Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 269
Filtrer
1.
BMC Microbiol ; 24(1): 239, 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38961321

RÉSUMÉ

BACKGROUND: The gut microbiota significantly influences the health and growth of red-spotted grouper (Epinephelus akaara), a well-known commercial marine fish from Fujian Province in southern China. However, variations in survival strategies and seasons can impact the stability of gut microbiota data, rendering it inaccurate in reflecting the state of gut microbiota. Which impedes the effective enhancement of aquaculture health through a nuanced understanding of gut microbiota. Inspired by this, we conducted a comprehensive analysis of the gut microbiota of wild and captive E. akaara in four seasons. RESULTS: Seventy-two E. akaara samples were collected from wild and captive populations in Dongshan city, during four different seasons. Four sections of the gut were collected to obtain comprehensive information on the gut microbial composition and sequenced using 16S rRNA next-generation Illumina MiSeq. We observed the highest gut microbial diversity in both captive and wild E. akaara during the winter season, and identified strong correlations with water temperature using Mantel analysis. Compared to wild E. akaara, we found a more complex microbial network in captive E. akaara, as evidenced by increased abundance of Bacillaceae, Moraxellaceae and Enterobacteriaceae. In contrast, Vibrionaceae, Clostridiaceae, Flavobacteriaceae and Rhodobacteraceae were found to be more active in wild E. akaara. However, some core microorganisms, such as Firmicutes and Photobacterium, showed similar distribution patterns in both wild and captive groups. Moreover, we found the common community composition and distribution characteristics of top 10 core microbes from foregut to hindgut in E. akaara. CONCLUSIONS: Collectively, the study provides relatively more comprehensive description of the gut microbiota in E. akaara, taking into account survival strategies and temporal dimensions, which yields valuable insights into the gut microbiota of E. akaara and provides a valuable reference to its aquaculture.


Sujet(s)
Bactéries , Microbiome gastro-intestinal , ARN ribosomique 16S , Saisons , Animaux , Microbiome gastro-intestinal/génétique , ARN ribosomique 16S/génétique , Bactéries/classification , Bactéries/génétique , Bactéries/isolement et purification , Chine , Écosystème , Phylogenèse , Aquaculture , Serran/microbiologie , Séquençage nucléotidique à haut débit , Analyse de séquence d'ADN , ADN bactérien/génétique , Biodiversité
2.
Aquat Toxicol ; 273: 107016, 2024 Jun 29.
Article de Anglais | MEDLINE | ID: mdl-38991362

RÉSUMÉ

Polycyclic aromatic hydrocarbons (PAHs) accumulate and integrate into aquatic environments, raising concerns about the well-being and safety of aquatic ecosystems. Benzo[a]pyrene (BaP), a persistent PAH commonly detected in the environment, has been extensively studied. However, the broader multifaceted toxicity potential of BaP on the early life stages of marine fish during chronic exposure to environmentally relevant concentrations needs further exploration. To fill these knowledge gaps, this study assessed the in vivo biotoxicity of BaP (1, 4, and 8 µg/L) in marine medaka (Oryzias melastigma) during early development over a 30-day exposure period. The investigation included morphological, biochemical, and molecular-level analyses to capture the broader potential of BaP toxicity. Morphological analyses showed that exposure to BaP resulted in skeletal curvatures, heart anomalies, growth retardation, elevated mortality, delayed and reduced hatching rates. Biochemical analyses revealed that BaP exposure not only created oxidative stress but also disrupted the activities of antioxidant enzymes. This disturbance in redox balance was further explored by molecular level investigation. The transcriptional profiles revealed impaired oxidative phosphorylation (OXPHOS) and tricarboxylic acid (TCA) cycle pathways, which potentially inhibited the oxidative respiratory chain in fish following exposure to BaP, and reduced the production of adenosine triphosphate (ATP) and succinate dehydrogenase (SDH). Furthermore, this investigation indicated a potential connection to apoptosis, as demonstrated by fluorescence microscopy and histological analyses, and supported by an increase in the expression levels of related genes via real-time quantitative PCR. This study enhances our understanding of the molecular-level impacts of BaP's multifaceted toxicity in the early life stages of marine medaka, and the associated risks.

3.
Hortic Res ; 11(6): uhae113, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38898961

RÉSUMÉ

Chieh-qua is an important cucurbit crop and very popular in South China and Southeast Asia. Despite its significance, its genetic basis and domestication history are unclear. In this study, we have successfully generated a chromosome-level reference genome assembly for the chieh-qua 'A36' using a hybrid assembly strategy that combines PacBio long reads and Illumina short reads. The assembled genome of chieh-qua is approximately 953.3 Mb in size and is organized into 12 chromosomes, with contig N50 of 6.9 Mb and scaffold N50 of 68.2 Mb. Notably, the chieh-qua genome is comparable in size to the wax gourd genome. Through gene prediction analysis, we have identified a total of 24 593 protein-coding genes in the A36 genome. Additionally, approximately 56.6% (539.3 Mb) of the chieh-qua genome consists of repetitive sequences. Comparative genome analysis revealed that chieh-qua and wax gourd are closely related, indicating a close evolutionary relationship between the two species. Population genomic analysis, employing 129 chieh-qua accessions and 146 wax gourd accessions, demonstrated that chieh-qua exhibits greater genetic diversity compared to wax gourd. We also employed the GWAS method to identify related QTLs associated with subgynoecy, an interested and important trait in chieh-qua. The MYB59 (BhiCQ0880026447) exhibited relatively high expression levels in the shoot apex of four subgynoecious varieties compared with monoecious varieties. Overall, this research provides insights into the domestication history of chieh-qua and offers valuable genomic resources for further molecular research.

4.
Biochem Pharmacol ; 226: 116344, 2024 Jun 07.
Article de Anglais | MEDLINE | ID: mdl-38852647

RÉSUMÉ

Antimicrobial peptides (AMPs) are an important component of innate immunity in both vertebrates and invertebrates, and some of the unique characteristics of AMPs are usually associated with their living environment. The marine fish, mudskipper Boleophthalmus pectinirostris, usually live amphibiously in intertidal environments that are quite different from other fish species, which would be an exceptional source of new AMPs. In the study, an AMP named Bolespleenin334-347 was identified, which was a truncated peptide derived from a new functional gene found in B. pectinirostris, that was up-regulated in response to bacterial challenge. Bolespleenin334-347 had only 14 amino acid residues, including five consecutive arginine residues. It was found that the peptide had broad-spectrum antibacterial activity, good thermal stability and sodium ion tolerance. Bolespleenin334-347 killed Acinetobacter baumannii and Staphylococcus aureus by disrupting the structural integrity of the bacterial membrane, leading to leakage of the cellular contents, and inducing accumulation of bacterial endogenous reactive oxygen species (ROS). In addition, Bolespleenin334-347 effectively inhibited biofilm formation of A. baumannii and S. aureus and long-term treatment did not lead to the development of resistance. Importantly, Bolespleenin334-347 maintained stable activity against clinically multi-drug resistant bacterial strains. In addition, it was noteworthy that Bolespleenin334-347 showed superior efficacy to LL-37 and vancomycin in a constructed mouse model of MRSA-induced superficial skin infections, as evidenced by a significant reduction in bacterial load and more favorable wound healing. This study provides an effective antimicrobial agent for topical skin infections with potential therapeutic efficacy for infections with drug-resistant bacteria, including MRSA.

7.
Sci Rep ; 14(1): 2401, 2024 Jan 29.
Article de Anglais | MEDLINE | ID: mdl-38287099

RÉSUMÉ

The epitaxial growth of silicene has been the subject of many investigations, controversies and non-classical results. In particular, the initially promising deposition of Si on a metallic substrate such as Ag(111) has revealed unexpected growth modes where Si is inserted at the beginning of the growth in the first atomic plane of the substrate. In order to rationalize this anomalous growth mode, we develop an out-of-equilibrium description of a lattice-based epitaxial growth model, which growth dynamics are analyzed via kinetic Monte-Carlo simulations. This model incorporates several effects revealed by the experiments such as the intermixing between Si and Ag, and surface effects. It is parametrized thanks to an approach in which we show that relatively precise estimates of energy barriers can be deduced by meticulous analysis of atomic microscopy images. This analysis enables us to reproduce both qualitatively and quantitatively the anomalous growth patterns of Si on Ag(111). We show that the dynamics results in two modes, a classical sub-monolayer growth mode at low temperature, and an inserted growth mode at higher temperatures, where the deposited Si atoms insert in the first layer of the substrate by replacing Ag atoms. Furthermore, we reproduce the non-standard [Formula: see text] shape of the experimental plot of the island density as a function of temperature, with a shift in island density variation during the transition between the submonoloyer and inserted growth modes.

8.
CNS Neurosci Ther ; 30(2): e14409, 2024 02.
Article de Anglais | MEDLINE | ID: mdl-37602891

RÉSUMÉ

BACKGROUND: Alzheimer's disease (AD) is one of the most common neurodegenerative diseases leading to dementia in elderly people. Microglia-mediated neuroinflammation plays an important role in AD pathogenesis, so modulation of neuroinflammation has emerged as an essential therapeutic method to improve AD. The current study aims to investigate whether MKP-1 can regulate microglia phenotype and inflammatory factor release in AD and explore its possible mechanisms. METHODS: Amyloid precursor protein/PS1 double transgenic mice and wild-type mice were selected to study the locations of microglia and amyloid-ß (Aß) plaques in different regions of mice brains. Changes in MKP-1 of microglia were detected using AD model mice and AD model cells. Changes in phenotype and the release of inflammatory factors within immortalized BV2 murine microglia were investigated by regulating the expression of MKP-1. RESULTS: The distribution of microglia and Aß plaques in the AD brain was region-specific. MKP-1 expression was downregulated in AD mice, and in vitro, with increasing Aß concentrations, MKP-1 expression was reduced. MKP-1 over-expression increased M2 microglia but decreased M1 microglia accompanied by changes in inflammatory factors and inhibition of MKP-1 yielded the opposite result. CONCLUSION: MKP-1 regulated microglia phenotype and inflammatory factor release in AD through modulation of the p38 signaling pathway.


Sujet(s)
Maladie d'Alzheimer , Animaux , Souris , Maladie d'Alzheimer/métabolisme , Peptides bêta-amyloïdes/métabolisme , Précurseur de la protéine bêta-amyloïde/génétique , Précurseur de la protéine bêta-amyloïde/métabolisme , Modèles animaux de maladie humaine , Souris transgéniques , Microglie/anatomopathologie , Maladies neuro-inflammatoires
9.
Trends Plant Sci ; 29(2): 114-116, 2024 02.
Article de Anglais | MEDLINE | ID: mdl-37838519

RÉSUMÉ

Application of disease-resistant varieties is the most effective and environmentally friendly way to control crop diseases. However, there is often a trade-off between disease resistance and yield. Several recent studies have demonstrated that genome-editing technology brings a new strategy for generating disease-resistant crops without yield penalties.


Sujet(s)
Systèmes CRISPR-Cas , Édition de gène , Génome végétal/génétique , Amélioration des plantes , Produits agricoles/génétique , Végétaux génétiquement modifiés/génétique
11.
Biochem Pharmacol ; 218: 115917, 2023 12.
Article de Anglais | MEDLINE | ID: mdl-37952897

RÉSUMÉ

Antimicrobial resistance (AMR) constitutes a significant global threat to human health. In recent years, there has been a concerning surge in infections caused by multidrug-resistant bacteria, highlighting the pressing need to urgently explore novel and effective alternatives to conventional antibiotics. Antimicrobial peptides (AMPs) have emerged as a focal point of research, capturing significant attention as promising antimicrobial agents. In this study, we have identified a novel cationic antimicrobial peptide (AMP) named Scyreptin1-30, derived from the marine invertebrate Scylla paramamosain. The results showed that Scyreptin1-30 exhibits a broad-spectrum antimicrobial activity, demonstrating significant potency against both bacteria and fungi, and even against the clinically isolated multidrug-resistant bacteria Pseudomonas aeruginosa. Moreover, Scyreptin1-30 exhibited rapid bactericidal kinetic. The results of antibacterial mechanism showed that Scyreptin1-30 destroyed the integrity of bacterial membranes, leading to bacterial death and exhibited potent anti-biofilm activity against P. aeruginosa. The activity of Scyreptin1-30 against bacteria had a favorable thermal stability, displayed a certain ion tolerance, and showed no discernible cytotoxicity when assessed against both the mammalian cell line HEK293T and the fish cell lines ZF4. In an In vivo study, Scyreptin1-30 exhibited a remarkably reduction in the bacterial load caused by multidrug-resistant P. aeruginosa at the site of infection, and promoted wound healing in a mouse model of burn infection. This study indicated that Scyreptin1-30 holds promise as an effective antibacterial agent, potentially serving as a topical skin treatment against multidrug-resistant bacterial infections, including those caused by P. aeruginosa.


Sujet(s)
Anti-infectieux , Brûlures , Infections à Pseudomonas , Animaux , Souris , Humains , Pseudomonas aeruginosa , Peptides antimicrobiens , Cellules HEK293 , Antibactériens/pharmacologie , Antibactériens/usage thérapeutique , Anti-infectieux/pharmacologie , Infections à Pseudomonas/traitement médicamenteux , Bactéries , Brûlures/traitement médicamenteux , Brûlures/microbiologie , Tests de sensibilité microbienne , Mammifères
13.
Pharmacol Res ; 196: 106933, 2023 Oct.
Article de Anglais | MEDLINE | ID: mdl-37729957

RÉSUMÉ

Both environmental and genetic factors contribute to the etiology of autoimmune thyroid disease (AITD) including Graves' disease (GD) and Hashimoto's thyroiditis (HT). However, the exact pathogenesis and interactions that occur between environmental factors and genes remain unclear, and therapeutic targets require further investigation due to limited therapeutic options. To solve such problems, this study utilized single-cell transcriptome, whole transcriptome, full-length transcriptome (Oxford nanopore technology), and metabolome sequencing to examine thyroid lesion tissues from 2 HT patients and 2 GD patients as well as healthy thyroid tissue from 1 control subject. HT patients had increased ATF4-positive thyroid follicular epithelial (ThyFoEp) cells, which significantly increased endoplasmic reticulum stress. The enhanced sustained stress resulted in cell death mainly including apoptosis and necroptosis. The ATF4-based global gene regulatory network and experimental validation revealed that N6-methyladenosine (m6A) reader hnRNPC promoted the transcriptional activity, synthesis, and translation of ATF4 through mediating m6A modification of ATF4. Increased ATF4 expression initiated endoplasmic reticulum stress signaling, which when sustained, caused apoptosis and necroptosis in ThyFoEp cells, and mediated HT development. Targeting hnRNPC and ATF4 notably decreased ThyFoEp cell death, thus ameliorating disease progression. Collectively, this study reveals the mechanisms by which microenvironmental cells in HT and GD patients trigger and amplify the thyroid autoimmune cascade response. Furthermore, we identify new therapeutic targets for the treatment of autoimmune thyroid disease, hoping to provide a potential way for targeted therapy.

14.
Med Oncol ; 40(8): 217, 2023 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-37393403

RÉSUMÉ

FAM50A encodes a nuclear protein involved in mRNA processing; however, its role in cancer development remains unclear. Herein, we conducted an integrative pan-cancer analysis using The Cancer Genome Atlas, Genotype-Tissue Expression, and the Clinical Proteomic Tumor Analysis Consortium databases. Based on the gene expression data from TCGA and GTEx databases, we compared FAM50A mRNA levels in 33 types of human cancer tissues to those in corresponding normal tissues and found that FAM50A mRNA level was upregulated in 20 of the 33 types of common cancer tissues. Then, we compared the DNA methylation status of the FAM50A promoter in tumor tissues to that in corresponding normal tissues. FAM50A upregulation was accompanied by promoter hypomethylation in 8 of the 20 types of tumor tissues, suggesting that promoter hypomethylation contributes to the upregulation of FAM50A in these cancer tissues. Elevated FAM50A expression in 10 types of cancer tissues was associated with poor prognosis in patients with cancer. FAM50A expression was positively correlated with CD4+ T-lymphocyte and dendritic cell infiltration in cancer tissues but was negatively correlated with CD8+ T-cell infiltration in cancer tissues. FAM50A knockdown caused DNA damage, induced interferon beta and interleukin-6 expression, and repressed the proliferation, invasion, and migration of cancer cells. Our findings indicate that FAM50A might be useful in cancer detection, reveal insights into its role in cancer development, and may contribute to the development of cancer diagnostics and treatments.


Sujet(s)
Tumeurs , Protéomique , Humains , Régulation positive , Activation de la transcription , Tumeurs/génétique , Lymphocytes T CD4+ , Protéines de liaison à l'ADN , Protéines de liaison à l'ARN
15.
Inflammation ; 46(6): 2165-2177, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37462885

RÉSUMÉ

Kawasaki disease (KD) is an autoimmune disease of unknown etiology and has become a main cause of childhood acquired heart disease. KD is more prevalent in males than in females. The reason for this sex bias is unknown. Here, we used whole-exome sequencing (WES) to identify significantly different variants between male and female KD patients. From WES result, a total of 19,500 shared genetic variants in 8421 genes were captured via a series of filters. Further comparisons based on sex were performed to obtain 34 potential sex-biased variants in 34 genes for GO and Reactome Gene Sets enrichment analyses. Moreover, we selected 6 variants associated with immune, cells adhesion, platelet function, homeostasis, and ion channel signaling and expanded the sample size (1247 KD patients containing 713 males and 534 females, 803 healthy population containing 481 males and 322 females) for genotyping validation. From the results, USH2A/rs148135241, LMO7/rs142687160, CEMIP/rs12441101, and EFCC1/rs142391828 presented significant differences of alleles/genotypes frequency distributions between male and female only in KD patients (which were consistent with the result of WES analysis) but not in healthy population. In addition, the result also found that only EFCC1/rs142391828 polymorphism was associated with KD susceptibility. This result suggested that those four variants might play critical roles in sex bias in KD. The study would be in favor of a sex-specific genome atlas establishing and novel sex-specific precision therapies development for KD.


Sujet(s)
Maladie de Kawasaki , Syndromes d'Usher , Humains , Mâle , Femelle , , Maladie de Kawasaki/diagnostic , Maladie de Kawasaki/génétique , Polymorphisme de nucléotide simple , Transduction du signal , Prédisposition génétique à une maladie
16.
Int J Mol Sci ; 24(12)2023 Jun 09.
Article de Anglais | MEDLINE | ID: mdl-37373118

RÉSUMÉ

In recent years, there has been a growing interest in changes in dynamic mechanical properties of mixed rubber during dynamic shear, yet the influence of vulcanized characteristics on the dynamic shear behavior of vulcanized rubber, particularly the effect of cross-linking density, has received little attention. This study focuses on styrene-butadiene rubber (SBR) and aims to investigate the impact of different cross-linking densities (Dc) on dynamic shear behavior using molecular dynamics (MD) simulations. The results reveal a remarkable Payne effect, where the storage modulus experiences a significant drop when the strain amplitude (γ0) exceeds 0.1, which can be attributed to the fracture of the polymer bond and the decrease in the molecular chain's flexibility. The influence of various Dc values mainly resides at the level of molecular aggregation in the system, where higher Dc values impede molecular chain motion and lead to an increase in the storage modulus of SBR. The MD simulation results are verified through comparisons with existing literature.


Sujet(s)
Gastropoda , Caoutchouc , Animaux , Simulation de dynamique moléculaire , Élastomères , Butadiènes
17.
Mol Cancer ; 22(1): 99, 2023 06 23.
Article de Anglais | MEDLINE | ID: mdl-37353784

RÉSUMÉ

BACKGROUND: Lung adenocarcinoma (LUAD) is a common type of lung cancer with a high risk of metastasis, but the exact molecular mechanisms of metastasis are not yet understood. METHODS: This study acquired single-cell transcriptomics profiling of 11 distal normal lung tissues, 11 primary LUAD tissues, and 4 metastatic LUAD tissues from the GSE131907 dataset. The lung multicellular ecosystems were characterized at a single-cell resolution, and the potential mechanisms underlying angiogenesis and metastasis of LUAD were explored. RESULTS: We constructed a global single-cell landscape of 93,610 cells from primary and metastatic LUAD and found that IGF2BP2 was specifically expressed both in a LUAD cell subpopulation (termed as LUAD_IGF2BP2), and an endothelial cell subpopulation (termed as En_IGF2BP2). The LUAD_IGF2BP2 subpopulation progressively formed and dominated the ecology of metastatic LUAD during metastatic evolution. IGF2BP2 was preferentially secreted by exosomes in the LUAD_IGF2BP2 subpopulation, which was absorbed by the En_IGF2BP2 subpopulation in the tumor microenvironment. Subsequently, IGF2BP2 improved the RNA stability of FLT4 through m6A modification, thereby activating the PI3K-Akt signaling pathway, and eventually promoting angiogenesis and metastasis. Analysis of clinical data showed that IGF2BP2 was linked with poor overall survival and relapse-free survival for LUAD patients. CONCLUSIONS: Overall, these findings provide a novel insight into the multicellular ecosystems of primary and metastatic LUAD, and demonstrate that a specific LUAD_IGF2BP2 subpopulation is a key orchestrator promoting angiogenesis and metastasis, with implications for the gene regulatory mechanisms of LUAD metastatic evolution, representing themselves as potential antiangiogenic targets.


Sujet(s)
Adénocarcinome pulmonaire , Tumeurs du poumon , Humains , Méthylation , Écosystème , Cellules endothéliales , Phosphatidylinositol 3-kinases , Récidive tumorale locale , Adénocarcinome pulmonaire/génétique , Tumeurs du poumon/génétique , Microenvironnement tumoral , Protéines de liaison à l'ARN/génétique
18.
Front Microbiol ; 14: 1129568, 2023.
Article de Anglais | MEDLINE | ID: mdl-37180261

RÉSUMÉ

In recent years, new emerging pathogenic microorganisms have frequently appeared in animals, including marine fish, possibly due to climate change, anthropogenic activities, and even cross-species transmission of pathogenic microorganisms among animals or between animals and humans, which poses a serious issue for preventive medicine. In this study, a bacterium was clearly characterized among 64 isolates from the gills of diseased large yellow croaker Larimichthys crocea that were raised in marine aquaculture. This strain was identified as K. kristinae by biochemical tests with a VITEK 2.0 analysis system and 16S rRNA sequencing and named K. kristinae_LC. The potential genes that might encode virulence-factors were widely screened through sequence analysis of the whole genome of K. kristinae_LC. Many genes involved in the two-component system and drug-resistance were also annotated. In addition, 104 unique genes in K. kristinae_LC were identified by pan genome analysis with the genomes of this strain from five different origins (woodpecker, medical resource, environment, and marine sponge reef) and the analysis results demonstrated that their predicted functions might be associated with adaptation to living conditions such as higher salinity, complex marine biomes, and low temperature. A significant difference in genomic organization was found among the K. kristinae strains that might be related to their hosts living in different environments. The animal regression test for this new bacterial isolate was carried out using L. crocea, and the results showed that this bacterium could cause the death of L. crocea and that the fish mortality was dose-dependent within 5 days post infection, indicating the pathogenicity of K. kristinae_LC to marine fish. Since K. kristinae has been reported as a pathogen for humans and bovines, in our study, we revealed a new isolate of K. kristinae_LC from marine fish for the first time, suggesting the potentiality of cross-species transmission among animals or from marine animals to humans, from which we would gain insight to help in future public prevention strategies for new emerging pathogens.

19.
Antimicrob Agents Chemother ; 67(6): e0002223, 2023 06 15.
Article de Anglais | MEDLINE | ID: mdl-37162345

RÉSUMÉ

The emergence of azole-resistant and biofilm-forming Candida spp. contributes to the constantly increasing incidence of vulvovaginal candidiasis. It is imperative to explore new antifungal drugs or potential substituents, such as antimicrobial peptides, to alleviate the serious crisis caused by resistant fungi. In this study, a novel antimicrobial peptide named Scyampcin44-63 was identified in the mud crab Scylla paramamosain. Scyampcin44-63 exhibited broad-spectrum antimicrobial activity against bacteria and fungi, was particularly effective against planktonic and biofilm cells of Candida albicans, and exhibited no cytotoxicity to mammalian cells (HaCaT and RAW264.7) or mouse erythrocytes. Transcriptomic analysis revealed four potential candidacidal modes of Scyampcin44-63, including promotion of apoptosis and autophagy and inhibition of ergosterol biosynthesis and the cell cycle. Further study showed that Scyampcin44-63 caused damage to the plasma membrane and induced apoptosis and cell cycle arrest at G2/M in C. albicans. Scanning and transmission electron microscopy demonstrated that Scyampcin44-63-treated C. albicans cells were deformed with vacuolar expansion and destruction of organelles. In addition, C. albicans cells pretreated with the autophagy inhibitor 3-methyladenine significantly delayed the candidacidal effect of Scyampcin44-63, suggesting that Scyampcin44-63 might contribute to autophagic cell death. In a murine model of vulvovaginal candidiasis, the fungal burden of vaginal lavage was significantly decreased after treatment with Scyampcin44-63.


Sujet(s)
Brachyura , Candidose vulvovaginale , Humains , Femelle , Souris , Animaux , Candidose vulvovaginale/traitement médicamenteux , Candidose vulvovaginale/microbiologie , Peptides antimicrobiens , Modèles animaux de maladie humaine , Candida albicans , Antifongiques/pharmacologie , Antifongiques/usage thérapeutique , Mammifères
20.
Genes Dis ; 10(1): 284-300, 2023 Jan.
Article de Anglais | MEDLINE | ID: mdl-37013063

RÉSUMÉ

Osteoporosis (OP) is a debilitating skeletal abnormality involving bone remodeling and bone cell homeostasis characterized by decreased bone strength and high fracture risk. A novel therapeutic intervention for OP by manipulating cellular autophagy-apoptosis processes to promote skeletal homeostasis is presented. Protective effects of the naturally occurring plant extract Liquiritigenin (LG) were demonstrated in an ovariectomy (OVX)-OP mouse model and preosteoblast MC3T3-E1 cells. Micro-CT and histological staining assessments of skeletal phenotype were applied alongside detection of autophagy activity in osteocytes and MC3T3-E1 cells by transmission electron microscopy (TEM). The effects of LG on chloroquine (CQ)- and the apoptosis-inducing TS-treated osteogenic differentiations and status of lysosomes within MC3T3-E1 cells were analyzed by Neutral red, Alizarin red S and alkaline phosphatase (ALP) staining and Western blot assays. Treatment with LG prevented bone loss, increased osteogenic differentiation in vivo and in vitro, and inhibited osteoclast formation to some extent. TEM analyses revealed that LG can improve auto-lysosomal degradation within osteocytes from OVX mice and MC3T3-E1 cells. The abnormal status of lysosomes associated with CQ and TS treatments was notably alleviated by LG which also reduced levels of apoptosis-induced inhibition of osteogenic differentiation and averted abnormal osteogenic differentiation as a consequence of a blockage in autolysosome degradation. Overall, LG stimulates bone growth in OVX mice through increased osteogenic differentiation and regulation of autophagy-apoptosis mechanisms, presenting an auspicious natural therapy for OP.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...