detection limit of the system is as low as 0.0024 ng/mL, which much littler than the average standard of trypsin in the patient's urine or serum. It's worth noting that this work will provide researchers with a different route to design electrochemical sensors based on non-covalent recognition strategies.

8.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1379-1387, 2024 May.
Article de Chinois | MEDLINE | ID: mdl-38886437

RÉSUMÉ

The energy oriented mine ecological restoration mode of photovoltaic+ecological restoration provides a breakthrough for alleviating the dilemma of photovoltaic land development and solving the urgent need for restoration of abandoned mining land. Taking a mining area in central Liaoning Province as an example, we established three photovoltaic+mining ecological restoration modes, including forest-photovoltaic complementary, agriculture-photovoltaic, and grass photovoltaic complementation. Combined with the life cycle assessment method, we calculated and assessed the potential of photovoltaic+mining ecological restoration in carbon reduction and sink enhancement. The average annual carbon reduction and sink increase was 514.93 t CO2·hm-2 under the photovoltaic+mining ecological restoration mode, while the average annual carbon reduction per megawatt photovoltaic power station was 1242.94 t CO2. The adoption of photovoltaic+ecological restoration mode in this mining area could make carbon reduction and sink enhancement 6.30-7.79 Mt CO2 during 25 years. The carbon reduction and sink increment mainly stemmed from the photovoltaic clean power generation induced carbon reduction, accounting for 96.4%-99.4%, while the contribution of ecosystem carbon sink increment was small, accounting for only 0.6%-3.7% of the total. Among different photovoltaic+ecological restoration modes, the carbon reduction and sink increment was the largest in forest-photovoltaic complementary (7.11 Mt CO2), followed by agriculture-photovoltaic (7.04 Mt CO2), and the least in grass photovoltaic complementation (6.98 Mt CO2). Constructing the development mode of "photovoltaic+mining ecological restoration" could effectively leverage the dual benefits of reducing emissions from photovoltaic power generation and increase sinks from mining ecological restoration, which would be helpful for achieving the goal of carbon neutrality in China.


Sujet(s)
Séquestration du carbone , Écosystème , Mine , Chine , Assainissement et restauration de l'environnement/méthodes , Modèles théoriques , Carbone/composition chimique , Carbone/analyse , Conservation des ressources naturelles/méthodes , Dioxyde de carbone/analyse , Énergie solaire
9.
Int J Ophthalmol ; 17(6): 1036-1041, 2024.
Article de Anglais | MEDLINE | ID: mdl-38895686

RÉSUMÉ

AIM: To characterize the distribution of meibomian gland (MG) area loss (MGL) and its relationship with demographic characteristics, mites, and symptoms. METHODS: This retrospective observational study included patients who visited the Dry Eye Clinic of Shenzhen Eye Hospital between June 2020 and August 2021. General patient characteristics, ocular symptoms, Demodex test results of the eyelid edges, and the results of a comprehensive ocular surface analysis were collected. MGL was analyzed using Image J software. RESULTS: This study enrolled 1204 outpatients aged 20-80 (40.70±13.44)y, including 357 males (29.65%) and 847 females (70.35%). The patients were classified into mild (n=155; 12.87%), moderate (n=795; 66.03%), severe (n=206; 17.11%), and extremely severe (n=48; 3.99%) MGL groups. MGL was significantly larger in female than in male (P=0.006). The degree of MGL also significantly differed in age (P<0.001) and the more numbers of mites with severity (P<0.001). Multivariate disordered multinomial logistic regression analysis identified that female sex, older age, secretory symptoms, and a large number of mites were risk factors for MGL (P<0.05). CONCLUSION: Patients with MGL are more likely to be older, female, more numbers of mites, and increased secretion.

10.
Animals (Basel) ; 14(11)2024 Jun 05.
Article de Anglais | MEDLINE | ID: mdl-38891748

RÉSUMÉ

This study investigated the effects of replacing maize silage (MZS) with high-sugar sorghum silage (HSS) or forage sorghum silage (FSS) without additional grain supplement in the diets of dairy cows on nutrient digestibility, milk composition, nitrogen (N) use, and rumen fermentation. Twenty-four Chinese Holstein cows (545 ± 42.8 kg; 21.41 ± 0.62 kg milk yield; 150 ± 5.6 days in milk) were randomly assigned to three dietary treatments (n = 8 cows/treatment). The cows were fed ad libitum total mixed rations containing (dry matter basis) either 40% MZS (MZS-based diet), 40% HSS (HSS-based diet), or 40% FSS (FSS-based diet). The study lasted for 42 days, with 14 days devoted to adaptation, 21 days to daily feed intake and milk production, and 7 days to the sampling of feed, refusals, feces, urine, and rumen fluid. Milk production was measured twice daily, and digestibility was estimated using the method of acid-insoluble ash. The data were analyzed using a one-way ANOVA in SPSS 22.0 according to a completely randomized design. Dietary treatments were used as fixed effects and cows as random effects. The results indicate that MZS and HSS had greater crude protein but less neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), and a lower pH than FSS (p ≤ 0.04). High starch contents in MZS and water-soluble carbohydrate (WSC) contents in HSS were observed (p < 0.01). While the highest starch intake was observed for the MZS-based diet, the highest WSC intake was noted for the HSS-based diet, and the highest NDF, ADF, ADL intake was observed for the FSS-based diet (p ≤ 0.05). The diets, including MZS and HSS, had greater digestibility than that of FSS (p ≤ 0.03). Feeding MZS- and HSS-based diets increased the yield, fat, and protein content of the milk, as well as feed conversion efficiency (p ≤ 0.03). However, feeding the MZS- and HSS-based diets decreased the contents of milk urea N, urinary urea N, and urinary N excretion more than the FSS-based diet (p ≤ 0.05). The N use efficiency tended to increase relative to diets containing MZS and HSS compared with FSS (p = 0.06 and p = 0.09). Ruminal ammonia-N and pH were lower, but total volatile fatty acids, acetate, and propionate were higher in cows fed the HSS- and MZS-based diets compared to those fed the FSS-based diet (p ≤ 0.03). It appears as though replacing MZS with HSS in the diet of cows without additional grain supplements has no negative influence on feed intake, milk yield, N utilization, or ruminal fermentation.

12.
Quant Imaging Med Surg ; 14(6): 3816-3827, 2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38846287

RÉSUMÉ

Background: A high proportion of coronary microvascular dysfunction (CMD) has been observed in patients with acute myocardial infarction (AMI) who have received primary percutaneous coronary intervention (PCI), which may affect their prognosis. This study used cadmium zinc telluride (CZT) single photon emission computed tomography (SPECT) to evaluate the prevalence and characteristics of CMD and myocardial area at risk (AAR) in AMI patients who had undergone primary PCI. Methods: We conducted a single-center cross-sectional retrospective study at TEDA International Cardiovascular Hospital from September 2021 to June 2022. A total of 83 patients received primary PCI for AMI. Subsequently, a rest/stress dynamic and routine gated myocardial perfusion imaging (MPI) were performed 1 week after PCI. The CMD group was defined as having a residual stenosis of infarct-related artery (IRA) <50% and myocardial flow reserve (MFR) <2.0 in this corresponding territory, whereas MFR ≥2.0 of IRA pertained to the normal control group. Rest-AAR of infarction (%) and stress-AAR (%) were expressed by the percentage of measured rest-defect-size and stress-defect-size in the left ventricular area, respectively. Logistic regression analyses were performed to identify significant predictors of CMD. Results: A total of 53 patients with a mean age of 57.06±11.99 years were recruited, of whom 81.1% were ST-segment elevation myocardial infarction (STEMI). The proportion of patients with CMD was 79.2% (42/53). The time of pain to SPECT imaging was 7.50±1.27 days in the CMD group and 7.45±1.86 days among controls. CMD patients had a higher body mass index (BMI) than controls (26.48±3.26 vs. 24.36±2.73 kg/m2, P=0.053), and a higher proportion of STEMI, thrombolysis in myocardial infarction (TIMI) 0 grade of IRA prior PCI than controls (88.1% vs. 54.5%, P=0.011; 61.9% vs. 18.2%, P=0.004, respectively). No significant difference was identified in the rest-myocardial blood flow (MBF) of IRA between the 2 groups, whereas the stress-MBF and MFR of IRA, rest-AAR, and stress-AAR in the CMD group were remarkably lowered. Higher BMI [odds ratio (OR): 1.332, 95% confidence interval (CI): 1.008-1.760, P=0.044] and stress-AAR (OR: 1.994, 95% CI: 1.122-3.543, P=0.019) were used as independent predictors of CMD occurrence. Conclusions: The prevalence of CMD is high in AMI patients who received primary PCI. Each 1 kg/m2 increase in BMI was associated with a 1.3-fold increase in CMD risk. A 5% increase in stress-AAR was associated with a nearly 2-fold increase in CMD risk. Increased BMI and stress-AAR predicts decreased coronary reserve function.

13.
Aging Dis ; 2024 Jun 16.
Article de Anglais | MEDLINE | ID: mdl-38913037

RÉSUMÉ

Rheumatoid arthritis (RA) is an autoimmune disease that affects the living quality of patients, especially the elderly population. RA-related morbidity and mortality increase significantly with age, while current clinical drugs for RA are far from satisfactory and may have serious side effects. Therefore, the development of new drugs with higher biosafety and efficacy is demanding. Black phosphorus nanosheets (BPNSs) have been widely studied because of their excellent biocompatibility. Here, we focus on the inherent bioactivity of BPNSs, report the potential of BPNSs as a therapeutic drug for RA and elucidate the underlying therapeutic mechanism. We find that BPNSs inhibit autophagy at an early stage via the AMPK-mTOR pathway, switch the energy metabolic pathway to oxidative phosphorylation, increase intracellular ATP levels, suppress apoptosis, reduce inflammation and oxidative stress, and down-regulate senescence-associated secretory phenotype (SASP)-related genes in rheumatoid arthritis synovial fibroblasts (RA-SFs). Further, BPNSs induce the apoptosis of macrophages and promote their transition from the M1 to the M2 phenotype by regulating related cytokines. Significantly, the administration of BPNSs can alleviate key pathological features of RA in mice, revealing great therapeutic potential. This study provides a novel option for treating RA, with BPNSs emerging as a promising therapeutic candidate.

14.
Cell Metab ; 2024 Jun 18.
Article de Anglais | MEDLINE | ID: mdl-38897198

RÉSUMÉ

Immune checkpoint blockade has led to breakthroughs in the treatment of advanced gastric cancer. However, the prominent heterogeneity in gastric cancer, notably the heterogeneity of the tumor microenvironment, highlights the idea that the antitumor response is a reflection of multifactorial interactions. Through transcriptomic analysis and dynamic plasma sample analysis, we identified a metabolic "face-off" mechanism within the tumor microenvironment, as shown by the dual prognostic significance of nicotinamide metabolism. Specifically, macrophages and fibroblasts expressing the rate-limiting enzymes nicotinamide phosphoribosyltransferase and nicotinamide N-methyltransferase, respectively, regulate the nicotinamide/1-methylnicotinamide ratio and CD8+ T cell function. Mechanistically, nicotinamide N-methyltransferase is transcriptionally activated by the NOTCH pathway transcription factor RBP-J and is further inhibited by macrophage-derived extracellular vesicles containing nicotinamide phosphoribosyltransferase via the SIRT1/NICD axis. Manipulating nicotinamide metabolism through autologous injection of extracellular vesicles restored CD8+ T cell cytotoxicity and the anti-PD-1 response in gastric cancer.

15.
Fish Shellfish Immunol ; 151: 109707, 2024 Jun 15.
Article de Anglais | MEDLINE | ID: mdl-38885802

RÉSUMÉ

Infection with Vibrio mimicus in the Siluriformes has demonstrated a rapid and high infectivity and mortality rate, distinct from other hosts. Our earlier investigations identified necrosis, an inflammatory storm, and tissue remodeling as crucial pathological responses in yellow catfish (Pelteobagrus fulvidraco) infected with V. mimicus. The objective of this study was to further elucidate the impact linking these pathological responses within the host during V. mimicus infection. Employing metabolomics and transcriptomics, we uncovered infection-induced dense vacuolization of perimysium; Several genes related to nucleosidase and peptidase activities were significantly upregulated in the skin and muscles of infected fish. Concurrently, the translation processes of host cells were impaired. Further investigation revealed that V. mimicus completes its infection process by enhancing its metabolism, including the utilization of oligopeptides and nucleotides. The high susceptibility of yellow catfish to V. mimicus infection was associated with the composition of its body surface, which provided a microenvironment rich in various nucleotides such as dIMP, dAMP, deoxyguanosine, and ADP, in addition to several amino acids and peptides. Some of these metabolites significantly boost V. mimicus growth and motility, thus influencing its biological functions. Furthermore, we uncovered an elevated expression of gangliosides on the surface of yellow catfish, aiding V. mimicus adhesion and increasing its infection risk. Notably, we observed that the skin and muscles of yellow catfish were deficient in over 25 polyunsaturated fatty acids, such as Eicosapentaenoic acid, 12-oxo-ETE, and 13-Oxo-ODE. These substances play a role in anti-inflammatory mechanisms, possibly contributing to the immune dysregulation observed in yellow catfish. In summary, our study reveals a host immune deviation phenomenon that promotes bacterial colonization by increasing nutrient supply. It underscores the crucial factors rendering yellow catfish highly susceptible to V. mimicus, indicating that host nutritional sources not only enable the establishment and maintenance of infection within the host but also aid bacterial survival under immune pressure, ultimately completing its lifecycle.

16.
J Agric Food Chem ; 2024 Jun 06.
Article de Anglais | MEDLINE | ID: mdl-38842303

RÉSUMÉ

Lysine lactylation (Kla) is a kind of novel post-translational modification (PTM) that participates in gene expression and various metabolic processes. Nannochloropsis has a remarkable capacity for triacylglycerol (TAG) production under nitrogen stress. To elucidate the involvement of lactylation in lipid synthesis, we conducted chromatin immunoprecipitation sequencing (ChIP-seq) and mRNA-seq analyses to monitor lactylation modifications and transcriptome alterations in Nannochloropsis oceanica. In all, 2057 genes showed considerable variation between nitrogen deprivation (ND) and nitrogen repletion (NR) conditions. Moreover, a total of 5375 differential Kla peaks were identified, including 5331 gain peaks and 44 loss peaks under ND vs NR. The differential Kla peaks were primarily distributed in the promoter (≤1 kb) (71.07%), 5'UTR (22.64%), and exon (4.25%). Integrative analysis of ChIP-seq, transcriptome, and previous proteome and lactylome data elucidates the potential mechanism by which lactylation promotes lipid accumulation under ND. Lactylation facilitates autophagy and protein degradation, leading to the recycling of carbon into the tricarboxylic acid (TCA) cycle, thereby providing carbon precursors for lipid synthesis. Additionally, lactylation induces the redirection of carbon from membrane lipids to TAG by upregulating lipases and enhancing the TCA cycle and ß-oxidation pathways. This research offers a new perspective for the investigation of lipid biosynthesis in Nannochloropsis.

17.
J Neurol Sci ; 462: 123079, 2024 Jun 04.
Article de Anglais | MEDLINE | ID: mdl-38878650

RÉSUMÉ

BACKGROUND: Reactive astrocytes play an important role in the development of Alzheimer's disease and primary tauopathies. Here, we aimed to investigate the relationships between reactive astrocytes. Microgliosis and glucose metabolism with Tau and amyloid beta pathology by using multi-tracer imaging in widely used tauopathy and familial Alzheimer's disease mouse models. RESULTS: Positron emission tomography imaging using [18F]PM-PBB3 (tau), [18F]florbetapir (amyloid-beta), [18F]SMBT-1 (monoamine oxidase-B), [18F]DPA-714 (translocator protein) and [18F]fluorodeoxyglucose was carried out in 3- and 7-month-old rTg4510 tau mice, 5 × FAD familial Alzheimer's disease mice and wild-type mice. Immunofluorescence staining was performed to validate the pathological distribution in the mouse brain after in vivo imaging. We found increased regional levels of [18F]PM-PBB3, [18F]SMBT-1, and [18F]DPA-714 and hypoglucose metabolism in the brains of 7-month-old rTg4510 mice compared to age-matched wild-type mice. Increased [18F]SMBT-1 uptake was observed in the brains of 3, 7-month-old 5 × FAD mice, with elevated regional [18F]florbetapir and [18F]DPA-714 uptakes in the brains of 7-month-old 5 × FAD mice, compared to age-matched wild-type mice. Positive correlations were shown between [18F]SMBT-1 and [18F]PM-PBB3, [18F]DPA-714 and [18F]PM-PBB3 in rTg4510 mice, and between [18F]florbetapir and [18F]DPA-714 SUVRs in 5 × FAD mice. CONCLUSION: In summary, these findings provide in vivo evidence that reactive astrocytes, microglial activation, and cerebral hypoglucose metabolism are associated with tau and amyloid pathology development in animal models of tauopathy and familial Alzheimer's disease.

18.
Food Funct ; 15(13): 7032-7045, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38864191

RÉSUMÉ

Red palm oil, a natural repository abundant in tocotrienols, tocopherols and carotenoids, is frequently employed as a pigment and nutritional enhancer in food products. The principal aim of this study is to explore the disparities in vitamin A levels, fatty acid profiles and gut microbiota among healthy adults who consume carotenoid-enriched eggs compared to those who consume normal eggs. A total of 200 hens were randomly assigned to either the red palm oil group or the soybean oil group, with the objective of producing carotenoid-enriched eggs and normal eggs. Throughout a six-month, double-blinded, randomized controlled trial, participants were instructed to consume one carotenoid-enriched or normal egg daily at a fixed time. Fecal and blood samples were collected from the participants at the start and conclusion of the six-month intervention period for further analysis. Our findings indicated that there was no significant change in the vitamin A level for daily supplementation with one carotenoid-enriched egg, but there were significant changes in some indicators of fatty acid profiles and gut microbiota compared to the control group of the population. Nonetheless, the consumption of eggs, regardless of carotenoid-enriched eggs or normal eggs, positively influenced dietary habits by reducing the intake of saturated fatty acids and enhancing the intake of monounsaturated and polyunsaturated fatty acids of the population.


Sujet(s)
Caroténoïdes , Poulets , Oeufs , Microbiome gastro-intestinal , Rétinol , Oeufs/analyse , Caroténoïdes/métabolisme , Humains , Femelle , Microbiome gastro-intestinal/effets des médicaments et des substances chimiques , Animaux , Adulte , Méthode en double aveugle , Rétinol/administration et posologie , Mâle , Acides gras/métabolisme , Adulte d'âge moyen , Fèces/microbiologie , Fèces/composition chimique , Aliment enrichi , Huile de palme , Jeune adulte
19.
ACS Chem Neurosci ; 15(11): 2112-2120, 2024 06 05.
Article de Anglais | MEDLINE | ID: mdl-38776461

RÉSUMÉ

Neuroinflammation plays an important role in Alzheimer's disease and primary tauopathies. The aim of the current study was to map [18F]GSK1482160 for imaging of purinergic P2X7R in Alzheimer's disease and primary tauopathy mouse models. Small animal PET was performed using [18F]GSK1482160 in widely used mouse models of Alzheimer's disease (APP/PS1, 5×FAD, and 3×Tg), 4-repeat tauopathy (rTg4510) mice, and age-matched wild-type mice. Increased uptake of [18F]GSK1482160 was observed in the brains of 7-month-old rTg4510 mice compared to wild-type mice and compared to 3-month-old rTg4510 mice. A positive correlation between hippocampal tau [18F]APN-1607 and [18F]GSK1482160 uptake was found in rTg4510 mice. No significant differences in the uptake of [18F]GSK1482160 was observed for APP/PS1 mice, 5×FAD mice, or 3×Tg mice. Immunofluorescence staining further indicated the distribution of P2X7Rs in the brains of 7-month-old rTg4510 mice with accumulation of tau inclusion. These findings provide in vivo imaging evidence for an increased level of P2X7R in the brains of tauopathy mice.


Sujet(s)
Modèles animaux de maladie humaine , Souris transgéniques , Tomographie par émission de positons , Récepteurs purinergiques P2X7 , Tauopathies , Animaux , Tauopathies/imagerie diagnostique , Tauopathies/métabolisme , Récepteurs purinergiques P2X7/métabolisme , Tomographie par émission de positons/méthodes , Souris , Maladie d'Alzheimer/métabolisme , Maladie d'Alzheimer/imagerie diagnostique , Radio-isotopes du fluor , Encéphale/métabolisme , Encéphale/imagerie diagnostique , Protéines tau/métabolisme
20.
Phytomedicine ; 130: 155705, 2024 Jul 25.
Article de Anglais | MEDLINE | ID: mdl-38761776

RÉSUMÉ

BACKGROUND: Senolytic combination of dasatinib and quercetin (DQ) is the most studied senolytics drugs used to treat various age-related diseases. However, its protective activity against diabetic kidney disease (DKD) and underlying mechanisms are uncertain. PURPOSE: To investigate the functions and potential mechanisms of the senolytics DQ on DKD. METHODS: Diabetic db/db mice were administrated DQ or transfected with over-expressed PPARα or shPPARα vector. The positive control group was administered irbesartan. Renal function and fibrotic changes in kidney tissue were tested. Single-cell RNA-seq (scRNA-seq) was conducted to analyze the differential transcriptome between the diabetic and control mice. Molecular docking simulation was used to assess the combination of DQ and potential factors. Moreover, tubular epithelial cells under high-glucose (HG) conditions were incubated with DQ and transfected with or without over-expressed PPARα/siPPARα vector. RESULTS: DQ significantly improved renal function, histopathological and fibrotic changes, alleviated lipid deposition, and increased ATP levels in mice with DKD. DQ reduced multiple fatty acid oxidation (FAO) pathway-related proteins and up-regulated PPARα in db/db mice. Overexpression of PPARα upregulated the expression of PPARα-targeting downstream FAO pathway-related proteins, restored renal function, and inhibited renal fibrosis in vitro and in vivo. Moreover, molecular docking and dynamics simulation analyses indicated the nephroprotective effect of DQ via binding to PPARα. Knockdown of PPARα reversed the effect of DQ on the FAO pathway and impaired the protective effect of DQ during DKD. CONCLUSION: For the first time, DQ was found to exert a renal protective effect by binding to PPARα and attenuating renal damage through the promotion of FAO in DKD.


Sujet(s)
Dasatinib , Néphropathies diabétiques , Simulation de docking moléculaire , Récepteur PPAR alpha , Quercétine , Animaux , Néphropathies diabétiques/traitement médicamenteux , Quercétine/pharmacologie , Récepteur PPAR alpha/métabolisme , Souris , Dasatinib/pharmacologie , Mâle , Rein/effets des médicaments et des substances chimiques , Rein/anatomopathologie , Souris de lignée C57BL , Diabète expérimental/traitement médicamenteux , Diabète expérimental/complications
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...