Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 390
Filtrer
1.
Commun Biol ; 7(1): 1103, 2024 Sep 09.
Article de Anglais | MEDLINE | ID: mdl-39251807

RÉSUMÉ

Neurofilament light chain (NfL) levels in circulation have been established as a sensitive biomarker of neuro-axonal damage across a range of neurodegenerative disorders. Elucidation of the genetic architecture of blood NfL levels could provide new insights into molecular mechanisms underlying neurodegenerative disorders. In this meta-analysis of genome-wide association studies (GWAS) of blood NfL levels from eleven cohorts of European ancestry, we identify two genome-wide significant loci at 16p12 (UMOD) and 17q24 (SLC39A11). We observe association of three loci at 1q43 (FMN2), 12q14, and 12q21 with blood NfL levels in the meta-analysis of African-American ancestry. In the trans-ethnic meta-analysis, we identify three additional genome-wide significant loci at 1p32 (FGGY), 6q14 (TBX18), and 4q21. In the post-GWAS analyses, we observe the association of higher NfL polygenic risk score with increased plasma levels of total-tau, Aß-40, Aß-42, and higher incidence of Alzheimer's disease in the Rotterdam Study. Furthermore, Mendelian randomization analysis results suggest that a lower kidney function could cause higher blood NfL levels. This study uncovers multiple genetic loci of blood NfL levels, highlighting the genes related to molecular mechanism of neurodegeneration.


Sujet(s)
Étude d'association pangénomique , Maladies neurodégénératives , Protéines neurofilamenteuses , Humains , Protéines neurofilamenteuses/génétique , Protéines neurofilamenteuses/sang , Maladies neurodégénératives/génétique , Maladies neurodégénératives/sang , Prédisposition génétique à une maladie , Locus génétiques , Marqueurs biologiques/sang , Polymorphisme de nucléotide simple , Mâle , Femelle , Maladie d'Alzheimer/génétique , Maladie d'Alzheimer/sang
2.
J Lipid Res ; 65(9): 100623, 2024 Aug 19.
Article de Anglais | MEDLINE | ID: mdl-39154732

RÉSUMÉ

Natriuretic peptide receptor-C (NPR-C) is highly expressed in adipose tissues and regulates obesity-related diseases; however, the detailed mechanism remains unknown. In this research, we aimed to explore the potential role of NPR-C in cold exposure and high-fat/high-sugar (HF/HS) diet-induced metabolic changes, especially in regulating white adipose tissue (WAT) mitochondrial function. Our findings showed that NPR-C expression, especially in epididymal WAT (eWAT), was reduced after cold exposure. Global Npr3 (gene encoding NPR-C protein) deficiency led to reduced body weight, increased WAT browning, thermogenesis, and enhanced expression of genes related to mitochondrial biogenesis. RNA-sequencing of eWAT showed that Npr3 deficiency enhanced the expression of mitochondrial respiratory chain complex genes and promoted mitochondrial oxidative phosphorylation in response to cold exposure. In addition, Npr3 KO mice were able to resist obesity induced by HF/HS diet. Npr3 knockdown in stromal vascular fraction (SVF)-induced white adipocytes promoted the expression of proliferator-activated receptor gamma coactivator 1α (PGC1α), uncoupling protein one (UCP1), and mitochondrial respiratory chain complexes. Mechanistically, NPR-C inhibited cGMP and calcium signaling in an NPR-B-dependent manner but suppressed cAMP signaling in an NPR-B-independent manner. Moreover, Npr3 knockdown induced browning via AKT and p38 pathway activation, which were attenuated by Npr2 knockdown. Importantly, treatment with the NPR-C-specific antagonist, AP-811, decreased WAT mass and increased PGC-1α, UCP1, and mitochondrial complex expression. Our findings reveal that NPR-C deficiency enhances mitochondrial function and energy expenditure in white adipose tissue, contributing to improved metabolic health and resistance to obesity.

3.
Nat Microbiol ; 9(8): 1918-1928, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39095499

RÉSUMÉ

The soil microbiome is recognized as an essential component of healthy soils. Viruses are also diverse and abundant in soils, but their roles in soil systems remain unclear. Here we argue for the consideration of viruses in soil microbial food webs and describe the impact of viruses on soil biogeochemistry. The soil food web is an intricate series of trophic levels that span from autotrophic microorganisms to plants and animals. Each soil system encompasses contrasting and dynamic physicochemical conditions, with labyrinthine habitats composed of particles. Conditions are prone to shifts in space and time, and this variability can obstruct or facilitate interactions of microorganisms and viruses. Because viruses can infect all domains of life, they must be considered as key regulators of soil food web dynamics and biogeochemical cycling. We highlight future research avenues that will enable a more robust understanding of the roles of viruses in soil function and health.


Sujet(s)
Chaine alimentaire , Microbiote , Microbiologie du sol , Sol , Virus , Virus/génétique , Virus/classification , Virus/isolement et purification , Sol/composition chimique , Animaux , Plantes/virologie , Plantes/microbiologie , Écosystème , Bactéries/virologie , Bactéries/métabolisme , Bactéries/génétique
4.
Hellenic J Cardiol ; 2024 Aug 09.
Article de Anglais | MEDLINE | ID: mdl-39128707

RÉSUMÉ

OBJECTIVE: This study aimed to leverage real-world electronic medical record (EMR) data to develop interpretable machine learning models for diagnosis of Kawasaki disease, while also exploring and prioritizing the significant risk factors. METHODS: A comprehensive study was conducted on 4,087 pediatric patients at the Children's Hospital of Chongqing, China. The study collected demographic data, physical examination results, and laboratory findings. Statistical analyses were performed using SPSS 26.0. The optimal feature subset was employed to develop intelligent diagnostic prediction models based on the Light Gradient Boosting Machine (LGBM), Explainable Boosting Machine (EBM), Gradient Boosting Classifier (GBC), Fast Interpretable Greedy-Tree Sums (FIGS), Decision Tree (DT), AdaBoost Classifier (AdaBoost), and Logistic Regression (LR). Model performance was evaluated in three dimensions: discriminative ability via Receiver Operating Characteristic curves, calibration accuracy using calibration curves, and interpretability through Shapley Additive Explanations (SHAP) and Local Interpretable Model-Agnostic Explanations (LIME). RESULTS: In this study, Kawasaki disease was diagnosed in 2,971 participants. Analysis was conducted on 31 indicators, including red blood cell distribution width and erythrocyte sedimentation rate. The EBM model demonstrated superior performance compared to other models, with an Area Under the Curve (AUC) of 0.97, second only to the GBC model. Furthermore, the EBM model exhibited the highest calibration accuracy and maintained its interpretability without relying on external analytical tools like SHAP and LIME, thus reducing interpretation biases. Platelet distribution width, total protein, and erythrocyte sedimentation rate were identified by the model as significant predictors for the diagnosis of Kawasaki disease. CONCLUSIONS: This study employed diverse machine learning models for early diagnosis of Kawasaki disease. The findings demonstrated that interpretable models, like EBM, outperformed traditional machine learning models in terms of both interpretability and performance. Ensuring consistency between predictive models and clinical evidence is crucial for the successful integration of artificial intelligence into real-world clinical practice.

6.
Front Plant Sci ; 15: 1425651, 2024.
Article de Anglais | MEDLINE | ID: mdl-39139726

RÉSUMÉ

The E3 enzyme in the UPS pathway is a crucial factor for inhibiting substrate specificity. In Solanaceae, the U-box E3 ubiquitin ligase has a complex relationship with plant growth and development, and plays a pivotal role in responding to various biotic and abiotic stresses. The analysis of the U-box gene family in Solanaceae and its expression profile under different stresses holds significant implications. A total of 116 tobacco NtU-boxs and 56 eggplant SmU-boxs were identified based on their respective genome sequences. Phylogenetic analysis of U-box genes in tobacco, eggplant, tomato, Arabidopsis, pepper, and potato revealed five distinct subgroups (I-V). Gene structure and protein motifs analysis found a high degree of conservation in both exon/intron organization and protein motifs among tobacco and eggplant U-box genes especially the members within the same subfamily. A total of 15 pairs of segmental duplication and 1 gene pair of tandem duplication were identified in tobacco based on the analysis of gene duplication events, while 10 pairs of segmental duplication in eggplant. It is speculated that segmental duplication events are the primary driver for the expansion of the U-box gene family in both tobacco and eggplant. The promoters of NtU-box and SmU-box genes contained cis-regulatory elements associated with cellular development, phytohormones, environment stress, and photoresponsive elements. Transcriptomic data analysis shows that the expression levels of the tobacco and eggplant U-box genes in different tissues and various abiotic stress conditions. Using cultivar Hongda of tobacco and cultivar Yanzhi of eggplant as materials, qRT-PCR analysis has revealed that 15 selected NtU-box genes and 8 SmU-box may play important roles in response to pathogen Ras invasion both in tobacco and eggplant.

7.
Heliyon ; 10(15): e35160, 2024 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-39170419

RÉSUMÉ

Background: Previous observational studies have investigated the correlation between calcium homeostasis modulator levels and endometriosis risk. Yet, the genetic association between body calcium homeostasis and endometriosis risk remains to be elucidated. Methods: Four tiers of Mendelian randomization (MR) analysis were conducted, as follows: (1) single univariate MR and (2) multivariate MR to evaluate the correlation between calcium homeostasis regulators and endometriosis; (3) inverse MR to probe the influence of endometriosis on body calcium homeostasis; (4) two-sample MR to scrutinize the connection between calcium levels and endometriosis categories. Results: The two-sample MR analysis unveiled a robust positive correlation between genetically inferred calcium levels and endometriosis risk (IVW: OR = 1.15, 95 % CI: 1.02-1.29, p = 0.018). The MVMR analysis corroborated that the positive correlation of calcium levels with endometriosis persisted after adjusting for 25(OH)D and PTH. The inverse MR analysis disclosed a significant association between endometriosis and 25(OH)D (ß = 0.01, 95 % CI: 0.00-0.02, p = 0.007) and calcium (ß = 0.02, 95 % CI: 0.00-0.04, p = 0.035). The two-sample MR analysis further demonstrated that calcium levels were positively linked solely to endometriosis of uterus (i.e. adenomyosis, IVW: OR = 1.23, 95 % CI: 1.01-1.49, p = 0.038), with no evidence of a influence on other endometriosis categories. Conclusions: This study, employing various types of MR, offers some genetic evidence for the relationship between calcium homeostasis and endometriosis, augmenting the current comprehension of the complex association between the two and suggesting that calcium levels are a risk factor for endometriosis. These findings provide a unique genetic perspective that may spur further investigation and may inform future strategies for managing patients with endometriosis.

8.
Accid Anal Prev ; 207: 107753, 2024 Nov.
Article de Anglais | MEDLINE | ID: mdl-39208515

RÉSUMÉ

The existence of internal and external heterogeneity has been established by numerous studies across various fields, including transportation and safety analysis. The findings from these studies underscore the complexity of crash data and the multifaceted nature of risk factors involved in accidents. However, most studies consider the effects of unobserved heterogeneity from one perspective -- either within clusters (internal) or between clusters (external) -- and do not investigate the biases from both simultaneously on crash frequency analysis. To fill this gap, this study proposes a hybrid approach combining latent class cluster analysis with the random parameter negative binomial regression model (LCA-RPNB) to explore the association between risk factors and bicycle crash frequency. First, the bicycle crash data is categorized into three clusters using LCA based on crash features such as gender, trip purposes, weather, and light conditions. Then, the separated crash frequency models for different clusters and the overall model are developed based on RPNB using regional factors of crash locations as independent variables and the crash frequency of different clusters respectively as dependent variables. The hybrid approach enables a comprehensive examination of internal and external heterogeneities among bicycle crash frequency factors simultaneously. Results suggest that the proposed hybrid approach exhibits superior fitting and predictive performance compared to the model only considers the effects of unobserved heterogeneity from one perspective with the lower values of Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). This approach can help policymakers and urban planners to design more effective safety interventions by understanding the distinct needs of different bicyclist clusters and the specific factors that contribute to crash risk in each group.


Sujet(s)
Accidents de la route , Cyclisme , Modèles statistiques , Humains , Cyclisme/statistiques et données numériques , Cyclisme/traumatismes , Accidents de la route/statistiques et données numériques , Analyse de regroupements , Facteurs de risque , Femelle , Mâle , Temps (météorologie) , Analyse de structure latente , Facteurs sexuels , Analyse de régression
9.
Biomed Mater ; 19(6)2024 Sep 10.
Article de Anglais | MEDLINE | ID: mdl-39208843

RÉSUMÉ

Traditional cell culture methods often fail to accurately replicate the intricate microenvironments crucial for studying specific cell growth patterns. In our study, we developed a 4D cell culture model-a precision instrument comprising an electromagnet, a force transducer, and a cantilever bracket. The experimental setup involves placing a Petri dish above the electromagnet, where gel beads encapsulating magnetic nanoparticles and tongue cancer cells are positioned. In this model, a magnetic force is generated on the magnetic nanoparticles in the culture medium to drive the gel to move and deform when the magnet is energized, thereby exerting an external force on the cells. This setup can mimic the microenvironment of tongue squamous cell carcinoma CAL-27 cells under mechanical stress induced by tongue movements. Electron microscopy and rheological analysis were performed on the hydrogels to confirm the porosity of alginate and its favorable viscoelastic properties. Additionally, Calcein-AM/PI staining was conducted to verify the biosafety of the hydrogel culture system. It mimics the microenvironment where tongue squamous cell carcinoma CAL-27 cells are stimulated by mechanical stress during tongue movement. Electron microscopy and rheological analysis experiments were conducted on hydrogels to assess the porosity of alginate and its viscoelastic properties. Calcein-AM/PI staining was performed to evaluate the biosafety of the hydrogel culture system. We confirmed that the proliferation of CAL-27 tongue squamous cells significantly increased with increased matrix stiffness after 5 d as assessed by MTT. After 15 d of incubation, the tumor spheroid diameter of the 1%-4D group was larger than that of the hydrogel-only culture. The Transwell assay demonstrated that mechanical stress stimulation and increased matrix stiffness could enhance cell aggressiveness. Flow cytometry experiments revealed a decrease in the number of cells in the resting or growth phase (G0/G1 phase), coupled with an increase in the proportion of cells in the preparation-for-division phase (G2/M phase). RT-PCR confirmed decreased expression levels of P53 and integrinß3 RNA in the 1%-4D group after 21 d of 4D culture, alongside significant increases in the expression levels of Kindlin-2 and integrinαv. Immunofluorescence assays confirmed that 4D culture enhances tissue oxygenation and diminishes nuclear aggregation of HIF-1α. This device mimics the microenvironment of tongue cancer cells under mechanical force and increased matrix hardness during tongue movement, faithfully reproducing cell growthin vivo, and offering a solid foundation for further research on the pathogenic matrix of tongue cancer and drug treatments.


Sujet(s)
Carcinome épidermoïde , Techniques de culture cellulaire , Hydrogels , Contrainte mécanique , Tumeurs de la langue , Tumeurs de la langue/anatomopathologie , Humains , Carcinome épidermoïde/anatomopathologie , Lignée cellulaire tumorale , Techniques de culture cellulaire/méthodes , Hydrogels/composition chimique , Prolifération cellulaire , Microenvironnement tumoral , Rhéologie , Alginates/composition chimique , Porosité
10.
Virol Sin ; 39(4): 685-693, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39025463

RÉSUMÉ

Myocarditis is an inflammatory disease of the cardiac muscle and one of the primary causes of dilated cardiomyopathy. Group B coxsackievirus (CVB) is one of the leading causative pathogens of viral myocarditis, which primarily affects children and young adults. Due to the lack of vaccines, the development of antiviral medicines is crucial to controlling CVB infection and the progression of myocarditis. In this study, we investigated the antiviral effect of baicalein, a flavonoid extracted from Scutellaria baicaleinsis. Our results demonstrated that baicalein treatment significantly reduced cytopathic effect and increased cell viability in CVB3-infected cells. In addition, significant reductions in viral protein 3D, viral RNA, and viral particles were observed in CVB3-infected cells treated with baicalein. We found that baicalein exerted its inhibitory effect in the early stages of CVB3 infection. Baicalein also suppressed viral replication in the myocardium and effectively alleviated myocarditis induced by CVB3 infection. Our study revealed that baicalein exerts its antiviral effect by inhibiting the activity of caspase-1 and viral protease 2A. Taken together, our findings demonstrate that baicalein has antiviral activity against CVB3 infection and may serve as a potential therapeutic option for the myocarditis caused by enterovirus infection.


Sujet(s)
Antiviraux , Caspase-1 , Entérovirus humain B , Flavanones , Myocardite , Réplication virale , Flavanones/pharmacologie , Réplication virale/effets des médicaments et des substances chimiques , Entérovirus humain B/effets des médicaments et des substances chimiques , Entérovirus humain B/physiologie , Antiviraux/pharmacologie , Animaux , Myocardite/traitement médicamenteux , Myocardite/virologie , Humains , Caspase-1/métabolisme , Protéines virales/métabolisme , Protéines virales/antagonistes et inhibiteurs , Protéines virales/génétique , Infections à virus coxsackie/traitement médicamenteux , Infections à virus coxsackie/virologie , Souris , Lignée cellulaire , Survie cellulaire/effets des médicaments et des substances chimiques , Cysteine endopeptidases/métabolisme , Souris de lignée BALB C , Mâle , Scutellaria baicalensis/composition chimique , Effet cytopathogène viral/effets des médicaments et des substances chimiques
11.
Synth Syst Biotechnol ; 9(4): 793-808, 2024 Dec.
Article de Anglais | MEDLINE | ID: mdl-39072145

RÉSUMÉ

Microorganisms, particularly extremophiles, have evolved multiple adaptation mechanisms to address diverse stress conditions during survival in unique environments. Their responses to environmental coercion decide not only survival in severe conditions but are also an essential factor determining bioproduction performance. The design of robust cell factories should take the balance of their growing and bioproduction into account. Thus, mining and redesigning stress-tolerance elements to optimize the performance of cell factories under various extreme conditions is necessary. Here, we reviewed several stress-tolerance elements, including acid-tolerant elements, saline-alkali-resistant elements, thermotolerant elements, antioxidant elements, and so on, providing potential materials for the construction of cell factories and the development of synthetic biology. Strategies for mining and redesigning stress-tolerance elements were also discussed. Moreover, several applications of stress-tolerance elements were provided, and perspectives and discussions for potential strategies for screening stress-tolerance elements were made.

12.
J Nanobiotechnology ; 22(1): 455, 2024 Jul 31.
Article de Anglais | MEDLINE | ID: mdl-39085921

RÉSUMÉ

The female reproductive system comprises the internal and external genitalia, which communicate through intricate endocrine pathways. Besides secreting hormones that maintain the female secondary sexual characteristics, it also produces follicles and offspring. However, the in vitro systems have been very limited in recapitulating the specific anatomy and pathophysiology of women. Organ-on-a-chip technology, based on microfluidics, can better simulate the cellular microenvironment in vivo, opening a new field for the basic and clinical research of female reproductive system diseases. This technology can not only reconstruct the organ structure but also emulate the organ function as much as possible. The precisely controlled fluidic microenvironment provided by microfluidics vividly mimics the complex endocrine hormone crosstalk among various organs of the female reproductive system, making it a powerful preclinical tool and the future of pathophysiological models of the female reproductive system. Here, we review the research on the application of organ-on-a-chip platforms in the female reproductive systems, focusing on the latest progress in developing models that reproduce the physiological functions or disease features of female reproductive organs and tissues, and highlighting the challenges and future directions in this field.


Sujet(s)
Système génital de la femme , Laboratoires sur puces , Femelle , Humains , Animaux , Microfluidique/méthodes , Reproduction , Modèles biologiques , Systèmes microphysiologiques
13.
Oncoimmunology ; 13(1): 2381803, 2024.
Article de Anglais | MEDLINE | ID: mdl-39071160

RÉSUMÉ

Tumor-derived exosomes bind to organ resident cells, activating S100 molecules during the remodeling of the local immune microenvironment. However, little is known regarding how organ resident cell S100A10 mediates cancer metastatic progression. Here, we provided evidence that S100A10 plays an important role in regulating the lung immune microenvironment and cancer metastasis. S100A10-deficient mice reduced cancer metastasis in the lung. Furthermore, the activation of S100A10 within lung fibroblasts via tumor-derived exosomes increased the expression of CXCL1 and CXCL8 chemokines, accompanied by the myeloid-derived suppressor cells (MDSCs) recruitment. S100A10 inhibitors such as 1-Substituted-4-Aroyl-3-hydroxy-5-Phenyl-1 H-5-pyrrol-2(5 H)-ones inhibit lung metastasis in vivo. Our findings highlight the crucial role of S100A10 in driving MDSC recruitment in order to remodel the lung immune microenvironment and provide potential therapeutic targets to block cancer metastasis to the lung.


Sujet(s)
Tumeurs du poumon , Cellules myéloïdes suppressives , Protéines S100 , Microenvironnement tumoral , Animaux , Cellules myéloïdes suppressives/métabolisme , Cellules myéloïdes suppressives/immunologie , Tumeurs du poumon/secondaire , Tumeurs du poumon/immunologie , Tumeurs du poumon/anatomopathologie , Tumeurs du poumon/métabolisme , Souris , Microenvironnement tumoral/immunologie , Protéines S100/métabolisme , Protéines S100/génétique , Souris de lignée C57BL , Lignée cellulaire tumorale , Humains , Souris knockout , Exosomes/métabolisme
14.
Heliyon ; 10(12): e33265, 2024 Jun 30.
Article de Anglais | MEDLINE | ID: mdl-39022107

RÉSUMÉ

Electroacupuncture pretreatment is considered as an optimal strategy for inducing cerebral ischaemic tolerance. However, the underlying neuroprotective mechanism of this approach has never been explored from the perspective of calcium homeostasis. Intracellular calcium overload is a key inducer of cascade neuronal injury in the early stage after cerebral ischaemia attack and the Na+/Ca2+ exchanger (NCX) is the main plasma membrane calcium extrusion pathway maintaining post-ischaemic calcium homeostasis. This study aims to investigate whether the regulation of NCX-mediated calcium transport contributes to the cerebroprotective effect of electroacupuncture pretreatment against ischaemic injury and to elucidate the underlying mechanisms involved in this process. Following five days of repeated electroacupuncture stimulation on Baihui (GV20), Neiguan (PC6), and Sanyinjiao (SP6) acupoints in rats, in vivo and in vitro models of cerebral ischaemia were induced through middle cerebral artery occlusion and oxygen/glucose deprivation (OGD), respectively. Firstly, we verified the neuroprotective effect of electroacupuncture pretreatment from the perspective of neurological score, infarct volume and neuronal apoptosis. Our findings from brain slice patch-clamp indicated that electroacupuncture pretreatment enhanced the Ca2+ efflux capacity of NCX after OGD. NCX1 expression in the ischaemic penumbra exhibited a consistent decline from 1 to 24 h in MCAO rats. Electroacupuncture pretreatment upregulated the expression of NCX1, especially at 24 h, and silencing NCX1 by short hairpin RNA (shRNA) administration reversed the protective effect of electroacupuncture pretreatment against cerebral ischaemic injury. Furthermore, we administered LY294002, a phosphatidylinositol 3 kinase (PI3K) inhibitor, prior to inducing ischaemia to investigate the upstream regulatory mechanism of electroacupuncture pretreatment on NCX1 expression. Electroacupuncture pretreatment activates PI3K/Akt pathway, leading to an increase in the expression of NCX1, which facilitates calcium extrusion and exerts a neuroprotective effect against cerebral ischaemia. These findings provided a novel insight into the prevention of ischemic stroke and other similar conditions characterized by brain ischaemia or hypoperfusion.

15.
Int J Chron Obstruct Pulmon Dis ; 19: 1531-1545, 2024.
Article de Anglais | MEDLINE | ID: mdl-38974816

RÉSUMÉ

Purpose: Chronic obstructive pulmonary disease (COPD) is a significant disease impacting health and quality of life. Yunnan Province, a major tobacco producer, lacks comprehensive COPD studies. The purpose of this study is to describe the epidemic situation of COPD in Yunnan province and explore its influencing factors. Methods: This study is a cross-sectional research conducted in a representative sample of adults aged 20 and older from 13 prefectures and cities in Yunnan Province, China. COPD was diagnosed using post-bronchodilator pulmonary function tests. Demographics were analyzed with descriptive statistics. The influencing factors of COPD were examined by using the multivariate logistic regression models. Results: Our study found that high-risk individuals for COPD accounted for 20.30% of the screened population aged 20 and above, with a COPD prevalence of 27.18% among this high-risk group. Male had a higher prevalence (33.01%) than did female (16.35%; p<0.001 for sex difference). Additionally, the proportion of severe and extremely severe COPD cases in Yunnan Province was higher than the national average and other provinces. After considering the potential confounding variables, male (OR=2.291, 95% CI: 1.584-3.313), age (OR=1.501, 95% CI: 1.338-1.685), underweight (OR=1.747, 95% CI: 1.225-2.491), previous smoking (OR=1.712, 95% CI: 1.182-2.478), passive smoking (OR=1.444, 95% CI: 1.159-1.800), and a history of respiratory system diseases in childhood (OR=2.010, 95% CI: 1.346-3.001) were significantly associated with an increased risk of COPD. Conversely, being overweight (OR=0.636, 95% CI: 0.489-0.828), and residing in high-altitude counties (OR=0.445, 95% CI: 0.263-0.754) were negatively correlated with the risk of COPD. Conclusion: There is significant prevalence of COPD (27.18%) among high-risk population aged 20 and above in Yunnan Province, China. Apart from male, smoking, BMI and other known risk factors for COPD. We found that high-altitude residence had a lower prevalence of COPD. There is no significant difference in COPD prevalence between Han and ethnic minority populations.


Sujet(s)
Broncho-pneumopathie chronique obstructive , Fumer , Humains , Broncho-pneumopathie chronique obstructive/épidémiologie , Broncho-pneumopathie chronique obstructive/diagnostic , Broncho-pneumopathie chronique obstructive/physiopathologie , Chine/épidémiologie , Mâle , Femelle , Prévalence , Facteurs de risque , Adulte d'âge moyen , Études transversales , Adulte , Sujet âgé , Jeune adulte , Fumer/épidémiologie , Fumer/effets indésirables , Appréciation des risques , Poumon/physiopathologie , Facteurs sexuels , Indice de gravité de la maladie , Répartition par sexe , Répartition par âge , Facteurs âges
17.
Front Plant Sci ; 15: 1392433, 2024.
Article de Anglais | MEDLINE | ID: mdl-39049858

RÉSUMÉ

Poplar is an important greening and timber tree species in China, which has great economic and ecological values. However, the spread of Hyphantria cunea has become increasingly serious in recent years, resulting in huge economic loss of poplar production. Exploring the molecular mechanism of poplar reponse to H. cunea stress has significant implications for future development of new insect-resistant poplar varieties using genetic engineering technology. In this study, a total of 1039 differentially expressed genes (DEGs), 106 differentially expressed proteins (DEPs) and 212 differentially expressed metabolites (DEMs) were screened from Populus simonii × P. nigra leaves under H. cunea stress by transcriptome, proteomics and metabolomics analysis, respectively. GO and KEGG analysis showed that the DEGs and DEPs are associated with endopeptidase inhibitor activity, stress response, α-linolenic acid metabolism, phenylpropanoid biosynthesis and metabolic pathways, cysteine and methionine metabolism pathways and MAKP signaling pathway. Metabolomics analysis showed the most of DEMs were lipids and lipid molecules, and the pathways associated with transcriptome mainly include plant hormone signal transduction, α-linolenic acid metabolic pathway, amino sugar and nucleotide sugar metabolism, and phenylpropanoid biosynthesis. In particular, multi-omics analysis showed that several pathways such as α-linolenic acid metabolic, phenylpropanoid biosynthesis and metabolic pathway and cysteine and methionine metabolic pathway were significantly enriched in the three omics, which may play an important role in the resistance to pests in poplar.

18.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 552-558, 2024 May 20.
Article de Chinois | MEDLINE | ID: mdl-38948281

RÉSUMÉ

Objective: This study aims to systematically evaluate the protective role of quercetin (QCT), a naturally occurring flavonoid, against oxidative damage in human endometrial stromal cells (HESCs) induced by hydrogen peroxide (H2O2). Oxidative stress, such as that induced by H2O2, is known to contribute significantly to cellular damage and has been implicated in various reproductive health issues. The study is focused on investigating how QCT interacts with specific molecular pathways to mitigate this damage. Special attention was given to the p38 MAPK/NOX4 signaling pathway, which is crucial to the regulation of oxidative stress responses in cellular systems. By elucidating these mechanisms, the study seeks to confirm the potential of QCT not only as a protective agent against oxidative stress but also as a therapeutic agent that could be integrated in treatments of conditions characterized by heightened oxidative stress in endometrial cells. Methods: I n vitro cultures of HESCs were treated with QCT at different concentrations (0, 10, 20, and 40 µmol/L) for 24 h to verify the non-toxic effects of QCT on normal endometrial cells. Subsequently, 250 µmol/L H2O2 was used to incubate the cells for 12 h to establish an H2O2-induced HESCs injury model. HESCs were pretreated with QCT for 24 h, which was followed by stimulation with H2O2. Then, CCK-8 assay was performed to examine the cell viability and to screen for the effective intervention concentration. HESCs were divided into 3 groups, the control group, the H2O2 model group, and the H2O2+QCT group. Intracellular levels of reactive oxygen species (ROS) were precisely quantified using the DCFH-DA fluorescence assay, a method known for its accuracy in detecting and quantifying oxidative changes within the cell. The mitochondrial membrane potential was determined by JC-1 staining. Annexin Ⅴ/PI double staining and flow cytometry were performed to determine the effect of QCT on H2O2-induced apoptosis of HESCs. Furthermore, to delve deeper into the cellular mechanisms underlying the observed effects, Western blot analysis was conducted to measure the expression levels of the critical proteins involved in oxidative stress response, including NADPH oxidase 4 (NOX4), p38 mitogen-activated protein kinase (p38 MAPK), and phosphorylated p38 MAPK (p-p38 MAPK). This analysis helps increase understanding of the specific intracellular signaling pathways affected by QCT treatment, giving special attention to its potential for modulation of the p38 MAPK/NOX4 pathway, which plays a significant role in cellular defense mechanisms against oxidative stress. Results: In this study, we started off by assessing the toxicity of QCT on normal endometrial cells. Our findings revealed that QCT at various concentrations (0, 10, 20, and 40 µmol/L) did not exhibit any cytotoxic effects, which laid the foundation for further investigation into its protective roles. In the H2O2-induced HESCs injury model, a significant reduction in cell viability was observed, which was linked to the generation of ROS and the resultant oxidative damage. However, pretreatment with QCT (10 µmol/L and 20 µmol/L) significantly enhanced cell viability after 24 h (P<0.05), with the 20 µmol/L concentration showing the most substantial effect. This suggests that QCT can effectively reverse the cellular damage caused by H2O2. Furthermore, the apoptosis assays demonstrated a significant increase in the apoptosis rates in the H2O2 model group compared to those in the control group (P<0.01). However, co-treatment with QCT significantly reversed this trend (P<0.05), indicating QCT's potential protective role in mitigating cell apoptosis. ROS assays showed that, compared to that in the control group, the average fluorescence intensity of ROS in the H2O2 model group significantly increased (P<0.01). QCT treatment significantly reduced the ROS fluorescence intensity in the H2O2+QCT group compared to the that in the H2O2 model group, suggesting an effective alleviation of oxidative damage (P<0.05). JC-1 staining for mitochondrial membrane potential changes revealed that compared to that in the control, the proportion of cells with decreased mitochondrial membrane potential significantly increased in the H2O2 model group (P<0.01). However, this proportion was significantly reduced in the QCT-treated group compared to that of the H2O2 model group (P<0.05). Finally, Western blot analysis indicated that the expression levels of NOX4 and p-p38 MAPK proteins were elevated in the H2O2 model group compared to those of the control group (P<0.05). Following QCT treatment, these protein levels significantly decreased compared to those of the H2O2 model group (P<0.05). These results suggest that QCT may exert its protective effects against oxidative stress by modulating the p38 MAPK/NOX4 signaling pathway. Conclusion: QCT has demonstrated significant protective effects against H2O2-induced oxidative damage in HESCs. This protection is primarily achieved through the effective reduction of ROS accumulation and the inhibition of critical signaling pathways involved in the oxidative stress response, notably the p38 MAPK/NOX4 pathway. The results of this study reveal that QCT's ability to modulate these pathways plays a key role in alleviating cellular damage associated with oxidative stress conditions. This indicates not only its potential as a protective agent against cellular oxidative stress, but also highlights its potential for therapeutic applications in treating conditions characterized by increased oxidative stress in the endometrium, thereby offering the prospect of enhancing reproductive health. Future studies should explore the long-term effects of QCT and its clinical efficacy in vivo, thereby providing a clear path toward its integration into therapeutic protocols.


Sujet(s)
Endomètre , Peroxyde d'hydrogène , Stress oxydatif , Quercétine , Transduction du signal , Cellules stromales , Femelle , Humains , Apoptose/effets des médicaments et des substances chimiques , Cellules cultivées , Endomètre/cytologie , Endomètre/effets des médicaments et des substances chimiques , Endomètre/métabolisme , Peroxyde d'hydrogène/toxicité , NADPH Oxidase 4/métabolisme , Stress oxydatif/effets des médicaments et des substances chimiques , p38 Mitogen-Activated Protein Kinases/métabolisme , Quercétine/pharmacologie , Espèces réactives de l'oxygène/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Cellules stromales/effets des médicaments et des substances chimiques , Cellules stromales/métabolisme
19.
J Reprod Immunol ; 165: 104271, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39054220

RÉSUMÉ

The aberrant invasive capability of trophoblast cells is widely acknowledged as a primary mechanism underlying RSA. Recently, IGF2BP3 has been implicated in various cancers due to its influence on cellular invasion and migration. However, whether IGF2BP3 involve in the occurrence of RSA and the specific functions it assumes in the development of RSA remain elusive. In our study, we firstly collected villous tissues from RSA and those with normal pregnancies individuals to performed Protein sequencing and then detected the expression of IGF2BP3 through Western blot, qRT-PCR and immunohistochemistry. Secondly, we analyzed the single-cell data (GSE214607) to assess the expression of IGF2BP3 in invasive EVT trophoblasts. Thirdly, we utilized lentivirus technology to establish HTR-8/SVneo cell lines with stable IGF2BP3 knockdown and RNA-seq analysis was employed to investigate the GO functional pathway enrichment of IGF2BP3. Meanwhile, the effect of IGF2BP3 knockdown on trophoblast cells apoptosis, migration, and ferroptosis was evaluated through functional experiments. Additionally, LPS-induced abortion animal model was constructed to evaluate IGF2BP3 expression in placental tissues. A significant downregulation of IGF2BP3 was observed in the villous tissues of RSA patient, a finding corroborated by subsequent single cell sequencing results. Furthermore, it suggested that IGF2BP3 may be involved in the migration and apoptotic processes of trophoblast cells. Mechanistic research indicated that IGF2BP3 knockdown could compromise GPX4 mRNA stability, leading to the promotion of ferroptosis. Finally, our investigation observed the down-regulation of IGF2BP3 expression in placental villous tissues of an LPS-induced abortion animal model. Our findings revealed that IGF2BP3 was downregulated in the villous tissues of RSA patients. Mechanically, down-regulation of IGF2BP3 may induce RSA by promoting GPX4-mediated ferroptosis and inhibiting trophoblast invasion and migration. Our study may provide new targets and research directions for the pathogenesis of RSA.


Sujet(s)
Avortements à répétition , Ferroptose , Protéines de liaison à l'ARN , Trophoblastes , Humains , Femelle , Ferroptose/immunologie , Grossesse , Avortements à répétition/métabolisme , Avortements à répétition/anatomopathologie , Avortements à répétition/immunologie , Trophoblastes/métabolisme , Trophoblastes/anatomopathologie , Animaux , Protéines de liaison à l'ARN/métabolisme , Protéines de liaison à l'ARN/génétique , Souris , Mouvement cellulaire/génétique , Lignée cellulaire , Placenta/métabolisme , Placenta/anatomopathologie , Placenta/immunologie , Adulte , Apoptose/immunologie
20.
BMC Genomics ; 25(1): 671, 2024 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-38970011

RÉSUMÉ

BACKGROUND: The dirigent (DIR) genes encode proteins that act as crucial regulators of plant lignin biosynthesis. In Solanaceae species, members of the DIR gene family are intricately related to plant growth and development, playing a key role in responding to various biotic and abiotic stresses. It will be of great application significance to analyze the DIR gene family and expression profile under various pathogen stresses in Solanaceae species. RESULTS: A total of 57 tobacco NtDIRs and 33 potato StDIRs were identified based on their respective genome sequences. Phylogenetic analysis of DIR genes in tobacco, potato, eggplant and Arabidopsis thaliana revealed three distinct subgroups (DIR-a, DIR-b/d and DIR-e). Gene structure and conserved motif analysis showed that a high degree of conservation in both exon/intron organization and protein motifs among tobacco and potato DIR genes, especially within members of the same subfamily. Total 8 pairs of tandem duplication genes (3 pairs in tobacco, 5 pairs in potato) and 13 pairs of segmental duplication genes (6 pairs in tobacco, 7 pairs in potato) were identified based on the analysis of gene duplication events. Cis-regulatory elements of the DIR promoters participated in hormone response, stress responses, circadian control, endosperm expression, and meristem expression. Transcriptomic data analysis under biotic stress revealed diverse response patterns among DIR gene family members to pathogens, indicating their functional divergence. After 96 h post-inoculation with Ralstonia solanacearum L. (Ras), tobacco seedlings exhibited typical symptoms of tobacco bacterial wilt. The qRT-PCR analysis of 11 selected NtDIR genes displayed differential expression pattern in response to the bacterial pathogen Ras infection. Using line 392278 of potato as material, typical symptoms of potato late blight manifested on the seedling leaves under Phytophthora infestans infection. The qRT-PCR analysis of 5 selected StDIR genes showed up-regulation in response to pathogen infection. Notably, three clustered genes (NtDIR2, NtDIR4, StDIR3) exhibited a robust response to pathogen infection, highlighting their essential roles in disease resistance. CONCLUSION: The genome-wide identification, evolutionary analysis, and expression profiling of DIR genes in response to various pathogen infection in tobacco and potato have provided valuable insights into the roles of these genes under various stress conditions. Our results could provide a basis for further functional analysis of the DIR gene family under pathogen infection conditions.


Sujet(s)
Évolution moléculaire , Famille multigénique , Nicotiana , Phylogenèse , Protéines végétales , Solanum tuberosum , Solanum tuberosum/génétique , Solanum tuberosum/microbiologie , Nicotiana/génétique , Nicotiana/microbiologie , Protéines végétales/génétique , Régulation de l'expression des gènes végétaux , Maladies des plantes/microbiologie , Maladies des plantes/génétique , Stress physiologique/génétique , Régions promotrices (génétique) , Duplication de gène , Ralstonia solanacearum , Gènes de plante
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE