Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 176
Filtrer
1.
Heliyon ; 10(13): e33648, 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-39091931

RÉSUMÉ

The pathogenesis of rheumatoid arthritis (RA) remains elusive. The initiation of joint degeneration is characterized by the loss of self-tolerance in peripheral joints. Ferroptosis, a form of regulated cell death, holds significant importance in the pathophysiology of inflammatory arthritis, primarily due to iron accumulation and the subsequent lipid peroxidation. The present study investigated the association between synovial lesions and ferroptosis-related genes using previously published data from rheumatoid patients. Transcriptome differential gene analysis was employed to identify ferroptosis-related differentially expressed genes (FRDEGs). To validate FRDEGs and screen hub genes, we used weighted gene co-expression network analysis (WGCNA) and receiver operating characteristic (ROC) curves. Subsequently, immune infiltration analysis and single cell analysis were conducted to investigate the relationship between various synovial tissues cells and FRDEGs. The findings were further confirmed through reverse transcription-quantitative polymerase chain reaction (RT-qPCR), immunohistochemical staining, and immunofluorescence techniques. Upon intersecting DEGs with ferroptosis-related genes, we identified a total of 104 FRDEGs. Through the construction of a protein-protein interaction (PPI) network, we pinpointed the top 20 most highly concentrated genes as hub genes. Subsequent analyses using ROC curve and WGCNA validated eight FRDEGs: TIMP1, JUN, EGFR, SREBF1, ADIPOQ, SCD, AR, and FABP4. Immuno-infiltration analyses revealed significant infiltration of immune cell in RA synovial tissues and their correlations with the FRDEGs. Notably, TIMP1 demonstrated a positive correlation with various immune cell populations. Single-cell sequencing date of RA synovial tissue revealed predominant expression of TIMP1 is in fibroblasts. RT-qPCR, immunohistochemistry, and immunofluorescence analyses confirmed significant upregulation of TIMP1 at both mRNA and protein levels in RA synovial tissues and fibroblast-like synoviocytes (FLS). The findings provide novel insights into pathophysiology of peripheral immune tolerance deficiency in RA. The dysregulation of TIMP1, a gene associated with ferroptosis, was significantly observed in RA patients, suggesting its potential as a promising biomarker and therapeutic target.

2.
Plant Physiol Biochem ; 214: 108954, 2024 Jul 22.
Article de Anglais | MEDLINE | ID: mdl-39053314

RÉSUMÉ

Chilling is a prevalent type of abiotic stress that adversely affects agricultural productivity worldwide. Phytochrome interacting factors (PIFs) are a group of transcription factor that are crucial for plant abiotic stress response. Our research reveals that the maize PIF family gene ZmPIF6 is responsive to chilling stress, which mitigates the negative impacts of chilling through reducing reactive oxygen species content and enhancing cell membrane stability at the physiological and biochemical levels. We also found that the ZmPIF6 overexpression lines showed a significant increase in grain size, encompassing both length and width, which mainly due to the increase in cell size. In addition, digital gene expression results suggested that ZmPIF6 regulates the expression of cold-related and grain size-related genes in rice. In light of these findings, ZmPIF6 has a hopeful prospect as a candidate gene of chilling tolerance and crop productivity in the transgenic breeding.

3.
Nat Commun ; 15(1): 5752, 2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-38982135

RÉSUMÉ

The early-life organ development and maturation shape the fundamental blueprint for later-life phenotype. However, a multi-organ proteome atlas from infancy to adulthood is currently not available. Herein, we present a comprehensive proteomic analysis of ten mouse organs (brain, heart, lung, liver, kidney, spleen, stomach, intestine, muscle and skin) at three crucial developmental stages (1-, 4- and 8-weeks after birth) acquired using data-independent acquisition mass spectrometry. We detect and quantify 11,533 protein groups across the ten organs and obtain 115 age-related differentially expressed protein groups that are co-expressed in all organs from infancy to adulthood. We find that spliceosome proteins prevalently play crucial regulatory roles in the early-life development of multiple organs, and detect organ-specific expression patterns and sexual dimorphism. This multi-organ proteome atlas provides a fundamental resource for understanding the molecular mechanisms underlying early-life organ development and maturation.


Sujet(s)
Protéome , Protéomique , Animaux , Protéome/métabolisme , Souris , Femelle , Mâle , Protéomique/méthodes , Rein/métabolisme , Rein/croissance et développement , Splicéosomes/métabolisme , Spécificité d'organe , Souris de lignée C57BL , Encéphale/métabolisme , Encéphale/croissance et développement , Foie/métabolisme , Poumon/métabolisme , Poumon/croissance et développement , Régulation de l'expression des gènes au cours du développement , Caractères sexuels , Rate/métabolisme , Rate/croissance et développement
4.
J Leukoc Biol ; 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38952265

RÉSUMÉ

Aryl hydrocarbon receptor (AhR) is a key transcription factor that modulates the differentiation of T helper 17 (Th17) cells. How AhR is regulated at the post-translational level in Th17 cells remains largely unclear. Here we identify USP21 as a newly defined deubiquitinase of AhR. We demonstrate that USP21 interacts with and stabilizes AhR by removing the K48-linked polyubiquitin chains from AhR. Interestingly, USP21 inhibits the transcriptional activity of AhR in a deubiquitinating-dependent manner. USP21 deubiquitinates AhR at the K432 residue, and the maintenance of ubiquitination on this site is required for the intact transcriptional activity of AhR. Moreover, the deficiency of USP21 promotes the differentiation of Th17 cells both in vitro and in vivo. Consistently, adoptive transfer of USP21 deficient naïve CD4+ T cells elicits more severe colitis in Rag1-/- recipients. Therefore, our study reveals a novel mechanism in which USP21 deubiquitinates AhR and negatively regulates the differentiation of Th17 cells.

5.
Adv Mater ; : e2401559, 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38958107

RÉSUMÉ

Label-free proteomics is widely used to identify disease mechanism and potential therapeutic targets. However, deep proteomics with ultratrace clinical specimen remains a major technical challenge due to extensive contact loss during complex sample pretreatment. Here, a hybrid of four boronic acid-rich lanthanide metal-organic frameworks (MOFs) with high protein affinity is introduced to capture proteins in ultratrace samples jointly by nitrogen-boronate complexation, cation-π and ionic interactions. A MOFs Aided Sample Preparation (MASP) workflow that shrinks sample volume and integrates lysis, protein capture, protein digestion and peptide collection steps into a single PCR tube to minimize sample loss caused by non-specific absorption, is proposed further. MASP is validated to quantify ≈1800 proteins in 10 HEK-293T cells. MASP is applied to profile cerebrospinal fluid (CSF) proteome from cerebral stroke and brain damaged patients, and identified ≈3700 proteins in 1 µL CSF. MASP is further demonstrated to detect ≈9600 proteins in as few as 50 µg mouse brain tissues. MASP thus enables deep, scalable, and reproducible proteome on precious clinical samples with low abundant proteins.

6.
Int Immunopharmacol ; 136: 112264, 2024 Jul 30.
Article de Anglais | MEDLINE | ID: mdl-38810308

RÉSUMÉ

BACKGROUND: Chemotaxis and trafficking of dendritic cells (DCs) induced by cytokine receptors are crucial steps in rheumatoid arthritis (RA) pathogenesis. C-C chemokine receptor type 5 (CCR5) plays a key role in DC movement and has been implicated in multitudinous inflammatory and immunology diseases. Thus, targeting CCR5 to suppress DC chemotaxis is considered as a potential strategy for the management of RA. METHODS: Herein, we first synthesized a new hybrid named CT3-1 which based on artesunate and isatin. Besides, we studied the regulating effectiveness of CT3-1 on bone marrow-derived DCs (BMDCs) and on collagen-induced arthritis (CIA) through RNA-seq analysis, cell function experiments in vitro and mice model in vivo. RESULTS: The results shown that CT3-1 mainly reduced CCR5 expression of immature BMDCs and importantly inhibited immature BMDC migration induced by CCR5 in vitro, with no or minor influence on other functions of DCs, such as phagocytosis and maturation. In the mouse model, CT3-1 relieved arthritis severity and inhibited CIA development. Furthermore, CT3-1 intervention decreased the expression of CCR5 in DCs and reduced the proportion of DCs in the peripheral blood of CIA mice. CONCLUSIONS: Our findings suggest that CCR5-induced chemotaxis and trafficking of immature DCs are important in RA. Targeting CCR5 and inhibiting immature DC chemotaxis may provide a novel choice for the treatment of RA and other similar autoimmune diseases. Moreover, we synthesized a new hybrid compound CT3-1 that could inhibit immature DC trafficking and effectively relieve RA by directly reducing the CCR5 expression of immature DCs.


Sujet(s)
Artésunate , Arthrite expérimentale , Polyarthrite rhumatoïde , Chimiotaxie , Cellules dendritiques , Récepteurs CCR5 , Animaux , Cellules dendritiques/effets des médicaments et des substances chimiques , Cellules dendritiques/immunologie , Récepteurs CCR5/métabolisme , Arthrite expérimentale/traitement médicamenteux , Arthrite expérimentale/immunologie , Chimiotaxie/effets des médicaments et des substances chimiques , Artésunate/pharmacologie , Artésunate/usage thérapeutique , Souris , Polyarthrite rhumatoïde/traitement médicamenteux , Polyarthrite rhumatoïde/immunologie , Souris de lignée DBA , Mâle , Cellules cultivées , Humains
7.
Talanta ; 276: 126266, 2024 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-38759360

RÉSUMÉ

This study advances the detection of bacteria at low concentrations in single-entity electrochemistry (SEE) systems by integrating forced convection. Our results show that forced convection significantly improves the mass transfer rate of electrolyte, with the mass transfer coefficient demonstrating a proportional relationship to the flow rate to the power of 1.37. Notably, while the collision frequency of E. coli initially increases with the flow rate, a subsequent decrease is observed at higher rates. This pattern is attributed to the mechanics of cell collision under forced convection. Specifically, while forced convection propels cells towards the ultra-microelectrode (UME), it does not aid in their penetration through the boundary layer, leading to cells being driven away from the UME at higher flow rates. This hypothesis is supported by the statistical analysis of collision data, including signal heights and rise times. By optimizing the flow rate to 2 mL/min, we achieved enhanced detection of E. coli in concentrations ranging from 0.9 × 107 to 5.0 × 107 cells/mL. This approach significantly increased collision frequency by elevating the mass transfer of cells, with the mass transfer coefficient rising from 0.1 × 10-5 m/s to 0.9 × 10-5 m/s. It provides a viable solution to the challenges of detecting bacteria at low concentrations in SEE systems.


Sujet(s)
Techniques électrochimiques , Escherichia coli , Escherichia coli/isolement et purification , Techniques électrochimiques/méthodes , Convection , Microélectrodes
8.
J Craniofac Surg ; 2024 May 17.
Article de Anglais | MEDLINE | ID: mdl-38758573

RÉSUMÉ

OBJECTIVES: In this study, the authors aimed to evaluate the relationship between pericarotid fat density (PFD) and pathologic carotid plaque risk characteristics. METHODS: The authors retrospectively evaluated 58 patients (mean age: 66.66 ± 7.26 y, 44 males) who were subjected to both carotid endarterectomy and carotid artery computed tomography angiography (CTA) at the authors' institution. The computed tomography values of the adipose tissue around the most severe stenosis carotid artery were measured, and the removed plaques were sent to the Department of Pathology for American Heart Association (AHA) classification. The Wilcoxon signed-rank test was used to detect the difference in PFD values between the operative and nonoperative sides. According to carotid plaque risk characteristics, the associations between PFD and 4 different risk characteristic subgroups were analyzed. The Student t test and χ2 test were used to compare differences between different risk subgroups. Receiver operating characteristic curve analysis was used to evaluate the predictive efficacy of PFD for carotid plaque risk characteristics. RESULTS: The operative side had higher mean Hounsfield units (HU) values compared with the nonoperative side (P < 0.001). The AHA VI and the intraplaque hemorrhage (IPH) subgroups had higher mean HU values compared with the non-AHA VI and the non-IPH subgroups (P < 0.05). Male patients presented with IPH more than female patients (P = 0.047). The results of receiver operating characteristic curve analysis showed that the mean HU value (operative side; area under the curve: 0.729, Sensitivity (SE): 59.26%, Specificity (SP): 80.65%, P = 0.003) had a certain predictive value for diagnosing high-risk VI plaques. Pericarotid fat density ≥ -68.167 HU is expected to serve as a potential cutoff value to identify AHA VI and non-AHA VI subgroups. CONCLUSION: PFD was significantly associated with vulnerable plaques, high-risk AHA VI plaques, and IPH, which could be an indirect clinical marker for vulnerable plaques.

9.
Arthritis Rheumatol ; 2024 Apr 08.
Article de Anglais | MEDLINE | ID: mdl-38589318

RÉSUMÉ

OBJECTIVE: Glucocorticoid-induced tumor necrosis factor receptor superfamily-related protein (GITR), with its ligand (GITRL), plays an important role in CD4+ T cell-mediated autoimmunity. This study aimed to investigate the underlying mechanisms of GITRL in primary Sjögren syndrome (pSS). METHODS: Patients with pSS and healthy controls were recruited. Serum GITRL and Th17-related cytokines were determined. RNA sequencing was performed to decipher key signal pathways. Nonobese diabetes (NOD) mice were adopted as experimental Sjögren models and recombinant adeno-associated virus (rAAV) transduction was conducted to verify the therapeutic potentials of targeting GITRL in vivo. RESULTS: Serum GITRL was significantly higher in patients with pSS and showed a positive correlation with leukopenia, thrombocytopenia, autoantibodies, lung involvement, and disease activity. Serum GITRL was correlated with Th17-related cytokines. GITRL promoted the expansion of Th17 and Th17.1 cells. Expansion of granulocyte-macrophage colony-stimulating factor positive (GM-CSF+) CD4+ T cells induced by GITRL could be inhibited by blockade of GITRL. Moreover, GM-CSF could stimulate GITRL expression on monocytes. RNA sequencing revealed mammalian target of rapamycin complexes 1 (mTORC1) might be the key modulator. The increased phosphorylation of S6 and STAT3 and the expansion of Th17 and Th17.1 cells induced by GITRL were effectively inhibited by rapamycin, suggesting a GITRL-mTORC1-GM-CSF positive loop in pathogenic Th17 response in pSS. Administration of an rAAV vector expressing short hairpin RNA targeting GITRL alleviated disease progression in NOD mice. CONCLUSION: Our results identified the pathogenic role of GITRL in exacerbating disease activity and promoting pathogenic Th17 response in pSS through a GITRL-mTORC1-GM-CSF loop. These findings suggest GITRL might be a promising therapeutic target in the treatment of pSS.

10.
Cytotherapy ; 26(8): 930-938, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38520411

RÉSUMÉ

BACKGROUND AIMS: Rheumatoid arthritis (RA) is characterized by an overactive immune system, with limited treatment options beyond immunosuppressive drugs or biological response modifiers. Human embryonic stem cell-derived mesenchymal stromal cells (hESC-MSCs) represent a novel alternative, possessing diverse immunomodulatory effects. In this study, we aimed to elucidate the therapeutic effects and underlying mechanisms of hESC-MSCs in treating RA. METHODS: MSC-like cells were differentiated from hESC (hESC-MSCs) and cultured in vitro. Cell proliferation was assessed using Cell Counting Kit-8 assay and Ki-67 staining. Flow cytometry was used to analyze cell surface markers, T-cell proliferation and immune cell infiltration. The collagen-induced arthritis (CIA) mouse model and bleomycin-induced model of lung fibrosis (BLE) were established and treated with hESC-MSCs intravenously for in vivo assessment. Pathological analyses, reverse transcription-quantitative polymerase chain reaction and Western blotting were conducted to evaluate the efficacy of hESC-MSCs treatment. RESULTS: Intravenous transplantation of hESC-MSCs effectively reduced inflammation in CIA mice in this study. Furthermore, hESC-MSC administration enhanced regulatory T cell infiltration and activation. Additional findings suggest that hESC-MSCs may reduce lung fibrosis in BLE mouse models, indicating their potential to mitigate complications associated with RA progression. In vitro experiments revealed a significant inhibition of T-cell activation and proliferation during co-culture with hESC-MSCs. In addition, hESC-MSCs demonstrated enhanced proliferative capacity compared with traditional primary MSCs. CONCLUSIONS: Transplantation of hESC-MSCs represents a promising therapeutic strategy for RA, potentially regulating T-cell proliferation and differentiation.


Sujet(s)
Polyarthrite rhumatoïde , Différenciation cellulaire , Modèles animaux de maladie humaine , Cellules souches embryonnaires humaines , Transplantation de cellules souches mésenchymateuses , Cellules souches mésenchymateuses , Fibrose pulmonaire , Animaux , Humains , Cellules souches mésenchymateuses/cytologie , Souris , Polyarthrite rhumatoïde/thérapie , Polyarthrite rhumatoïde/immunologie , Transplantation de cellules souches mésenchymateuses/méthodes , Fibrose pulmonaire/thérapie , Fibrose pulmonaire/anatomopathologie , Cellules souches embryonnaires humaines/cytologie , Prolifération cellulaire , Inflammation/thérapie , Inflammation/anatomopathologie , Lymphocytes T/immunologie , Lymphocytes T régulateurs/immunologie , Arthrite expérimentale/thérapie , Arthrite expérimentale/anatomopathologie , Arthrite expérimentale/immunologie
11.
J Exp Med ; 221(3)2024 Mar 04.
Article de Anglais | MEDLINE | ID: mdl-38353705

RÉSUMÉ

The function of transient receptor potential vanilloid (TRPV) cation channels governing B cell activation remains to be explored. We present evidence that TRPV2 is highly expressed in B cells and plays a crucial role in the formation of the B cell immunological synapse and B cell activation. Physiologically, TRPV2 expression level is positively correlated to influenza-specific antibody production and is low in newborns and seniors. Pathologically, a positive correlation is established between TRPV2 expression and the clinical manifestations of systemic lupus erythematosus (SLE) in adult and child SLE patients. Correspondingly, mice with deficient TRPV2 in B cells display impaired antibody responses following immunization. Mechanistically, the pore and N-terminal domains of TRPV2 are crucial for gating cation permeation and executing mechanosensation in B cells upon antigen stimulation. These processes synergistically contribute to membrane potential depolarization and cytoskeleton remodeling within the B cell immunological synapse, fostering efficient B cell activation. Thus, TRPV2 is critical in augmenting B cell activation and function.


Sujet(s)
Canaux ioniques , Lupus érythémateux disséminé , Nouveau-né , Adulte , Enfant , Humains , Animaux , Souris , Activation des lymphocytes , Anticorps antiviraux , Lymphocytes B , Cations , Canaux cationiques TRPV/génétique
12.
Plant Mol Biol ; 114(1): 1, 2024 Jan 04.
Article de Anglais | MEDLINE | ID: mdl-38177976

RÉSUMÉ

Phytochrome-interacting factors (PIFs) belong to a subfamily of the basic helix-loop-helix (bHLH) family of transcription factors, which serve as a "hub" for development and growth of plants. They have the capability to regulate the expression of many downstream genes, integrate multiple signaling pathways, and act as a signaling center within the cell. In rice (Oryza sativa), the PIF family genes, known as OsPILs, play a crucial part in many different aspects. OsPILs play a crucial role in regulating various aspects of photomorphogenesis, skotomorphogenesis, plant growth, and development in rice. These vital processes include chlorophyll synthesis, plant gravitropism, plant height, flowering, and response to abiotic stress factors such as low temperature, drought, and high salt. Additionally, OsPILs are involved in controlling several important agronomic traits in rice. Some OsPILs members coordinate with each other to function. This review summarizes and prospects the latest research progress on the biological functions of OsPILs transcription factors and provides a reference for further exploring the functions and mechanism of OsPILs.


Sujet(s)
Oryza , Phytochrome , Phytochrome/génétique , Facteurs de transcription à motif basique hélice-boucle-hélice/génétique , Facteurs de transcription à motif basique hélice-boucle-hélice/métabolisme , Stress physiologique/génétique , Régulation de l'expression des gènes végétaux , Protéines végétales/génétique , Protéines végétales/métabolisme
13.
Parasit Vectors ; 17(1): 44, 2024 Jan 30.
Article de Anglais | MEDLINE | ID: mdl-38291478

RÉSUMÉ

BACKGROUND: Systemic lupus erythematosus (SLE) is a complex systemic autoimmune disease characterized by the presence of numerous autoantibodies. The interaction of infectious agents (viruses, bacteria and parasites) and a genetically susceptible host may be a key mechanism for SLE. Toxoplasma gondii is a widespread intracellular parasite that has been implicated in the pathogenesis of autoimmune diseases. However, the relationship between T. gondii infection and the increased risk of SLE in Chinese populations remains unclear. METHODS: The seroprevalence of T. gondii infection was assessed in 1771 serum samples collected from Chinese individuals (908 healthy controls and 863 SLE patients) from different regions of China using an enzyme-linked immunosorbent assay. Serum autoantibodies and clinical information were obtained and analysed. RESULTS: Our observations revealed a higher prevalence of anti-T. gondii antibodies (ATxA) immunoglobulin G (IgG) in serum samples from SLE patients (144/863, 16.7%) than in those from the healthy controls (53/917, 5.8%; P < 0.0001), indicating a 2.48-fold increased risk of SLE in the ATxA-IgG+ population, after adjustment for age and sex (95% confidence interval [CI] 1.70-3.62, P < 0.0001). ATxA-IgG+ SLE patients also showed a 1.75-fold higher risk of developing moderate and severe lupus symptoms (95% CI 1.14-2.70, P = 0.011) compared to ATxA-IgG- patients. Relative to ATxA-IgG- patients, ATxA-IgG+ patients were more likely to develop specific clinical symptoms, including discoid rash, oral ulcer, myalgia and alopecia. Seven antibodies, namely anti-ribosomal RNA protein (rRNP), anti-double stranded DNA (dsDNA), anti-cell membrane DNA (cmDNA), anti-scleroderma-70 (Scl-70), anti-cardiolipin (CL), anti-beta2-glycoprotein-I (B2GPI) and rheumatoid factor (RF), occurred more frequently in ATxA-IgG+ patients. When combined with anti-dsDNA and RF/anti-rRNP/anti-cmDNA/ESR, ATxA-IgG significantly increased the risk for severe lupus. CONCLUSIONS: Our results suggest that ATxA-IgG may be a significant risk factor for SLE prevalence and severity in Chinese populations.


Sujet(s)
Autoanticorps , Lupus érythémateux disséminé , Humains , Études séroépidémiologiques , Prévalence , Lupus érythémateux disséminé/complications , Lupus érythémateux disséminé/épidémiologie , Immunoglobuline G , Facteurs de risque , ADN
14.
Int J Biol Macromol ; 255: 127989, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-37977469

RÉSUMÉ

Electrically conductive metal-organic frameworks (EC-MOFs) have attracted great attentions in electrochemical fields, but their practical application is limited by their hard-to-shape powder form. The aims was to integrate continuously nucleated EC-MOFs on natural wood cellulose scaffold to develop biobased EC-MOFs membrane with robust flexibility and improved electrochemical performance for wearable supercapacitors. EC-MOF materials (NiCAT or CuCAT) were successfully incorporated onto porous tempo-oxidized wood (TOW) scaffold to create ultrathin membranes through electrostatic force-mediated interfacial growth and simple room-temperature densification. The studies demonstrated the uniform and continuous EC-MOFs nanolayer on TOW scaffold and the interfacial bonding between EC-MOF and TOW. The densification of EC-MOF@TOW bulk yielded highly flexible ultrathin membranes (about 0.3 mm) with high tensile stress exceeding 180 MPa. Moreover, the 50 %-NiCAT@TOW membrane demonstrated high electrical conductivity (4.227 S·m-1) and hydrophobicity (contact angle exceeding 130°). Notably, these properties remained stable even after twisting or bending deformation. Furthermore, the electrochemical performance of EC-MOF@TOW membrane with hierarchical pores outperformed the EC-MOF powder electrode. This study innovatively anchored EC-MOFs onto wood through facile process, yielding highly flexible membranes with exceptional performance that outperforms most of reported conductive wood-based membranes. These findings would provide some references for flexible and functional EC-MOF/wood membranes for wearable devices.


Sujet(s)
Réseaux organométalliques , Bois , Poudres , Électricité , Conductivité électrique , Cellulose
15.
Med Res Rev ; 44(2): 867-891, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38054758

RÉSUMÉ

Autoimmune diseases are characterized by the immune system's attack on one's own tissues which are highly diverse and diseases differ in severity, causing damage in virtually all human systems including connective tissue (e.g., rheumatoid arthritis), neurological system (e.g., multiple sclerosis) and digestive system (e.g., inflammatory bowel disease). Historically, treatments normally include pain-killing medication, anti-inflammatory drugs, corticosteroids, and immunosuppressant drugs. However, given the above characteristics, treatment of autoimmune diseases has always been a challenge. Artemisinin is a natural sesquiterpene lactone initially extracted and separated from Chinese medicine Artemisia annua L., which has a long history of curing malaria. Artemisinin's derivatives such as artesunate, dihydroartemisinin, artemether, artemisitene, and so forth, are a family of artemisinins with antimalarial activity. Over the past decades, accumulating evidence have indicated the promising therapeutic potential of artemisinins in autoimmune diseases. Herein, we systematically summarized the research regarding the immunoregulatory properties of artemisinins including artemisinin and its derivatives, discussing their potential therapeutic viability toward major autoimmune diseases and the underlying mechanisms. This review will provide new directions for basic research and clinical translational medicine of artemisinins.


Sujet(s)
Antipaludiques , Artémisinines , Maladies auto-immunes , Humains , Artémisinines/pharmacologie , Artémisinines/usage thérapeutique , Antipaludiques/pharmacologie , Antipaludiques/usage thérapeutique , Artéméther , Maladies auto-immunes/traitement médicamenteux
16.
New Phytol ; 241(5): 2158-2175, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38098211

RÉSUMÉ

Rice OsBBX17 encodes a B-box zinc finger transcription factor in which the N-terminal B-box structural domain interacts with OsMPK1. In addition, it directly binds to the G-box of OsHAK2 and OsHAK7 promoters and represses their transcription. Under saline-alkaline conditions, the expression of OsBBX17 was inhibited. Meanwhile, activation of the OsMPK1-mediated mitogen-activated protein kinase cascade pathway caused OsMPK1 to interact with OsBBX17 and phosphorylate OsBBX17 at the Thr-95 site. It reduced OsBBX17 DNA-binding activity and enhanced saline-alkaline tolerance by deregulating transcriptional repression of OsHAK2 and OsHAK7. Genetic assays showed that the osbbx17-KO had an excellent saline-alkaline tolerance, whereas the opposite was in OsBBX17-OE. In addition, overexpression of OsMPK1 significantly improved saline-alkaline tolerance, but knockout of OsMPK1 caused an increased sensitivity. Further overexpression of OsBBX17 in the osmpk1-KO caused extreme saline-alkaline sensitivity, even a quick death. OsBBX17 was validated in saline-alkaline tolerance from two independent aspects, transcriptional level and post-translational protein modification, unveiling a mechanistic framework by which OsMPK1-mediated phosphorylation of OsBBX17 regulates the transcription of OsHAK2 and OsHAK7 to enhance the Na+ /K+ homeostasis, which partially explains light on the molecular mechanisms of rice responds to saline-alkaline stress via B-box transcription factors for the genetic engineering of saline-alkaline tolerant crops.


Sujet(s)
Oryza , Facteurs de transcription , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme , Oryza/métabolisme , Phosphorylation , Tolérance au sel/génétique , Système de signalisation des MAP kinases , Protéines végétales/métabolisme , Régulation de l'expression des gènes végétaux
17.
Article de Anglais | MEDLINE | ID: mdl-37889403

RÉSUMÉ

PURPOSE: This study aimed to compare the immune responses induced by microwave ablation (MWA), radiofrequency ablation (RFA), and cryoablation (CRYO) in hepatocellular carcinoma (HCC) and identify differences in immune responses and the timing of immune changes. MATERIALS AND METHODS: A bilateral subcutaneous model was established in C57 mice, and the successfully modeled mice were divided into the microwave (n = 15), radiofrequency (n = 15), CRYO (n = 15), control (n = 9), and blank groups (n = 3). Mice in the control group were dissected before ablation, whereas mice in the three ablation groups underwent ultrasound-guided ablation of one axillary tumor. Three mice were sacrificed and dissected at 1-4 weeks after ablation. After tissue processing, flow cytometry was used to detect the levels of CD8 + T and regulatory T (Treg) cells in the tissue, and western blotting was used to assess the level of programmed cell death ligand 1 (PD-L1) protein in the tumor tissue. RESULTS: The pattern of immune changes after the three types of ablation was consistent, with immune changes occurring at 3-4 weeks. CRYO induced the most significant increase in the percentage of CD8 + T cells. There were no significant differences in the levels of Treg cells and the level of PD-L1 protein among the three types of ablation (p > 0.05), but the decline in Treg cells and PD-L1 protein level caused by CRYO was the most pronounced. CONCLUSION: In the HCC mouse model, the immune changes following the three types of ablation were consistent, with immune changes occurring at 3-4 weeks. Among them, CRYO elicited the strongest adaptive immune response, and RFA outperformed MWA.

18.
Phytomedicine ; 121: 155109, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37778247

RÉSUMÉ

BACKGROUND: Rheumatoid arthritis (RA) is an autoimmune disease known as a leading cause of disability with considerable mortality. Developing alternative drugs and targets for RA treatment is an urgent issue. Sesamol is a phenolic compound isolated from natural food sesame (Sesamum indicum L.) with various biological activities. PURPOSE: The current research intended to illuminate the bioactivity and mechanisms of sesamol in RA fibroblast-like synoviocytes (FLS), and aimed to estimate the potential clinical application value of sesamol in RA treatment. METHODS: CCK-8, EdU, and flow cytometry assays, as well as transwell tests were applied to observe the effects of sesamol on the abnormal functions of RA-FLS. Moreover, synovial organoids and a collagen-induced arthritis (CIA) mouse model were constructed to further explore the therapeutic capacity of sesamol on RA. Furthermore, RNA sequencing combined with quantitative real-time PCR assay, Western blot as well as co-immunoprecipitation were employed to clarify the mechanism of sesamol in regulating RA progression. RESULTS: Sesamol suppressed the proliferation through inhibiting DNA replication, triggering cell cycle arrest and apoptosis of RA-FLS. Besides, sesamol impaired RA-FLS migration and invasion. Interestingly, sesamol inhibited the growth of constructed synovial organoids and alleviated RA symptoms in CIA mice. Moreover, RNA sequencing further implicated p53 signaling as a downstream pathway of sesamol. Furthermore, sesamol was shown to decrease p53 ubiquitination and degradation, thereby activating p53 signaling. Finally, bioinformatics analyses also highlighted the importance of sesamol-regulated networks in the progression of RA. CONCLUSIONS: Our investigation demonstrated that sesamol served as a novel p53 stabilizer to attenuate the abnormal functions of RA-FLS via facilitating the activation of p53 signaling. Moreover, our study highlighted that sesamol might be an effective lead compound or candidate drug and p53 could be a promising target for the therapy of RA.


Sujet(s)
Arthrite expérimentale , Polyarthrite rhumatoïde , Cellules synoviales , Souris , Animaux , Protéine p53 suppresseur de tumeur/métabolisme , Prolifération cellulaire , Polyarthrite rhumatoïde/traitement médicamenteux , Polyarthrite rhumatoïde/métabolisme , Fibroblastes , Cellules cultivées , Membrane synoviale/métabolisme , Arthrite expérimentale/traitement médicamenteux , Arthrite expérimentale/métabolisme
19.
Int Immunopharmacol ; 124(Pt B): 110925, 2023 Nov.
Article de Anglais | MEDLINE | ID: mdl-37742366

RÉSUMÉ

OBJECTIVE: This study investigated the effectiveness of arecoline hydrobromide (AH) on the functions of rheumatoid arthritis fibroblast-like synoviocytes (RA-FLSs) and collagen-induced arthritis (CIA) mice. METHODS: Immunofluorescence was used to identify RA-FLSs. Cell Counting Kit-8 (CCK-8) was used to determine the viability of RA-FLSs and the half maximal inhibitory concentration (IC50) of AH. The 5-ethynyl-2'-deoxyuridine (EdU) assay was used to detect DNA replication in RA-FLSs. Cell cycle and apoptosis were examined by flow cytometry. Migration and invasion, as well as wound healing assays, were employed to determine cell migration and invasion ability. Proteins and mRNA expression levels were investigated using Western blot, quantitative real-time PCR (RT-qPCR), and immunofluorescence. The CIA mice model was used to assess the effect of AH in vivo. RNA-sequencing (RNA-seq) was used to find the potential signaling pathways of AH against RA, and Western blot was used to verify the key signaling pathway of AH on RA-FLSs. Network pharmacology and molecular docking were used to predict drug targets. RESULTS: AH inhibited the proliferation and DNA replication of RA-FLSs, promoted cell cycle arrest by reducing the levels of cyclin-dependent kinase 1 (CDK1), cyclin A2, and cyclin B1, promoted apoptosis by suppressing B-cell lymphoma-2 (Bcl-2) expression, and suppressed migration and invasion by inhibiting vimentin expression in RA-FLSs. AH was also effective in relieving arthritis in vivo. RNA sequencing analyses suggested that AH inhibited the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway in RA-FLSs, which was also confirmed in Western blot analysis. Furthermore, network pharmacology and molecular docking suggested that F2, MAPK14, SRC, AKT1, and CTSK might be the direct targets of AH. CONCLUSION: AH can modulate the pathological process of RA-FLSs by blocking the PI3K/AKT pathway and relieve CIA in mice, making it a potential new small molecule candidate.


Sujet(s)
Arthrite expérimentale , Polyarthrite rhumatoïde , Cellules synoviales , Animaux , Souris , Protéines proto-oncogènes c-akt/métabolisme , Phosphatidylinositol 3-kinase/métabolisme , Phosphatidylinositol 3-kinases/métabolisme , Arthrite expérimentale/anatomopathologie , Simulation de docking moléculaire , Prolifération cellulaire , Polyarthrite rhumatoïde/métabolisme , Fibroblastes , Cellules cultivées
20.
Front Pediatr ; 11: 1219878, 2023.
Article de Anglais | MEDLINE | ID: mdl-37635796

RÉSUMÉ

Testicular necrosis is a rare and severe complication of immunoglobulin A (IgA) vasculitis (IgAV). Herein, We report a case of a 10-year-old boy who was admitted to the hospital due to skin purpura and intermittent abdominal pain for 10 days and bilateral testicular pain for 2 days. Scrotal ultrasonography indicated right testicle ischemia, right epididymo-orchitis, and bilateral hydrocele of the testis. Scrotal surgical exploration revealed significant swelling and darkening of the right testicle. Conservative treatment led to improvement in his condition, and he was discharged. During 3 months of follow-up, there was no recurrence of skin purpura or pain, and the urine tests were normal. Color ultrasound indicated only partial blood flow signal to the right testicle tissue, which was slightly smaller than the left testicle. This case highlights the need for continuous attention from clinicians to the signs and symptoms of the reproductive system during the diagnosis and treatment of IgAV. Continuous monitoring with ultrasound can aid in early detection, diagnosis, and treatment of reproductive system lesions of IgA vasculitis.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE