Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 324
Filtrer
1.
BMC Genomics ; 25(1): 547, 2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38824590

RÉSUMÉ

BACKGROUND: Environmental temperature is critical in regulating biological functions in fish. S. prenanti is a kind of cold-water fish, but of which we have little knowledge about the metabolic adaptation and physiological responses to long-term cold acclimation. RESULTS: In this study, we determined the physiological responses of S. prenanti serum after 30 days of exposure to 6℃. Compared with the control group, the levels of TC, TG, and LDL-C in the serum were significantly (P < 0.05) increased, and the level of glucose was significantly (P < 0.05) decreased under cold acclimation. Cold acclimation had no effect on the gene expression of pro-inflammatory factors and anti-inflammatory factors of S. prenanti. Metabolomics analysis by LC-MS showed that a total of 60 differential expressed metabolites were identified after cold acclimation, which involved in biosynthesis of amino acids, biosynthesis of unsaturated fatty acids, steroid degradation, purine metabolism, and citrate cycle pathways. CONCLUSION: The results indicate that cold acclimation can alter serum metabolites and metabolic pathways to alter energy metabolism and provide insights for the physiological regulation of cold-water fish in response to cold acclimation.


Sujet(s)
Acclimatation , Basse température , Cyprinidae , Métabolome , Métabolomique , Animaux , Cyprinidae/métabolisme , Cyprinidae/physiologie , Cyprinidae/sang , Cyprinidae/génétique
2.
Food Res Int ; 189: 114551, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38876590

RÉSUMÉ

During the cold chain storage process, changes in metabolites and microorganisms are highly likely to lead to changes in meat quality. To elucidate the changes in the composition of metabolites and microbiota during cold chain storage of mutton, this study utilized untargeted metabolome and 5R 16S rRNA sequencing analyses to investigate the changes in the longissimus dorsi under different cold chain temperatures (4 °C and -20 °C). With the extension of cold chain storage time, the meat color darkened and the content of C18:2n-6, C20:3n-6, and C23:0 were significantly increased in mutton. In this study, nine metabolites, including 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine, alanylphenylala-nine, indole-3-acrylic acid and the others, were significantly altered during cold chain storage. The abundance of the dominant microorganisms, including Brachymonas, Aeromonas, Corynebacterium and Steroidobacter, was significantly altered. Furthermore, a high correlation was observed between the different metabolites and microorganisms. These findings provide an in-depth understanding of the effects of different cold chain storage temperatures and times on the quality of mutton.


Sujet(s)
Basse température , Stockage des aliments , Stockage des aliments/méthodes , Animaux , Viande/microbiologie , ARN ribosomique 16S/génétique , Bactéries/génétique , Bactéries/classification , Bactéries/métabolisme , Microbiologie alimentaire , Microbiote , Métabolome , Réfrigération
3.
Plant Cell Rep ; 43(6): 159, 2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38822842

RÉSUMÉ

KEY MESSAGE: AcEXPA1, an aluminum (Al)-inducible expansin gene, is demonstrated to be involved in carpetgrass (Axonopus compressus) root elongation under Al toxicity through analyzing composite carpetgrass plants overexpressing AcEXPA1. Aluminum (Al) toxicity is a major mineral toxicity that limits plant productivity in acidic soils by inhibiting root growth. Carpetgrass (Axonopus compressus), a dominant warm-season turfgrass widely grown in acidic tropical soils, exhibits superior adaptability to Al toxicity. However, the mechanisms underlying its Al tolerance are largely unclear, and knowledge of the functional genes involved in Al detoxification in this turfgrass is limited. In this study, phenotypic variation in Al tolerance, as indicated by relative root elongation, was observed among seventeen carpetgrass genotypes. Al-responsive genes related to cell wall modification were identified in the roots of the Al-tolerant genotype 'A58' via transcriptome analysis. Among them, a gene encoding α-expansin was cloned and designated AcEXPA1 for functional characterization. Observed Al dose effects and temporal responses revealed that Al induced AcEXPA1 expression in carpetgrass roots. Subsequently, an efficient and convenient Agrobacterium rhizogenes-mediated transformation method was established to generate composite carpetgrass plants with transgenic hairy roots for investigating AcEXPA1 involvement in carpetgrass root growth under Al toxicity. AcEXPA1 was successfully overexpressed in the transgenic hairy roots, and AcEXPA1 overexpression enhanced Al tolerance in composite carpetgrass plants through a decrease in Al-induced root growth inhibition. Taken together, these findings suggest that AcEXPA1 contributes to Al tolerance in carpetgrass via root growth regulation.


Sujet(s)
Aluminium , Régulation de l'expression des gènes végétaux , Protéines végétales , Racines de plante , Végétaux génétiquement modifiés , Aluminium/toxicité , Racines de plante/génétique , Racines de plante/croissance et développement , Racines de plante/effets des médicaments et des substances chimiques , Régulation de l'expression des gènes végétaux/effets des médicaments et des substances chimiques , Protéines végétales/génétique , Protéines végétales/métabolisme , Adaptation physiologique/génétique , Adaptation physiologique/effets des médicaments et des substances chimiques , Poaceae/génétique , Poaceae/effets des médicaments et des substances chimiques
4.
Environ Sci Pollut Res Int ; 31(27): 39748-39759, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38833052

RÉSUMÉ

The objective of this study is to assess the effectiveness of a novel structure comprising a geocomposite drainage layer and a thin sand layer (GDL + sand) in mitigating the rapid dumping of excavated clay and its associated issues, such as landslides. Two sets of direct shear tests were conducted to investigate the influence of sand layer thickness and compaction degree on the interface shear behavior of the GDL + sand structure. As the sand layer thickness increased, both the interface shear strength and friction angle gradually increased, first more sharply and then at a slower rate toward stability, while the interface cohesion decreased gradually. The optimal sand layer thickness for achieving the most effective reinforcement in stabilizing the clay was identified as 10 mm. A higher sand layer compaction degree was found to result in increased interface shear strength, interface friction angle, and interface cohesion. Building on these findings, the reinforcing efficiency of the GDL + sand structure was investigated through mechanism analysis in comparison to that of a geogrid + sand structure and GDL structure as per the interface friction coefficient. The ranking of interface friction coefficients among the three structures emerged as: geogrid + sand > GDL + sand > GDL. These results suggests that the GDL + sand structure exhibits superior reinforcement efficiency compared to the GDL structure and offers better drainage efficiency than the geogrid + sand structure.


Sujet(s)
Argile , Sable , Sable/composition chimique , Argile/composition chimique , Résistance au cisaillement , Silicates d'aluminium/composition chimique , Silice/composition chimique
6.
Talanta ; 276: 126262, 2024 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-38761660

RÉSUMÉ

Implementing the concept of turning waste into treasure, the conversion of biomass waste into high-value carbon materials, especially carbon dots (CDs), has pointed out a new direction for disease diagnosis, tumor treatment, and other aspects. In this work, we have reported the GL-CDs(Fe) via a simple synthesis route exploiting Ganoderma lucidum waste as the precursor. Thanks to their excellent optical property and peroxidase mimetic activity, a novel GL-CDs(Fe)-based ratio fluorescence/colorimetric/smartphone triple mode sensing platform is cleverly fabricated for glucose determination with the LOD of 0.28, 0.37, and 0.52 µΜ separately. Especially, this triple mode biosensor is successfully utilized for glucose detection in serum samples with the relative error of less than ±8 % compared with clinical reports. Surprisingly, the GL-CDs(Fe) also presents immense application prospects in high-level anti-counterfeiting aspects due to their excellent luminescent properties, high water-solubility, and easy availability. Furthermore, GL-CDs(Fe) can catalyze excessive H2O2 inside tumor cells to produce massive hydroxyl radicals (·OH) which break down the redox levels of cancer cells and thereby eliminate tumor cells. Thus, this integrated "Three-in-One" multifunctional platform based on GL-CDs(Fe) unveils enormous research and application prospects for bio-sensing, anti-counterfeiting, cancer treatment.


Sujet(s)
Techniques de biocapteur , Carbone , Fer , Boîtes quantiques , Reishi , Carbone/composition chimique , Reishi/composition chimique , Humains , Boîtes quantiques/composition chimique , Fer/composition chimique , Techniques de biocapteur/méthodes , Antinéoplasiques/composition chimique , Antinéoplasiques/pharmacologie , Glucose/analyse , Glucose/composition chimique , Glycémie/analyse , Lignée cellulaire tumorale , Peroxyde d'hydrogène/composition chimique , Peroxyde d'hydrogène/analyse , Colorimétrie/méthodes , Prolifération cellulaire/effets des médicaments et des substances chimiques
7.
Clin Endocrinol (Oxf) ; 101(1): 32-41, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38691659

RÉSUMÉ

OBJECTIVE: Somatic variants in the ubiquitin-specific protease 8 (USP8) gene are the most common genetic cause of Cushing disease. We aimed to explore the relationship between clinical outcomes and USP8 status in a single centre. DESIGN, PATIENTS AND MEASUREMENTS: We investigated the USP8 status in 48 patients with pituitary corticotroph tumours. A median of 62 months of follow-up was conducted after surgery from November 2013 to January 2015. The clinical, biochemical and imaging features were collected and analysed. RESULTS: Seven USP8 variants (p.Ser718Pro, p.Ser719del, p.Pro720Arg, p.Pro720Gln, p.Ser718del, p.Ser718Phe, p.Lys713Arg) were identified in 24 patients (50%). USP8 variants showed a female predominance (100% vs. 75% in wild type [WT], p = .022). Patients with p.Ser719del showed an older age at surgery compared to patients with the p.Pro720Arg variant (47- vs. 24-year-olds, p = .033). Patients with p.Pro720Arg showed a higher rate of macroadenoma compared to patients harbouring the p.Ser718Pro variant (60% vs. 0%, p = .037). No significant differences were observed in serum and urinary cortisol and adrenocorticotropin hormone (ACTH) levels. Immediate surgical remission (79% vs. 75%) and long-term hormone remission (79% vs. 67%) were not significantly different between the two groups. The recurrence rate was 21% (4/19) in patients harbouring USP8 variants and 13% (2/16) in WT patients. Recurrence-free survival presented a tendency to be shorter in USP8-mutated individuals (76.7 vs. 109.2 months, p = .068). CONCLUSIONS: Somatic USP8 variants accounted for 50% of the genetic causes in this cohort with a significant female frequency. A long-term follow-up revealed a tendency toward shorter recurrence-free survival in USP8-mutant patients.


Sujet(s)
Adénome à ACTH , Endopeptidases , Complexes de tri endosomique requis pour le transport , Tumeurs neuroendocrines , Ubiquitin thiolesterase , Humains , Ubiquitin thiolesterase/génétique , Femelle , Mâle , Complexes de tri endosomique requis pour le transport/génétique , Adulte d'âge moyen , Adulte , Pronostic , Adénome à ACTH/génétique , Adénome à ACTH/anatomopathologie , Adénome à ACTH/chirurgie , Endopeptidases/génétique , Tumeurs neuroendocrines/génétique , Tumeurs neuroendocrines/anatomopathologie , Mutation , Jeune adulte , Hormone corticotrope/sang , Sujet âgé , Adolescent
8.
Langmuir ; 40(24): 12427-12436, 2024 Jun 18.
Article de Anglais | MEDLINE | ID: mdl-38804701

RÉSUMÉ

In recent years, increasing attention has been paid to photoelectrochemical (PEC) hydrogen production owing to the utilization of sustainable solar energy and its promising performance. Silicon-based composites are generally considered ideal materials for PEC hydrogen production. However, slow reaction kinetics and poor stability are still key factors hindering the development of silicon-based photoelectrocatalysts. Herein, we present an n+-p Si pyramidal photocathode assembly method to load reduced graphene oxide (rGO) onto the surface of the n+-p Si pyramid by covalently linking (Si/rGO). rGO is utilized as a conductive layer to reduce the interfacial charge-transfer resistance. Then, MoS2 can be successfully electrodeposited on the surface of Si/rGO to form the Si/rGO/MoS2 composite, which possesses excellent PEC hydrogen evolution performance with a high and stable photocurrent of -41.6 mA cm-2 and a hydrogen evolution rate of about 18.1 µmol min-1 cm-2 under 0 V (vs RHE). The covalently linking rGO layer effectively enhances the transfer of photogenerated carriers between the Si substrate and MoS2. MoS2 provides abundant hydrogen evolution active sites, which accelerate the surface reaction kinetics, as well as a protective layer for the Si pyramidal array structure. This work provides a low-cost, convenient, and efficient way of preparing silicon-based photocathodes.

9.
BMC Genomics ; 25(1): 480, 2024 May 15.
Article de Anglais | MEDLINE | ID: mdl-38750582

RÉSUMÉ

Hu sheep (HS), a breed of sheep carrying the FecB mutation gene, is known for its "year-round estrus and multiple births" and is an ideal model for studying the high fecundity mechanisms of livestock. Through analyzing and comparing the genomic selection features of Hu sheep and other sheep breeds, we identified a series of candidate genes that may play a role in Hu sheep's high fecundity mechanisms. In this study, we conducted whole-genome resequencing on six breeds and screened key mutations significantly correlated with high reproductive traits in sheep. Notably, the CC2D1B gene was selected by the fixation index (FST) and the cross-population composite likelihood ratio (XP-CLR) methods in HS and other five breeds. It was worth noting that the CC2D1B gene in HS was different from that in other sheep breeds, and seven missense mutations have been identified. Furthermore, the linkage disequilibrium (LD) analysis revealed a strong linkage disequilibrium in this specific gene region. Subsequently, by performing different grouping based on FecB genotypes in Hu sheep, genome-wide selective signal analysis screened several genes related to reproduction, such as BMPR1B and PPM1K. Besides, FST analysis identified functional genes related to reproductive traits, including RHEB, HSPA2, PPP1CC, HVCN1, and CCDC63. Additionally, a missense mutation was found in the CCDC63 gene and the haplotype was different between the high reproduction (HR) group and low reproduction (LR) group in HS. In summary, we discovered genetic differentiation among six distinct breeding sheep breeds at the whole genome level. Additionally, we identified a set of genes which were associated with reproductive performance in Hu sheep and visualized how these genes differed in different breeds. These findings laid a theoretical foundation for understanding genetic mechanisms behind high prolific traits in sheep.


Sujet(s)
Taille de la portée , Séquençage du génome entier , Animaux , Taille de la portée/génétique , Ovis/génétique , Sélection génétique , Déséquilibre de liaison , Polymorphisme de nucléotide simple , Sélection , Femelle , Fécondité/génétique , Reproduction/génétique
11.
Mikrochim Acta ; 191(5): 254, 2024 Apr 10.
Article de Anglais | MEDLINE | ID: mdl-38594554

RÉSUMÉ

A fluorescent multichannel sensor array has been established based on three carbon dots derived from Tibetan medicine waste for rapid quantification and discrimination of six heavy metal ions. Due to the chelation between metal ions and carbon dots (CDs), this fluorescence "turn off" mode sensing array can quantify six metal ions as low as "µM" level. Moreover, the six heavy metal ions display varying quenching effects on these three CDs owing to diverse chelating abilities between each other, producing differential fluorescent signals for three sensing channels, which can be plotted as specific fingerprints and converted into intuitive identification profiles via principal component analysis (PCA) and hierarchical cluster analysis (HCA) technologies to accurately distinguish Cu2+, Fe3+, Mn2+, Ag+, Ce4+, and Ni2+ with the minimum differentiated concentration of 5 µM. Valuably, this sensing array unveils good sensitivity, exceptional selectivity, ideal stability, and excellent anti-interference ability for both mixed standards and actual samples. Our contribution provides a novel approach for simultaneous determination of multiple heavy metal ions in environmental samples, and it will inspire the development of other advanced optical sensing array for simultaneous quantification and discrimination of multiple targets.

13.
Genes (Basel) ; 15(3)2024 03 03.
Article de Anglais | MEDLINE | ID: mdl-38540389

RÉSUMÉ

ß-1,4-N-acetylgalactosamine transferase 2 (B4GALNT2) is a vital candidate gene that affects the growth traits in sheep. However, whether it has the same function in goats remains to be investigated further. This study selected 348 Nanjiang Yellow goats, screened all exons, and conserved non-coding regions of the B4GALNT2 gene for single-nucleotide polymorphisms (SNPs). Our results revealed the presence of a synonymous mutation, rs672215506, within the exon of the B4GALNT2 gene in the Nanjiang Yellow goat population. The mutation resulted in a decrease in the mRNA stability of the B4GALNT2 gene. The results of SNP detection of the conserved non-coding region of the B4GALNT2 gene showed five potential regulatory SNPs in the Nanjiang Yellow goat population. Except for rs66095343, the ~500 bp fragments of the other four SNPs (rs649127714, rs649573228, rs652899012, and rs639183528) significantly increased the luciferase activity both in goat skeletal muscle satellite cells (MuSCs) and 293T cells. The genetic diversity indexes indicated low or intermediate levels for all six SNPs analyzed, and the genotype frequencies were in Hardy-Weinberg equilibrium. Association analysis showed that rs660965343, rs649127714, and rs649573228 significantly correlate with growth traits in the later stage of growth and development of Nanjiang Yellow goats. The haplotype combinations of H2H3 and H2H2 had higher body weight and greater body size. Moreover, H2H2 haplotype combinations significantly correlated with the litter size of the Nanjiang Yellow goats. The results of our study demonstrate the potential role of the B4GALNT2 gene as a functional genetic marker in the breeding programs of Nanjiang Yellow goats.


Sujet(s)
Capra , Polymorphisme de nucléotide simple , Grossesse , Femelle , Animaux , Ovis , Capra/génétique , Polymorphisme de nucléotide simple/génétique , Génotype , Haplotypes , Taille de la portée/génétique
15.
Domest Anim Endocrinol ; 88: 106847, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38479188

RÉSUMÉ

Cold exposure is a common stressor for newborn goats. Skeletal muscle plays an important role in maintaining whole-body homeostasis of glucose and lipid metabolism. However, the molecular mechanisms underlying regulation of skeletal muscle of newborn goats by cold exposure remains unclear. In this study, we found a significant increase (P < 0.01) in serum glucagon levels after 24 h of cold exposure (COLD, 6°C), while glucose and insulin concentrations were significantly decreased (P < 0.01) compared to room temperature (RT, 25°C). Additionally, we found that cold exposure reduced glycogen content (P < 0.01) in skeletal muscle. Pathway enrichment analysis revealed that cold exposure activated skeletal muscle glucose metabolism pathways (including insulin resistance and the insulin signaling pathway) and mitophagy-related pathways. Cold exposure up-regulated the expression of genes involved in fatty acid and triglyceride synthesis, promoting skeletal muscle lipid deposition. Notably, cold exposure induced mitophagy in skeletal muscle.


Sujet(s)
Animaux nouveau-nés , Basse température , Glucose , Capra , Mitophagie , Muscles squelettiques , Animaux , Capra/physiologie , Muscles squelettiques/métabolisme , Mitophagie/physiologie , Glucose/métabolisme , Métabolisme lipidique , Gouttelettes lipidiques/métabolisme
16.
Endocr Connect ; 13(5)2024 May 01.
Article de Anglais | MEDLINE | ID: mdl-38492309

RÉSUMÉ

Objective: Patients with growth hormone deficiency (GHD) with inadequate growth hormone levels are often correlated with nonalcoholic fatty liver disease (NAFLD). However, the potential mechanism of how GHD influences liver function remains obscure. In the present study, we aim to perform hepatic metabolomics in Lewis dwarf rats, which were the standard congenital isolated GH-deficient rat, to evaluate the characterizations of hepatic metabolic profiles and explore their relations with liver functions. Methods: Lewis dwarf homozygous (dw/dw) rats at 37 weeks (five females and five males), and Lewis dwarf heterozygous (dw/+) rats at 37 weeks (five females and five males) were analyzed in our study. Body lengths and weights, liver weights, serum alanine transaminase (ALT), and serum aspartate transaminase (AST) were measured. ELISA and RT-qPCR were used to assess IGF-1 levels in serum and liver, respectively. The non-targeted metabolomics was performed in the livers of dw/+ and dw/dw rats. Differential metabolites were selected according to the coefficient of variation (CV), variable importance in the projection (VIP) > 1, and P < 0.05. Hierarchical clustering of differential metabolites was conducted, and the KEGG database was used for metabolic pathway analysis. Results: The body weights, body lengths, liver weights, and IGF-1 levels in the serum and liver of dw/dw rats were significantly decreased compared with dw/+ rats. Dw/dw rats exhibited more obvious hepatic steatosis accompanied by higher serum ALT and AST levels. Hepatic metabolomics showed that a total of 88 differential metabolites in positive ion mode, and 51 metabolites in negative ion mode were identified. Among them, lysophosphatidylcholine (LPC) 16:2, LPC 18:3, LPC 22:6, fatty acid esters of hydroxy fatty acids (FAHFA)18:1 were significantly decreased, while palmitoyl acid, dehydrocholic acid, and 7-ketolithocholic acid were significantly increased in dw/dw rats compared with dw/+ rats. These seven differential metabolites were significantly associated with phenotypes of rats. Finally, KEGG pathway analysis showed that the arginine and proline metabolism pathway and bile secretion pathway were mainly clustered. Conclusion: Lewis dw/dw rats with congenital isolated growth hormone deficiency (IGHD) showed liver steatosis and abnormal liver function, which could be potentially associated with the distinctive hepatic metabolic profiles.

17.
Plant Physiol Biochem ; 208: 108535, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38503187

RÉSUMÉ

Aluminum (Al) toxicity is the major constraint on plant growth and productivity in acidic soils. An adaptive mechanism to enhance Al tolerance in plants is mediated malate exudation from roots through the involvement of ALMT (Al-activated malate transporter) channels. The underlying Al tolerance mechanisms of stylo (Stylosanthes guianensis), an important tropical legume that exhibits superior Al tolerance, remain largely unknown, and knowledge of the potential contribution of ALMT genes to Al detoxification in stylo is limited. In this study, stylo root growth was inhibited by Al toxicity, accompanied by increases in malate and citrate exudation from roots. A total of 11 ALMT genes were subsequently identified in the stylo genome and named SgALMT1 to SgALMT11. Diverse responses to metal stresses were observed for these SgALMT genes in stylo roots. Among them, the expressions of 6 out of the 11 SgALMTs were upregulated by Al toxicity. SgALMT2, a root-specific and Al-activated gene, was selected for functional characterization. Subcellular localization analysis revealed that the SgALMT2 protein is localized to the plasma membrane. The function of SgALMT2 in mediating malate release was confirmed by analysis of the malate exudation rate from transgenic composite stylo plants overexpressing SgALMT2. Furthermore, overexpression of SgALMT2 led to increased root growth in transgenic stylo plants treated with Al through decreased Al accumulation in roots. Taken together, the results of this study suggest that malate secretion mediated by SgALMT2 contributes to the ability of stylo to cope with Al toxicity.


Sujet(s)
Aluminium , Fabaceae , Aluminium/toxicité , Aluminium/métabolisme , Malates/métabolisme , Racines de plante/génétique , Racines de plante/métabolisme , Fabaceae/métabolisme
18.
Front Neurosci ; 18: 1348844, 2024.
Article de Anglais | MEDLINE | ID: mdl-38440398

RÉSUMÉ

Alzheimer's disease (AD) is a prevalent neurodegenerative disease that has become one of the main factors affecting human health. It has serious impacts on individuals, families, and society. With the development of population aging, the incidence of AD will further increase worldwide. Emerging evidence suggests that many physiological metabolic processes, such as lipid metabolism, are implicated in the pathogenesis of AD. Bile acids, as the main undertakers of lipid metabolism, play an important role in the occurrence and development of Alzheimer's disease. Tauroursodeoxycholic acid, an endogenous bile acid, has been proven to possess therapeutic effects in different neurodegenerative diseases, including Alzheimer's disease. This review tries to find the relationship between bile acid metabolism and AD, as well as explore the therapeutic potential of bile acid taurocursodeoxycholic acid for this disease. The potential mechanisms of taurocursodeoxycholic acid may include reducing the deposition of Amyloid-ß protein, regulating apoptotic pathways, preventing tau hyperphosphorylation and aggregation, protecting neuronal synapses, exhibiting anti-inflammatory properties, and improving metabolic disorders. The objective of this study is to shed light on the use of tauroursodeoxycholic acid preparations in the prevention and treatment of AD, with the aim of identifying effective treatment targets and clarifying various treatment mechanisms involved in this disease.

19.
Endocrine ; 2024 Mar 27.
Article de Anglais | MEDLINE | ID: mdl-38536548

RÉSUMÉ

PURPOSE: Bone mineral density (BMD) impairment is one of the critical factors for long-term quality of life in adults growth hormone deficiency (AGHD). This study aims to investigate the annual changes in BMD in AGHD patients with different ages of onset and to identify predicting factors that influence BMD. METHODS: AGHD patients (n = 160) with available data for 4 years follow-up from a major tertiary medical center in China were retrospectively included (110 [68.8%] childhood-onset, 119 [74.4%] male). BMD of the axial bone (including total hip, neck of femur, and L1-4) derived from dual X-ray absorptiometry and final height were investigated at the first visit, 12 months, 24 months, 36 months, and 48 months thereafter. Low BMD was defined as Z-score ≤ -2. RESULTS: The prevalence of low BMD was 30.0% at baseline and 12.5% at 4 years of follow-up. The CO AGHD group presented a significantly lower BMD than the AO AGHD group at the baseline (P = 0.009). In contrast, the CO AGHD group had significantly greater median annual BMD change than the AO AGHD group (0.044 vs. -0.0003 g/cm2/year in L1-4, P < 0.001), indicating a significant difference in the overall BMD trend between CO and AO groups. Childhood-onset (odds ratio [OR] 0.326, P = 0.012), low serum testosterone (OR 0.847; P = 0.004) and FT4 (OR 0.595; P = 0.039) level were independent risk factors for BMD loss. CONCLUSION: The annual changes of BMD show a different pattern in AGHD patients with varying ages of onset. Patients with CO AGHD have a lower bone mass, and in general, appropriate replacement therapy is necessary for long-term bone health in AGHD patients.

20.
Front Neurol ; 15: 1341731, 2024.
Article de Anglais | MEDLINE | ID: mdl-38356892

RÉSUMÉ

Objective: To analyze the relationship between serum complement component 1q (C1q) levels and functional prognosis in patients with aneurysmal subarachnoid hemorrhage (aSAH), and to reveal its clinical value. Methods: In this prospective cohort study, we collected clinical data of aSAH patients admitted to the Department of Neurosurgery, Hangzhou First People's Hospital from January 2020 to October 2022. Parameters such as serum C1q levels, Hunt-Hess grade, modified Fisher grade, and the modified Rankin scale (mRS) at 3 months were included for evaluation. Patients were grouped based on the occurrence of delayed cerebral ischemia (DCI). Spearman rank correlation test and Kruskal-Wallis rank sum test were used to analyze the correlation between serum C1q levels, disease severity, and prognosis. Potential risk factors affecting prognosis and the occurrence of DCI were screened through Independent sample t-test or Mann-Whitney U test. Variables with significant differences (p < 0.05) were incorporated into a logistic regression model to identify independent risk factors affecting prognosis and DCI occurrence. Serum C1q levels were plotted as a ROC curve for predicting prognosis and DCI, and the area under the curve was calculated. Results: A total of 107 aSAH patients were analyzed. Serum C1q levels positively correlated with Hunt-Hess grade, modified Fisher grade and mRS (all p < 0.001). Significant differences were observed in C1q levels among different Hunt-Hess grade, mFisher grade and mRS (all p < 0.001). Notably, higher serum C1q levels were seen in the poor prognosis group and DCI group, and correlated with worse prognosis (OR = 36.927, 95%CI 2.003-680.711, p = 0.015), and an increased risk for DCI (OR = 17.334, 95%CI 1.161-258.859, p = 0.039). ROC analysis revealed the significant discriminative power of serum C1q levels for poor prognosis (AUC 0.781; 95%CI 0.673-0.888; p < 0.001) and DCI occurrence (AUC 0.763; 95%CI 0.637-0.888; p < 0.001). Higher C1q levels independently predicted a poor prognosis and DCI with equivalent predictive abilities to Hunt-Hess grade and modified Fisher grade (both p < 0.05). Conclusion: High levels of C1q in the blood is an independent risk factor for poor prognosis and the development of DCI in patients with aSAH. This can more objectively and accurately predict functional outcomes and the incidence of DCI. C1q may have a significant role in the mechanism behind DCI after aSAH.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...