Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 309
Filtrer
1.
Biomacromolecules ; 25(7): 4358-4373, 2024 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-38924782

RÉSUMÉ

Chitosan (CS)-based photo-cross-linkable hydrogels have gained increasing attention in biomedical applications. In this study, we grafted CS with gallic acid (GA) by carbodiimide chemistry to prepare the GA-CS conjugate, which was subsequently modified with methacrylic anhydride (MA) modification to obtain the methacrylated GA-CS conjugate (GA-CS-MA). Our results demonstrated that the GA-CS-MA hydrogel not only exhibited improved physicochemical properties but also showed antibacterial, antioxidative, and anti-inflammatory capacity. It showed moderate antibacterial activity and especially showed a more powerful inhibitory effect against Gram-positive bacteria. It modulated macrophage polarization, downregulated pro-inflammatory gene expression, upregulated anti-inflammatory gene expression, and significantly reduced reactive oxygen species (ROS) and nitric oxide (NO) production under lipopolysaccharide (LPS) stimulation. Subcutaneously implanted GA-CS-MA hydrogels induced significantly lower inflammatory responses, as evidenced by less inflammatory cell infiltration, thinner fibrous capsule, and predominately promoted M2 polarization. This study provides a feasible strategy to prepare CS-based photo-cross-linkable hydrogels with improved physicochemical properties for biomedical applications.


Sujet(s)
Antibactériens , Anti-inflammatoires , Antioxydants , Chitosane , Acide gallique , Hydrogels , Méthacrylates , Chitosane/composition chimique , Acide gallique/composition chimique , Acide gallique/pharmacologie , Antibactériens/pharmacologie , Antibactériens/composition chimique , Antibactériens/synthèse chimique , Animaux , Hydrogels/composition chimique , Hydrogels/pharmacologie , Hydrogels/synthèse chimique , Souris , Antioxydants/composition chimique , Antioxydants/pharmacologie , Antioxydants/synthèse chimique , Méthacrylates/composition chimique , Anti-inflammatoires/pharmacologie , Anti-inflammatoires/composition chimique , Cellules RAW 264.7 , Réactifs réticulants/composition chimique , Macrophages/effets des médicaments et des substances chimiques , Macrophages/métabolisme , Monoxyde d'azote/métabolisme
2.
Adv Sci (Weinh) ; : e2402114, 2024 Jun 19.
Article de Anglais | MEDLINE | ID: mdl-38896802

RÉSUMÉ

Spinal cord injury (SCI) is a severe neurological condition that frequently leads to significant sensory, motor, and autonomic dysfunction. This study sought to delineate the potential mechanistic underpinnings of extracellular vesicles (EVs) derived from ginsenoside Rg1-pretreated neuronal cells (Rg1-EVs) in ameliorating SCI. These results demonstrated that treatment with Rg1-EVs substantially improved motor function in spinal cord-injured mice. Rg1-EVs enhance microglial polarization toward the M2 phenotype and repressed oxidative stress, thereby altering immune responses and decreasing inflammatory cytokine secretion. Moreover, Rg1-EVs substantially diminish reactive oxygen species accumulation and enhanced neural tissue repair by regulating mitochondrial function. Proteomic profiling highlighted a significant enrichment of MYCBP2 in Rg1-EVs, and functional assays confirmed that MYCBP2 knockdown counteracted the beneficial effects of Rg1-EVs in vitro and in vivo. Mechanistically, MYCBP2 is implicated in the ubiquitination and degradation of S100A9, thereby promoting microglial M2-phenotype polarization and reducing oxidative stress. Overall, these findings substantiated the pivotal role of Rg1-EVs in neuronal protection and functional recovery following SCI through MYCBP2-mediated ubiquitination of S100A9. This research offers novel mechanistic insights into therapeutic strategies against SCI and supports the clinical potential of Rg1-EVs.

3.
Orthop Surg ; 2024 Jun 11.
Article de Anglais | MEDLINE | ID: mdl-38859720

RÉSUMÉ

OBJECTIVE: Retention or sacrifice of the posterior cruciate ligament (PCL) is one of the most controversial issues while performing total knee arthroplasty (TKA). This study aimed to evaluate the impact of PCL resection on flexion-extension gaps, femoral component rotation, and bone resection amounts during robot-assisted TKA. METHODS: This prospective study included 40 patients with knee osteoarthritis who underwent robot-assisted posterior-stabilized (PS) TKA between September 2021 and February 2022. Of the patients, 75% were women (30/40) with a mean age and BMI of 72.6 years and 27.4 kg/m2, respectively. The guidance module and camera stand assembly were used to capture gaps before and after PCL resection. Measurements of femoral component rotation and bone resection amounts were made in cruciate-retaining (CR) TKA mode and PS-TKA mode. RESULTS: After PCL resection, the mean change in the medial and lateral compartments of flexion gaps increased by 2.0 and 0.6 mm, respectively (p < 0.001). Compared with the CR-TKA mode group, the bone resection amounts of the medial posterior condyle and the lateral posterior condyle in the PS-TKA mode group decreased by 2.0 ± 1.1 and 1.1 ± 1.1 mm, respectively, and the external rotation of the femoral prosthesis relative to the posterior condylar axis and trans-epicondylar line was reduced by 1.0° ± 1.3° and 1.2° ± 1.6°, respectively (p < 0.001). CONCLUSION: The release of the PCL did not affect the extension gap, but significantly increased the flexion gap. Moreover, the increases in the medial flexion gap were greater than those of the lateral flexion gap. After PCL resection, less external rotation of the femoral prosthesis and fewer bone cuts of the posterior femur were needed in PS-TKA.

4.
Neuroscience ; 552: 47-53, 2024 Jun 14.
Article de Anglais | MEDLINE | ID: mdl-38880241

RÉSUMÉ

Cerebral small vessel disease (CSVD) impairs visuospatial function, and this is one of the most obvious areas of cognitive impairment in CSVD. So, recognizing, monitoring, and treating visuospatial dysfunction are all important to the prognosis of CSVD. This review discussed the anatomical and pathological mechanisms, clinical recognition (scales, imaging, and biomarkers), and treatment of cognitive impairment especially visuospatial dysfunction in CSVD.

5.
Nat Metab ; 6(6): 1161-1177, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38698281

RÉSUMÉ

Diabetic cardiomyopathy is characterized by myocardial lipid accumulation and cardiac dysfunction. Bile acid metabolism is known to play a crucial role in cardiovascular and metabolic diseases. Takeda G-protein-coupled receptor 5 (TGR5), a major bile acid receptor, has been implicated in metabolic regulation and myocardial protection. However, the precise involvement of the bile acid-TGR5 pathway in maintaining cardiometabolic homeostasis remains unclear. Here we show decreased plasma bile acid levels in both male and female participants with diabetic myocardial injury. Additionally, we observe increased myocardial lipid accumulation and cardiac dysfunction in cardiomyocyte-specific TGR5-deleted mice (both male and female) subjected to a high-fat diet and streptozotocin treatment or bred on the diabetic db/db genetic background. Further investigation reveals that TGR5 deletion enhances cardiac fatty acid uptake, resulting in lipid accumulation. Mechanistically, TGR5 deletion promotes localization of CD36 on the plasma membrane through the upregulation of CD36 palmitoylation mediated by the palmitoyl acyltransferase DHHC4. Our findings indicate that the TGR5-DHHC4 pathway regulates cardiac fatty acid uptake, which highlights the therapeutic potential of targeting TGR5 in the management of diabetic cardiomyopathy.


Sujet(s)
Cardiomyopathies diabétiques , Acides gras , Récepteurs couplés aux protéines G , Animaux , Récepteurs couplés aux protéines G/métabolisme , Récepteurs couplés aux protéines G/génétique , Cardiomyopathies diabétiques/métabolisme , Souris , Mâle , Femelle , Acides gras/métabolisme , Humains , Souris knockout , Acides et sels biliaires/métabolisme , Alimentation riche en graisse , Antigènes CD36/métabolisme , Antigènes CD36/génétique , Myocarde/métabolisme , Métabolisme lipidique , Myocytes cardiaques/métabolisme , Diabète expérimental/métabolisme
6.
Sci Rep ; 14(1): 10096, 2024 05 02.
Article de Anglais | MEDLINE | ID: mdl-38698014

RÉSUMÉ

Pou6f2 is a genetic connection between central corneal thickness (CCT) in the mouse and a risk factor for developing primary open-angle glaucoma. POU6F2 is also a risk factor for several conditions in humans, including glaucoma, myopia, and dyslexia. Recent findings demonstrate that POU6F2-positive retinal ganglion cells (RGCs) comprise a number of RGC subtypes in the mouse, some of which also co-stain for Cdh6 and Hoxd10. These POU6F2-positive RGCs appear to be novel of ON-OFF directionally selective ganglion cells (ooDSGCs) that do not co-stain with CART or SATB2 (typical ooDSGCs markers). These POU6F2-positive cells are sensitive to damage caused by elevated intraocular pressure. In the DBA/2J mouse glaucoma model, heavily-labeled POU6F2 RGCs decrease by 73% at 8 months of age compared to only 22% loss of total RGCs (labeled with RBPMS). Additionally, Pou6f2-/- mice suffer a significant loss of acuity and spatial contrast sensitivity along with an 11.4% loss of total RGCs. In the rhesus macaque retina, POU6F2 labels the large parasol ganglion cells that form the magnocellular (M) pathway. The association of POU6F2 with the M-pathway may reveal in part its role in human glaucoma, myopia, and dyslexia.


Sujet(s)
Dyslexie , Glaucome , Myopie , Cellules ganglionnaires rétiniennes , Animaux , Humains , Souris , Modèles animaux de maladie humaine , Dyslexie/génétique , Dyslexie/métabolisme , Dyslexie/anatomopathologie , Glaucome/anatomopathologie , Glaucome/métabolisme , Glaucome/génétique , Pression intraoculaire , Souris de lignée DBA , Souris knockout , Myopie/anatomopathologie , Myopie/métabolisme , Myopie/génétique , Cellules ganglionnaires rétiniennes/anatomopathologie , Cellules ganglionnaires rétiniennes/métabolisme , Facteurs de risque
7.
World Neurosurg ; 187: e1097-e1105, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38762028

RÉSUMÉ

OBJECTIVES: To compare magnetic resonance (MR) short T1 inversion recovery (STIR) sequence with MR T2-weighted (T2W) sequence for detecting increased signal intensity (ISI) and assessing outcomes of ISI in cervical spondylotic myelopathy (CSM). METHODS: Data of patients with CSM who showed ISI on MR imaging and had undergone cervical spine surgery were retrospectively reviewed. STIR and T2W images were examined to assess signal intensity ratio (SIR), length and grading of the ISI, maximal spinal cord compression, canal narrowing ratio, and ligamentum flavum hypertrophy. The patients were divided into good and poor groups based on their outcomes. χ2 tests and variance analysis were used to assess intergroup differences. Univariate and multivariate logistic regression analyses were performed to identify risk factors for poor outcomes, and receiver operating characteristic curves were plotted to detect prognostic effects. RESULTS: SIR and ISI lengths were significantly different between the STIR and T2 images. In the univariate logistic regression analysis, age, diabetes, SIRT2, SIRSTIR, and ISISTIR grading were significant factors. Accordingly, in the multivariate logistic regression analysis, age, diabetes, SIRT2, and SIRSTIR were included in the model. Among patients with diabetes, we observed a significant difference between SIRT2 and SIRSTIR. CONCLUSIONS: The STIR sequence demonstrated superior capability to the T2W sequence in detecting ISI; however, there was no obvious difference in predicted outcomes. STIR sequence has a better prognostic value than T2W sequence in patients with diabetes who have CSM. ISI grading based on the STIR sequence may be a clinically valuable indicator.


Sujet(s)
Vertèbres cervicales , Imagerie par résonance magnétique , Spondylose , Humains , Mâle , Femelle , Adulte d'âge moyen , Spondylose/chirurgie , Spondylose/imagerie diagnostique , Imagerie par résonance magnétique/méthodes , Vertèbres cervicales/chirurgie , Vertèbres cervicales/imagerie diagnostique , Sujet âgé , Études rétrospectives , Syndrome de compression médullaire/chirurgie , Syndrome de compression médullaire/imagerie diagnostique , Syndrome de compression médullaire/étiologie , Adulte , Maladies de la moelle épinière/chirurgie , Maladies de la moelle épinière/imagerie diagnostique
8.
Article de Anglais | MEDLINE | ID: mdl-38788061

RÉSUMÉ

OBJECTIVE: To investigate the role of Pink1/Parkin-mediated mitochondrial autophagy in exertional heat stroke-induced acute lung injury in rats. METHODS: Sixty SD rats were divided into four groups: normal group (CON group), normal Parkin overexpression group (CON + Parkin group), exertional heat stroke group (EHS group), and exertional heat stroke Parkin overexpression group (EHS + Parkin group). Adeno-associated virus carrying the Parkin gene was intravenously injected into the rats to overexpress Parkin in the lung tissue. An exertional heat stroke rat model was established, and survival curves were plotted. Lung micro-CT was performed, and lung coefficient and pulmonary microvascular permeability were measured. RESULTS: Compared with the EHS group, the survival rate of rats in the EHS + Parkin overexpression group was significantly increased, lung coefficient and pulmonary microvascular permeability were reduced, and pathological changes such as exudation and consolidation were significantly reduced. The levels of inflammatory factors IL-6, IL-1ß, TNF- α, and ROS were significantly decreased; the degree of mitochondrial swelling in type II alveolar epithelial cells was reduced, and no vacuolization was observed. Lung tissue apoptosis was reduced, and the colocalization fluorescence of Pink1 and Parkin, as well as LC3 and Tom20, were increased. The expression of Parkin and LC3-II/LC3-I ratio in lung tissue were both increased, while the expression of P62, Pink1, MFN2, and PTEN-L was decreased. CONCLUSION: Impairment of Pink1/Parkin-mediated mitochondrial autophagy function is one of the mechanisms of exertional heat stroke-induced acute lung injury in rats. Activation of the Pink1/Parkin pathway can alleviate acute lung injury caused by exertional heat stroke.

9.
IBRO Neurosci Rep ; 16: 560-566, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38764541

RÉSUMÉ

Background: Spinal cord injury (SCI) is a severe impairment of the central nervous system, leading to motor, sensory, and autonomic dysfunction. The present study investigates the efficacy of the polyethylene glycol (PEG)-mediated spinal cord fusion (SCF) techniques, demonstrating efficacious in various animal models with complete spinal cord transection at the T10 level. This research focuses on a comparative analysis of three SCF treatment models in beagles: spinal cord transection (SCT), vascular pedicle hemisected spinal cord transplantation (vSCT), and vascularized allograft spinal cord transplantation (vASCT) surgical model. Methods: Seven female beagles were included in the SCT surgical model, while four female dogs were enrolled in the vSCT surgical model. Additionally, twelve female dogs underwent vASCT in a paired donor-recipient setup. Three surgical model were evaluated and compared through electrophysiology, imaging and behavioral recovery. Results: The results showed a progressive recovery in the SCT, vSCT and vASCT surgical models, with no statistically significant differences observed in cBBB scores at both 2-month and 6-month post-operation (both P>0.05). Neuroimaging analysis across the SCT, vSCT and vASCT surgical models revealed spinal cord graft survival and fiber regrowth across transection sites at 6 months postoperatively. Also, positive MEP waveforms were recorded in all three surgical models at 6-month post-surgery. Conclusion: The study underscores the clinical relevance of PEG-mediated SCF techniques in promoting nerve fusion, repair, and motor functional recovery in SCI. SCT, vSCT, and vASCT, tailored to specific clinical characteristics, demonstrated similar effective therapeutic outcomes.

10.
Langmuir ; 40(21): 11251-11262, 2024 May 28.
Article de Anglais | MEDLINE | ID: mdl-38748644

RÉSUMÉ

Artificial photosynthesis for high-value hydrogen peroxide (H2O2) through a two-electron reduction reaction is a green and sustainable strategy. However, the development of highly active H2O2 photocatalysts is impeded by severe carrier recombination, ineffective active sites, and low surface reaction efficiency. We developed a dual optimization strategy to load dense Ni nanoparticles onto ultrathin porous graphitic carbon nitride (Ni-UPGCN). In the absence and presence of sacrificial agents, Ni-UPGCN achieved H2O2 production rates of 169 and 4116 µmol g-1 h-1 with AQY (apparent quantum efficiency) at 420 nm of 3.14% and 17.71%. Forming a Schottky junction, the surface-modified Ni nanoparticles broaden the light absorption boundary and facilitate charge separation, which act as active sites, promoting O2 adsorption and reducing the formation energy of *OOH (reaction intermediate). This results in a substantial improvement in both H2O2 generation activity and selectivity. The Schottky junction of dual modulation strategy provides novel insights into the advancement of highly effective photocatalytic agents for the photosynthesis of H2O2.

11.
J Nat Prod ; 87(6): 1501-1512, 2024 Jun 28.
Article de Anglais | MEDLINE | ID: mdl-38603577

RÉSUMÉ

Epithelial ovarian cancer is among the deadliest gynecological tumors worldwide. Clinical treatment usually consists of surgery and adjuvant chemo- and radiotherapies. Due to the high rate of recurrence and rapid development of drug resistance, the current focus of research is on finding effective natural products with minimal toxic side effects for treating epithelial ovarian tumors. Cannabidiol is among the most abundant cannabinoids and has a non-psychoactive effect compared to tetrahydrocannabinol, which is a key advantage for clinical application. Studies have shown that cannabidiol has antiproliferative, pro-apoptotic, cytotoxic, antiangiogenic, anti-inflammatory, and immunomodulatory properties. However, its therapeutic value for epithelial ovarian tumors remains unclear. This study aims to investigate the effects of cannabidiol on epithelial ovarian tumors and to elucidate the underlying mechanisms. The results showed that cannabidiol has a significant inhibitory effect on epithelial ovarian tumors. In vivo experiments demonstrated that cannabidiol could inhibit tumor growth by modulating the intestinal microbiome and increasing the abundance of beneficial bacteria. Western blot assays showed that cannabidiol bound to EGFR/AKT/MMPs proteins and suppressed EGFR/AKT/MMPs expression in a dose-dependent manner. Network pharmacology and molecular docking results suggested that cannabidiol could affect the EGFR/AKT/MMPs signaling pathway.


Sujet(s)
Cannabidiol , Carcinome épithélial de l'ovaire , Microbiome gastro-intestinal , Tumeurs de l'ovaire , Cannabidiol/pharmacologie , Cannabidiol/composition chimique , Microbiome gastro-intestinal/effets des médicaments et des substances chimiques , Femelle , Humains , Carcinome épithélial de l'ovaire/traitement médicamenteux , Tumeurs de l'ovaire/traitement médicamenteux , Animaux , Souris , Récepteurs ErbB/métabolisme , Lignée cellulaire tumorale , Protéines proto-oncogènes c-akt/métabolisme , Prolifération cellulaire/effets des médicaments et des substances chimiques , Antinéoplasiques/pharmacologie , Antinéoplasiques/composition chimique , Structure moléculaire
12.
BMC Cancer ; 24(1): 404, 2024 Apr 01.
Article de Anglais | MEDLINE | ID: mdl-38561648

RÉSUMÉ

BACKGROUND: Accurate microsatellite instability (MSI) testing is essential for identifying gastric cancer (GC) patients eligible for immunotherapy. We aimed to develop and validate a CT-based radiomics signature to predict MSI and immunotherapy outcomes in GC. METHODS: This retrospective multicohort study included a total of 457 GC patients from two independent medical centers in China and The Cancer Imaging Archive (TCIA) databases. The primary cohort (n = 201, center 1, 2017-2022), was used for signature development via Least Absolute Shrinkage and Selection Operator (LASSO) and logistic regression analysis. Two independent immunotherapy cohorts, one from center 1 (n = 184, 2018-2021) and another from center 2 (n = 43, 2020-2021), were utilized to assess the signature's association with immunotherapy response and survival. Diagnostic efficiency was evaluated using the area under the receiver operating characteristic curve (AUC), and survival outcomes were analyzed via the Kaplan-Meier method. The TCIA cohort (n = 29) was included to evaluate the immune infiltration landscape of the radiomics signature subgroups using both CT images and mRNA sequencing data. RESULTS: Nine radiomics features were identified for signature development, exhibiting excellent discriminative performance in both the training (AUC: 0.851, 95%CI: 0.782, 0.919) and validation cohorts (AUC: 0.816, 95%CI: 0.706, 0.926). The radscore, calculated using the signature, demonstrated strong predictive abilities for objective response in immunotherapy cohorts (AUC: 0.734, 95%CI: 0.662, 0.806; AUC: 0.724, 95%CI: 0.572, 0.877). Additionally, the radscore showed a significant association with PFS and OS, with GC patients with a low radscore experiencing a significant survival benefit from immunotherapy. Immune infiltration analysis revealed significantly higher levels of CD8 + T cells, activated CD4 + B cells, and TNFRSF18 expression in the low radscore group, while the high radscore group exhibited higher levels of T cells regulatory and HHLA2 expression. CONCLUSION: This study developed a robust radiomics signature with the potential to serve as a non-invasive biomarker for GC's MSI status and immunotherapy response, demonstrating notable links to post-immunotherapy PFS and OS. Additionally, distinct immune profiles were observed between low and high radscore groups, highlighting their potential clinical implications.


Sujet(s)
, Tumeurs de l'estomac , Humains , Études de cohortes , Tumeurs de l'estomac/imagerie diagnostique , Tumeurs de l'estomac/génétique , Tumeurs de l'estomac/thérapie , Études rétrospectives , Instabilité des microsatellites , Immunothérapie , Tomodensitométrie , Immunoglobulines
13.
Appl Opt ; 63(9): 2234-2240, 2024 Mar 20.
Article de Anglais | MEDLINE | ID: mdl-38568577

RÉSUMÉ

Bessel beam arrays are highly attractive due to non-diffraction properties, parallel processing, and large capacity capabilities. However, conventional approaches of generating Bessel beams, such as spatial light modulators, axicons, and diffraction optical elements, suffer from various limitations of system complexity and bulkiness, low uniformity, and limited numerical aperture (NA). The limited NA imposes constraints on achieving minimal full width at half maximum (FWHM) of the Bessel beam, ultimately compromising the resolution of the beam. In this study, we demonstrate a method for generating Bessel beam arrays with regular and random patterns via an ultra-compact metasurface. This approach integrates the phase profile of an optimized beam splitter with a meta-axicon. The Bessel beam arrays exhibit subwavelength dimensions of FWHM (590 nm, ∼0.9λ) and relatively high uniformity of 90% for N A=0.2 and 69% for N A=0.4. Furthermore, the method achieves effective suppression of background noise and zeroth-order intensity compared to methods based on Dammann grating (DG) based metasurfaces. The proposed method highlights potential applications of Bessel beam arrays in various fields, such as laser machining, optical communication, and biomedical imaging.

14.
Exp Eye Res ; 242: 109881, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38554800

RÉSUMÉ

The retinal ganglion cells (RGCs) serve as the critical pathway for transmitting visual information from the retina to the brain, yet they can be dramatically impacted by diseases such as glaucoma. When investigating disease processes affecting RGCs in mouse models, accurately quantifying affected cells becomes essential. However, the use of pan RGC markers like RBPMS or THY1 presents challenges in accurate total cell counting. While Brn3a serves as a reliable RGC nuclear marker for automated counting, it fails to encompass all RGC subtypes in mice. To address this limitation and enable precise automated counting, our research endeavors to develop a method for labeling nuclei in all RGC subtypes. Investigating RGC subtypes labeled with the nuclear marker POU6F2 revealed that numerous RGCs unlabeled by Brn3a were, in fact, labeled with POU6F2. We hypothesize that using antibodies against both Brn3a and POU6F2 would label virtually all RGC nuclei in the mouse retina. Our experiments confirmed that staining retinas with both markers resulted in the labeling of all RGCs. Additionally, when using the cell body marker RBPMS known to label all mouse RGCs, all RBPMS-labeled cells also exhibited Brn3a or POU6F2 labeling. This combination of Brn3a and POU6F2 antibodies provides a pan-RGC nuclear stain, facilitating accurate automated counting by labeling cell nuclei in the retina.


Sujet(s)
Noyau de la cellule , Souris de lignée C57BL , Cellules ganglionnaires rétiniennes , Facteur de transcription Brn-3A , Animaux , Cellules ganglionnaires rétiniennes/cytologie , Cellules ganglionnaires rétiniennes/métabolisme , Souris , Numération cellulaire , Noyau de la cellule/métabolisme , Facteur de transcription Brn-3A/métabolisme , Coloration et marquage/méthodes , Marqueurs biologiques/métabolisme
15.
PLoS One ; 19(3): e0298860, 2024.
Article de Anglais | MEDLINE | ID: mdl-38498431

RÉSUMÉ

BACKGROUND: Oxidative stress is a significant contributor to the development of various diseases, and the oxidative balance score (OBS) is a valuable tool for assessing the impact of dietary and lifestyle factors on oxidative stress in humans. Nevertheless, the precise relationship between OBS and thyroid function in adults remains elusive. METHODS: This cross-sectional study comprised 6222 adult participants drawn from the National Health and Nutrition Examination Survey (NHANES) conducted from 2007 to 2012. Employing weighted multivariable linear regression modeling, the study estimated the connection between OBS quartiles and thyroid functions. The causal relationship between OBS components and thyroid function was analyzed by Mendelian randomization (MR). RESULTS: We found a significant negative correlation between OBS and free thyroxine (FT4) and total thyroxine (TT4). Univariate and multivariate MR Analyses showed a causal relationship between BMI and FT4. Copper, smoking, and riboflavin showed a causal relationship with FT4 after moderation. CONCLUSION: We found that a lifestyle high in antioxidant exposure reduced FT4 and TT4 levels in the population. We suggest that BMI, Copper, and Riboflavin are important factors in the regulation of FT4 levels.


Sujet(s)
Cuivre , Analyse de randomisation mendélienne , Adulte , Humains , Enquêtes nutritionnelles , Études transversales , Glande thyroide , Thyroxine , Stress oxydatif/génétique , Riboflavine , Thyréostimuline
16.
J Transl Med ; 22(1): 252, 2024 Mar 08.
Article de Anglais | MEDLINE | ID: mdl-38459493

RÉSUMÉ

BACKGROUND: Albuminuria, the presence of excess of protein in urine, is a well-known risk factor for early kidney damage among diabetic/prediabetic patients. There is a complex interaction between physical activity (PA) and albuminuria. However, the relationship of specific-domain PA and albuminuria remained obscure. METHODS: Albuminuria was defined as urinary albumin/creatinine ratio (ACR) > 30 mg/g. PA was self-reported by participants and classified into transportation-related PA (TPA), occupation-related PA (OPA), and leisure-time PA (LTPA). Weighted logistic regression was conducted to compute the odds ratios (ORs) and 95% confidence intervals (CIs). Restricted cubic spline (RCS) was used to evaluate the dose-response of PA domains with the risk of albuminuria. RESULTS: A total of 6739 diabetic/prediabetic patients (mean age: 56.52 ± 0.29 years) were enrolled in our study, including 3181 (47.20%) females and 3558 (52.80%) males. Of them, 1578 (23.42%) were identified with albuminuria, and 5161(76.58%) were without albuminuria. Diabetic/prediabetic patients who adhered the PA guidelines for total PA had a 22% decreased risk of albuminuria (OR = 0.78, 95%CI 0.64-0.95), and those met the PA guidelines for LTPA had a 28% decreased of albuminuria (OR = 0.72, 95%CI 0.57-0.92). However, OPA and TPA were both not associated with decreased risk of albuminuria. RCS showed linear relationship between the risk of albuminuria with LTPA. CONCLUSIONS: Meeting the PA guideline for LTPA, but not OPA and TPA, was inversely related to the risk of albuminuria among diabetic/prediabetic patients. Additionally, achieving more than 300 min/week of LTPA conferred the positive effects in reducing albuminuria among diabetic/prediabetic patients.


Sujet(s)
Diabète , État prédiabétique , Mâle , Femelle , Humains , Adulte d'âge moyen , Études transversales , Albuminurie/complications , Exercice physique/physiologie
17.
Cell Mol Life Sci ; 81(1): 137, 2024 Mar 13.
Article de Anglais | MEDLINE | ID: mdl-38478109

RÉSUMÉ

Improving the function of the blood-spinal cord barrier (BSCB) benefits the functional recovery of mice following spinal cord injury (SCI). The death of endothelial cells and disruption of the BSCB at the injury site contribute to secondary damage, and the ubiquitin-proteasome system is involved in regulating protein function. However, little is known about the regulation of deubiquitinated enzymes in endothelial cells and their effect on BSCB function after SCI. We observed that Sox17 is predominantly localized in endothelial cells and is significantly upregulated after SCI and in LPS-treated brain microvascular endothelial cells. In vitro Sox17 knockdown attenuated endothelial cell proliferation, migration, and tube formation, while in vivo Sox17 knockdown inhibited endothelial regeneration and barrier recovery, leading to poor functional recovery after SCI. Conversely, in vivo overexpression of Sox17 promoted angiogenesis and functional recovery after injury. Additionally, immunoprecipitation-mass spectrometry revealed the interaction between the deubiquitinase UCHL1 and Sox17, which stabilized Sox17 and influenced angiogenesis and BSCB repair following injury. By generating UCHL1 conditional knockout mice and conducting rescue experiments, we further validated that the deubiquitinase UCHL1 promotes angiogenesis and restoration of BSCB function after injury by stabilizing Sox17. Collectively, our findings present a novel therapeutic target for treating SCI by revealing a potential mechanism for endothelial cell regeneration and BSCB repair after SCI.


Sujet(s)
Cellules endothéliales , Traumatismes de la moelle épinière , Animaux , Souris , Rats , , Barrière hémato-encéphalique/métabolisme , Enzymes de désubiquitinylation/métabolisme , Cellules endothéliales/métabolisme , Protéines HMGB/métabolisme , Protéines HMGB/pharmacologie , Rat Sprague-Dawley , Récupération fonctionnelle/physiologie , Facteurs de transcription SOX-F/génétique , Moelle spinale/métabolisme , Traumatismes de la moelle épinière/métabolisme , Ubiquitin thiolesterase/génétique , Ubiquitin thiolesterase/métabolisme
18.
Heliyon ; 10(5): e27365, 2024 Mar 15.
Article de Anglais | MEDLINE | ID: mdl-38486764

RÉSUMÉ

Background: Shugan Lidan Xiaoshi granules (SLXG) is a herbal granule formulation developed by extensively modifying multiple traditional Chinese medicine compound prescriptions known for their ability to dissolve stones. It is primarily used for the prevention and treatment of cholelithiasis and possesses significant therapeutic potential in both preventing and treating acute pancreatitis. However, the preventive effects of SLXG on cholelithiasis-related complications, such as acute pancreatitis (AP), have been inadequately researched. Methods: TCMSP database was searched to identify the active components and targets of SLXG's action. The disease gene databases (GeneCards, OMMI, PharmGKB, DrugBank) were used to retrieve the targets associated with AP. A TCM ingredient target network was then constructed by using the intersection of these two datasets. The overlapping targets underwent network analyses, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG)and Protein-Protein Interaction (PPI) analyses. Molecular docking was performed to examine the interaction patterns between the active ingredients and central targets. Results: A "Traditional Chinese Medicine-Component-Target" complex network consisting of 10 traditional Chinese medicines, 114 compounds, and 164 targets was constructed. GO and KEGG analysis showed that SLXG has the potential to regulate the response of oxygen-containing compounds, apoptosis, and inflammatory factors. Nine central genes were identified by the PPI network and subnetwork. IL6 was chosen as the most significant gene for molecular docking. The three active compounds of SLXG: quercetin, luteolin, and paeoniflorin, along with the active site of IL6 have a good binding ability and thus play a preventive role in AP. Conclusion: This study provides evidence of the effective preventive role of SLXG against AP, as indicated by bioinformatics analysis. The preventive effect of SLXG is attributed to its multi-component, multi-target, and multi-pathway mechanisms. This finding provides a solid foundation for future research on the clinical application and mechanism of action of drugs.

19.
J Nanobiotechnology ; 22(1): 116, 2024 Mar 16.
Article de Anglais | MEDLINE | ID: mdl-38493156

RÉSUMÉ

BACKGROUND: In the inflammatory milieu of diabetic chronic wounds, macrophages undergo substantial metabolic reprogramming and play a pivotal role in orchestrating immune responses. Itaconic acid, primarily synthesized by inflammatory macrophages as a byproduct in the tricarboxylic acid cycle, has recently gained increasing attention as an immunomodulator. This study aims to assess the immunomodulatory capacity of an itaconic acid derivative, 4-Octyl itaconate (OI), which was covalently conjugated to electrospun nanofibers and investigated through in vitro studies and a full-thickness wound model of diabetic mice. RESULTS: OI was feasibly conjugated onto chitosan (CS), which was then grafted to electrospun polycaprolactone/gelatin (PG) nanofibers to obtain P/G-CS-OI membranes. The P/G-CS-OI membrane exhibited good mechanical strength, compliance, and biocompatibility. In addition, the sustained OI release endowed the nanofiber membrane with great antioxidative and anti-inflammatory activities as revealed in in vitro and in vivo studies. Specifically, the P/G-CS-OI membrane activated nuclear factor-erythroid-2-related factor 2 (NRF2) by alkylating Kelch-like ECH-associated protein 1 (KEAP1). This antioxidative response modulates macrophage polarization, leading to mitigated inflammatory responses, enhanced angiogenesis, and recovered re-epithelization, finally contributing to improved healing of mouse diabetic wounds. CONCLUSIONS: The P/G-CS-OI nanofiber membrane shows good capacity in macrophage modulation and might be promising for diabetic chronic wound treatment.


Sujet(s)
Chitosane , Diabète expérimental , Nanofibres , Succinates , Souris , Animaux , Protéine-1 de type kelch associée à ECH/métabolisme , Facteur-2 apparenté à NF-E2/métabolisme , Macrophages/métabolisme , Antioxydants/pharmacologie , Cicatrisation de plaie , Chitosane/métabolisme
20.
Article de Anglais | MEDLINE | ID: mdl-38512710

RÉSUMÉ

Purpose: This study aims to evaluate the short-term outcomes and prognosis and the cardiac safety of pegylated liposomal doxorubicin (PLD)-based neoadjuvant chemotherapy (NAC) compared with epirubicin-based therapy in breast cancer treatment. Methods: In total, 304 patients diagnosed with stages II and III breast cancer were enrolled that included 97 cases treated with PLD and 207 controls treated with epirubicin in NAC. The effectiveness of the antibreast cancer treatment was evaluated using overall survival (OS) and disease-free survival (DFS) metrics, whereas cardiac toxicity was measured through the left ventricular ejection fraction (LVEF) and electrocardiogram (ECG) assessments. Results: The 5-year DFS and OS rates in the PLD group were 84.5% and 88.7% (with 15 recurrences and 11 deaths), respectively, whereas in the control group, these rates were 72.9% and 79.2% (with 56 recurrences and 43 deaths). Regarding cardiac toxicity, there was no significant difference in ECG abnormalities or LVEF decline between the two groups. Conclusions: The study suggests that PLD-based NAC may provide substantial benefits in terms of DFS and OS, along with a safe cardiac toxicity profile, in patients with stage II-III breast cancer.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...