Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 169
Filtrer
1.
Front Psychol ; 15: 1368196, 2024.
Article de Anglais | MEDLINE | ID: mdl-38962222

RÉSUMÉ

In spite of the increasing popularity of project-based collaborative learning (PBCL) as a pedagogy, real successful collaboration cannot always be achieved due to the cognitive, motivational and social emotional challenges students encounter during collaboration. Recognizing the challenges and developing regulation strategies to cope with the challenges at both individual and group level is essential for successful collaboration. In the last decades, a growing interest has been developed around socially shared regulation of emotions and how it is interwoven with self-regulation and co-regulation. However, capturing the process of students' emotional challenges and regulations in a long and dynamic project proves difficult and there remains a paucity of evidence on how co-regulation and socially-shared regulation co-occur with learners' cognitive and emotional progress in project-based collaborative learning. The purpose of the present study is to investigate and identify what kind of social emotional challenges students encountered during PBCL and how they regulate themselves and the groups in order to finish the projects. A quasi-experimental research design was adopted in an academic English classroom, with thirty-eight students self-reporting their challenges and regulations three times after finishing each of the projects. The results of qualitative analysis plus a case study of two groups indicate that students encounter a variety of social emotional challenges and employed different levels of co-regulation and socially shared regulation in addition to self-regulation, leading to varying collaboration results and experiences. The findings of the study offer insights into the emotional regulation in PBCL and shed light for future design of pedagogical interventions aiming at supporting socially shared regulation.

2.
Adv Sci (Weinh) ; : e2403451, 2024 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-38970167

RÉSUMÉ

Statins, the first-line medication for dyslipidemia, are linked to an increased risk of type 2 diabetes. But exactly how statins cause diabetes is yet unknown. In this study, a developed short-term statin therapy on hyperlipidemia mice show that hepatic insulin resistance is a cause of statin-induced diabetes. Statin medication raises the expression of progesterone and adiponectin receptor 9 (PAQR9) in liver, which inhibits insulin signaling through degradation of protein phosphatase, Mg2+/Mn2+ dependent 1 (PPM1α) to activate ERK pathway. STIP1 homology and U-box containing protein 1 (STUB1) is found to mediate ubiquitination of PPM1α promoted by PAQR9. On the other hand, decreased activity of hepatocyte nuclear factor 4 alpha (HNF4α) seems to be the cause of PAQR9 expression under statin therapy. The interventions on PAQR9, including deletion of PAQR9, caloric restriction and HNF4α activation, are all effective treatments for statin-induced diabetes, while liver specific over-expression of PPM1α is another possible tactic. The results reveal the importance of HNF4α-PAQR9-STUB1-PPM1α axis in controlling the statin-induced hepatic insulin resistance, offering a fresh insight into the molecular mechanisms underlying statin therapy.

3.
Front Vet Sci ; 11: 1408376, 2024.
Article de Anglais | MEDLINE | ID: mdl-38948675

RÉSUMÉ

Streptococcus agalactiae (S.agalactiae), also known as group B Streptococcus (GBS), is a highly infectious pathogen. Prolonged antibiotic usage leads to significant issues of antibiotic residue and resistance. Chelerythrine (CHE) is a naturally occurring benzophenidine alkaloid and chelerythrine chloride (CHEC) is its hydrochloride form with diverse biological and pharmacological activities. However, the antibacterial mechanism of CHEC against GBS remains unclear. Thus, this study aims to investigate the in vitro antibacterial activity of CHEC on GBS and elucidate its underlying mechanism. The antibacterial effect of CHEC on GBS was assessed using inhibitory zone, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) assays, as well as by constructing a time-kill curve. The antibacterial mechanism of CHEC was investigated through techniques such as scanning electron microscopy (SEM) and transmission electron microscopy (TEM), measurement of alkaline phosphatase (AKP) activity, determination of Na+ K+, Ca2+ Mg2+-adenosine triphosphate (ATP) activity, observation of membrane permeability, and analysis of intracellular reactive oxygen species (ROS) and mRNA expression levels of key virulence genes. The results demonstrated that the inhibition zone diameters of CHEC against GBS were 14.32 mm, 12.67 mm, and 10.76 mm at concentrations of 2 mg/mL, 1 mg/mL, and 0.5 mg/mL, respectively. The MIC and MBC values were determined as 256 µg/mL and 512 µg/mL correspondingly. In the time-kill curve, 8 × MIC, 4 × MIC and 2 × MIC CHEC could completely kill GBS within 24 h. SEM and TEM analyses revealed significant morphological alterations in GBS cells treated with CHEC including shrinkage, collapse, and leakage of cellular fluids. Furthermore, the antibacterial mechanism underlying CHEC's efficacy against GBS was attributed to its disruption of cell wall integrity as well as membrane permeability resulting in extracellular release of intracellular ATP, AKP, Na+ K+, Ca2+ Mg2+. Additionally CHEC could increase the ROS production leading to oxidative damage and downregulating mRNA expression levels of key virulence genes in GBS cells. In conclusion, CHEC holds potential as an antimicrobial agent against GBS and further investigations are necessary to elucidate additional molecular mechanisms.

4.
bioRxiv ; 2024 Jun 14.
Article de Anglais | MEDLINE | ID: mdl-38915489

RÉSUMÉ

The global burden of infections due to the pathogenic fungus Cryptococcus is substantial in persons with low CD4 + T cell counts. Previously, we deleted three chitin deacetylase genes from C. neoformans to create a chitosan-deficient, avirulent strain, designated cda1Δ2Δ3Δ which, when used as a vaccine, protected mice from challenge with virulent C. neoformans strain KN99. Here, we explored the immunological basis for protection. Vaccine-mediated protection was maintained in mice lacking B cells or CD8 + T cells. In contrast, protection was lost in mice lacking α/ß T cells or CD4 + T cells. Moreover, CD4 + T cells from vaccinated mice conferred protection upon adoptive transfer to naive mice. Importantly, while monoclonal antibody-mediated depletion of CD4 + T cells just prior to vaccination resulted in complete loss of protection, significant protection was retained in mice depleted of CD4 + T cells after vaccination, but prior to challenge. Vaccine-mediated protection was lost in mice genetically deficient in IFNγ, TNFα, or IL-23p19. A robust influx of leukocytes and IFNγ- and TNFα-expressing CD4 + T cells was seen in the lungs of vaccinated and challenged mice. Finally, a higher level of IFNγ production by lung cells stimulated ex vivo correlated with lower fungal burden in the lungs. Thus, while B cells and CD8 + T cells are dispensable, IFNγ and CD4 + T cells have overlapping roles in generating protective immunity prior to cda1Δ2Δ3Δ vaccination. However, once vaccinated, protection becomes less dependent on CD4 + T cells, suggesting a strategy for vaccinating HIV + persons prior to loss of CD4 + T cells. Importance: The fungus Cryptococcus neoformans is responsible for >100,000 deaths annually, mostly in persons with impaired CD4 + T cell function such as AIDS. There are no approved human vaccines. We previously created a genetically engineered avirulent strain of C. neoformans , designated cda1Δ2Δ3Δ . When used as a vaccine, cda1Δ2Δ3Δ protects mice against a subsequent challenge with a virulent C. neoformans strain. Here, we defined components of the immune system responsible for vaccine-mediated protection. We found that while B cells and CD8 + T cells were dispensible, protection was lost in mice genetically deficient in CD4 + T cells, and the cytokines IFNγ, TNFα, or IL-23. A robust influx of cytokine-producing CD4 + T cells was seen in the lungs of vaccinated mice following infection. Importantly, protection was retained in mice depleted of CD4 + T cells following vaccination, suggesting a strategy to protect persons who are at risk for future CD4 + T cell dysfunction.

5.
Int Immunopharmacol ; 137: 112466, 2024 Jun 13.
Article de Anglais | MEDLINE | ID: mdl-38875998

RÉSUMÉ

BACKGROUND: The interplay between airway epithelium and macrophages plays a pivotal role in Chronic Obstructive Pulmonary Disease (COPD) pathogenesis. Exosomes, which transport miRNA cargo, have emerged as novel mediators of intercellular communication. MicroRNA-125a-5p (miR-125a-5p) has been implicated in macrophage polarization.This study aims to investigate the role of exosomal miR-125a-5p in the dysfunctional epithelium-macrophage cross-talk in cigarette smoke (CS)-induced COPD. METHODS: In cell models, THP-1 monocytic cells were differentiated into macrophages (M0). Human bronchial epithelial cells treated with CS extract (CSE) were co-cultured with M0. Exosomes were isolated from culture media using commercial kits and characterized using nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). Exosomes labeled with PKH26 red fluorescent cell linker kits were incubated with macrophages. Luciferase reporter assay was used to confirm the target gene of miR-125a-5p. In mouse experiments, inhibiting miR-125a-5p was utilized to examine its role in macrophage polarization. Furthermore, the underlying mechanism was explored. RESULTS: In vitro results indicated that CSE treatment led to upregulation of miR-125a-5p in HBE cells, and exosomes contained miR-125a-5p. PKH26-labeled exosomes were internalized by macrophages. Co-culture experiments between bronchial epithelial cells and miR-125a-5p mimic resulted in significant increase in M1 macrophage markers (TNF-α, iNOS-2, IL-1ß) and decrease in M2 markers (IL-10 and Arg-1). In COPD mouse models, miR-125a-5p inhibitor reduced levels of TNF-α, IL-1ß, and IL-6. Luciferase assays revealed that miR-125a-5p inhibitors enhanced the relative luciferase activity of IL1RN. Mechanistic experiments demonstrated that HBE-derived exosomes transfected with miR-125a-5p mimics promoted upregulation of MyD88, TRAF6, p65, iNOS-2, and downregulation of Arg-1. CONCLUSION: This study suggests that exosomal miR-125a-5p may act as a mediator in the cross-talk between airway epithelium and macrophage polarization in COPD. Exosomal miR-125a-5p targeting IL1RN may promote M1 macrophage polarization via the MyD88/NF-κB pathway.

6.
Eur J Surg Oncol ; 50(9): 108474, 2024 Jun 05.
Article de Anglais | MEDLINE | ID: mdl-38870874

RÉSUMÉ

BACKGROUND: Colorectal cancer (CRC) patients with peritoneal metastasis (CRC-PM) have a worse prognosis than those with liver and lung metastases. Cytoreductive surgery (CRS) followed by hyperthermic intraperitoneal chemotherapy (HIPEC) is an effective locoregional treatment for CRC-PM. To date, the prognostic analysis of CRS/HIPEC mostly focuses on clinical and pathological characteristics; however, genetic characteristics, such as RAS/BRAF mutation status, are not sufficient. This study aimed to systematically assess the correlation between RAS/BRAF status and PM risk, as well as the prognostic efficacy of CRS/HIPEC for CRC. METHOD: This study was written in accordance with the 2020 guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Protocols. We searched PubMed, EMBASE, and the Cochrane library with the following keywords: "Peritoneal Neoplasms," "raf Kinases" and "ras Proteins". The fixed-effects model and inverse variance method were used for analysis. Odds ratios (OR) and 95 % confidence intervals (CI) were used to reflect the risk of PM associated with RAS/BRAF mutations. Hazard ratios (HR) and 95 % CI were used to evaluate the effects of RAS/BRAF mutations on the prognosis of CRS/HIPEC. RESULT: Eighteen articles included 5567 patients. In the risk analysis of PM, patients with BRAF mutation were more likely to have PM than those with wild-type BRAF (OR = 2.28, 95 % CI = 1.73-3.01, P < 0.001, I2 = 0 %). In contrast, there was no significant difference in the effect of RAS mutation and wild-type on PM of CRC (OR = 1.28, 95 % CI = 0.99-1.66, P = .06, I2 = 0 %). In a prognostic analysis of CRS/HIPEC, RAS mutation predicted poor overall survival (HR = 1.68, 95 % CI = 1.39-2.02, P < 0.001, I2 = 1 %) and disease-free survival (HR = 1.61, 95 % CI = 1.34-1.94, P < 0.001, I2 = 42 %). The results for BRAF mutation was consistent with the prognostic impact of RAS mutation's overall survival (HR = 2.57, 95 % CI = 1.93-3.44, P < 0.001, I2 = 0 %) and disease-free survival (HR = 1.90, 95 % CI = 1.40-2.56, P < 0.001, I2 = 82 %). CONCLUSION: BRAF mutation, rather than RAS mutation, was a high-risk factor for CRC-PM. And both BRAF and RAS mutations negatively affected the prognosis of CRS/HIPEC in CRC-PM patients. Our results could provide suggestions for the selection of comprehensive treatment for CRC-PM with RAS/BRAF mutations.

7.
Micromachines (Basel) ; 15(6)2024 May 22.
Article de Anglais | MEDLINE | ID: mdl-38930643

RÉSUMÉ

A novel non-isothermal glass hot embossing system utilizes a silicon mold core coated with a three-dimensional carbide-bonded graphene (CBG) coating, which acts as a thin-film resistance heater. The temperature of the system significantly influences the electrical conductivity properties of silicon with a CBG coating. Through simulations and experiments, it has been established that the electrical conductivity of silicon with a CBG coating gradually increases at lower temperatures and rapidly rises as the temperature further increases. The CBG coating predominantly affects electrical conductivity until 400 °C, after which silicon becomes the dominant factor. Furthermore, the dimensions of CBG-coated silicon and the reduction of CBG coating also affect the rate and outcome of conductivity changes. These findings provide valuable insights for detecting CBG-coated silicon during the embossing process, improving efficiency, and predicting the mold core's service life, thus enhancing the accuracy of optical lens production.

8.
bioRxiv ; 2024 Apr 28.
Article de Anglais | MEDLINE | ID: mdl-38712080

RÉSUMÉ

The fungal infection, cryptococcosis, is responsible for >100,000 deaths annually. No licensed vaccines are available. We explored the efficacy and immune responses of subunit cryptococcal vaccines adjuvanted with Cationic Adjuvant Formulation 01 (CAF01). CAF01 promotes humoral and T helper (Th) 1 and Th17 immune responses and has been safely used in human vaccine trials. Four subcutaneous vaccines, each containing single recombinant Cryptococcus neoformans protein antigens, partially protected mice from experimental cryptococcosis. Protection increased, up to 100%, in mice that received bivalent and quadrivalent vaccine formulations. Vaccinated mice that received a pulmonary challenge with C. neoformans had an influx of leukocytes into the lung including robust numbers of polyfunctional CD4+ T cells which produced Interferon gamma (IFNγ), tumor necrosis factor alpha (TNFα), and interleukin (IL)-17 upon ex vivo antigenic stimulation. Cytokine-producing lung CD8+ T cells were also found, albeit in lesser numbers. A significant, durable IFNγ response was observed in the lungs, spleen, and blood. Moreover, IFNγ secretion following ex vivo stimulation directly correlated with fungal clearance in the lungs. Thus, we have developed multivalent cryptococcal vaccines which protect mice from experimental cryptococcosis using an adjuvant which has been safely tested in humans. These preclinical studies suggest a path towards human cryptococcal vaccine trials.

9.
Dalton Trans ; 53(22): 9406-9415, 2024 Jun 04.
Article de Anglais | MEDLINE | ID: mdl-38757980

RÉSUMÉ

Pigments play a pivotal role in the cosmetic industry, in which the development of pigments with concurrent color diversity, hydrophobicity, biocompatibility and photostability remains a great challenge. Herein, we report organic-inorganic composite pigments synthesized via a combination of organic dye anions (Ponceau SX and acid green (AG)), layered double hydroxides (LDHs) and octyltriethoxysilane (OTEOS) (denoted as O/Dye-LDHs: O/SX-LDHs and O/AG-LDHs).The prepared composite pigments were characterized via a comprehensive investigation based on X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS-mapping), Fourier transform infrared (FT-IR) spectroscopy, CIE 1976 L*a*b* color scales, static contact angle measurement and HET-CAM assay. The results confirm the successful intercalation of organic dye anions into the interlayer region of LDHs via host-guest interactions and the surface modification of OTEOS on the layer surface, forming a new kind of hydrophobic organic-inorganic composite pigment with a sandwich structure. LDH layer protection and OTEOS coating play crucial roles in the high photostability, good hydrophobicity and satisfactory biocompatibility of pigments. In addition, O/Dye-LDHs exhibit rich color and color adjustability. Impressively, we applied mixture composite pigments with different O/SX-LDH-to-O/AG-LDH ratios to formulate an eye shadow cream, which present a series of popular and natural colours with water resistance to enhance one's attractiveness and appearance. This work provides a promising strategy for the design of safe and efficient composite pigments, demonstrating their potential application in the field of makeup.

10.
Clin Respir J ; 18(6): e13790, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38817043

RÉSUMÉ

BACKGROUND: The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its subsequent Omicron variant has raised concerns for chronic obstructive pulmonary disease (COPD) patients due to the potential risk of disruptions to healthcare services and unknown comorbidities between COPD and Omicron. METHOD: In this study, we conducted a follow-up investigation of 315 COPD patients during the Omicron outbreak at Shanxi Bethune Hospital to understand the impact of the pandemic on this vulnerable population. Among all patients, 228 were infected with Omicron, of which 82 needed hospitalizations. RESULT: We found that COPD patients with high blood eosinophil (EOS) counts exhibited lower susceptibility to Omicron infection and were more likely to have milder symptoms that did not require hospitalization. Conversely, patients with low EOS counts showed higher rates of infection and hospitalization. Moreover, EOS count was positively correlated with T lymphocyte counts in hospitalized patients after Omicron infection, suggesting potential associations between EOS and specific immune responses in COPD patients during viral infections. Correlation analysis revealed a positive correlation between EOS count and lymphocyte and T-cells, and a negative correlation between EOS count and age, neutrophil, and C-reactive protein. CONCLUSION: Overall, our study contributes to the knowledge of COPD management during the COVID-19 Omicron outbreak and emphasizes the importance of considering individual immune profiles to improve care for COPD patients in the face of the ongoing global health crisis.


Sujet(s)
COVID-19 , Granulocytes éosinophiles , Broncho-pneumopathie chronique obstructive , SARS-CoV-2 , Humains , COVID-19/épidémiologie , COVID-19/immunologie , COVID-19/sang , Broncho-pneumopathie chronique obstructive/épidémiologie , Broncho-pneumopathie chronique obstructive/virologie , Broncho-pneumopathie chronique obstructive/sang , Mâle , Femelle , Adulte d'âge moyen , Sujet âgé , SARS-CoV-2/immunologie , Numération des leucocytes , Hospitalisation/statistiques et données numériques , Chine/épidémiologie , Études de suivi
11.
Article de Anglais | MEDLINE | ID: mdl-38578147

RÉSUMÉ

OBJECTIVE: Despite its widespread use, in vitro fertilization (IVF) outcomes are challenged by implantation failure, largely due to factors such as embryo quality and endometrial receptivity. In this study, we investigated the clinical effect of office hysteroscopy (OH) on the subsequent frozen-thawed embryo transfer (FET) in infertile women who experienced a failed IVF-embryo transfer (IVF-ET) cycle. METHODS: We included 577 infertile women who underwent OH because of a history of failed ET between October 2019 and September 2021. During OH, visible endometrial polyps (EPs) were diagnosed and removed by curette or biopsy forceps; chronic endometritis (CE) was diagnosed by histopathology and immunohistochemistry and treated with oral doxycycline (0.2 g/d) for 14 days. According to the hysteroscopic findings and endometrial pathology with immunohistochemistry, patients were divided into three groups: group A (n = 161) had CE with or without EPs, group B (n = 156) had EPs only, and group C (n = 260) had no CE or EPs. RESULTS: In the following FET cycle, the implantation rates were 47%, 51%, and 45% (P = 0.411); the clinical pregnancy rates were 56%, 62%, and 55% (P = 0.436); the live birth rates were 45%, 51%, and 42% (P = 0.205); and the miscarriage rates were 18%, 16%, and 22% (P = 0.497) in groups A, B, and C, respectively. There were no significant differences among groups (P > 0.05). CONCLUSION: OH is helpful for diagnosis and treatment of abnormal intrauterine environment in women with a failed IVF cycle and further improves their pregnancy outcome in the following FET.

12.
Sci Rep ; 14(1): 7083, 2024 03 25.
Article de Anglais | MEDLINE | ID: mdl-38528189

RÉSUMÉ

We aimed to identify the key potential insulin resistance (IR)-related genes and investigate their correlation with immune cell infiltration in type 2 diabetes (T2D). The GSE78721 dataset (68 diabetic patients and 62 controls) was downloaded from the Gene Expression Omnibus database and utilized for single-sample gene set enrichment analysis. IR-related genes were obtained from the Comparative Toxicology Genetics Database, and the final IR-differentially expressed genes (DEGs) were screened by intersecting with the DEGs obtained from the GSE78721 datasets. Functional enrichment analysis was performed, and the networks of the target gene with microRNA, transcription factor, and drug were constructed. Hub genes were identified based on a protein-protein interaction network. Least absolute shrinkage and selection operator regression and Random Forest and Boruta analysis were combined to screen diagnostic biomarkers in T2D, which were validated using the GSE76894 (19 diabetic patients and 84 controls) and GSE9006 (12 diabetic patients and 24 controls) datasets. Quantitative real-time polymerase chain reaction was performed to validate the biomarker expression in IR mice and control mice. In addition, infiltration of immune cells in T2D and their correlation with the identified markers were computed using CIBERSORT. We identified differential immune gene set regulatory T-cells in the GSE78721 dataset, and T2D samples were assigned into three clusters based on immune infiltration. A total of 2094 IR-DEGs were primarily enriched in response to endoplasmic reticulum stress. Importantly, HDAC9 and ARRDC4 were identified as markers of T2D and associated with different levels of immune cell infiltration. HDAC9 mRNA level were higher in the IR mice than in control mice, while ARRDC4 showed the opposite trend. In summary, we discovered potential vital biomarkers that contribute to immune cell infiltration associated with IR, which offers a new sight of immunotherapy for T2D.


Sujet(s)
Diabète de type 2 , Histone deacetylases , Insulinorésistance , microARN , Animaux , Humains , Souris , Marqueurs biologiques , Diabète de type 2/diagnostic , Diabète de type 2/génétique , Histone deacetylases/génétique , Histone deacetylases/métabolisme , Immunothérapie , Insuline , Insulinorésistance/génétique , Protéines de répression/génétique , Protéines de répression/métabolisme , Protéines et peptides de signalisation intracellulaire/génétique , Protéines et peptides de signalisation intracellulaire/métabolisme
13.
Med ; 5(6): 570-582.e4, 2024 Jun 14.
Article de Anglais | MEDLINE | ID: mdl-38554711

RÉSUMÉ

BACKGROUND: Noninvasive and early assessment of liver fibrosis is of great significance and is challenging. We aimed to evaluate the predictive performance and cost-effectiveness of the LiverRisk score for liver fibrosis and liver-related and diabetes-related mortality in the general population. METHODS: The general population from the NHANES 2017-March 2020, NHANES 1999-2018, and UK Biobank 2006-2010 were included in the cross-sectional cohort (n = 3,770), along with the NHANES follow-up cohort (n = 25,317) and the UK Biobank follow-up cohort (n = 17,259). The cost-effectiveness analysis was performed using TreeAge Pro software. Liver stiffness measurements ≥10 kPa were defined as compensated advanced chronic liver disease (cACLD). FINDINGS: Compared to conventional scores, the LiverRisk score had significantly better accuracy and calibration in predicting liver fibrosis, with an area under the receiver operating characteristic curve (AUC) of 0.76 (0.72-0.79) for cACLD. According to the updated thresholds of LiverRisk score (6 and 10), we reclassified the population into three groups: low, medium, and high risk. The AUCs of LiverRisk score for predicting liver-related and diabetes-related mortality at 5, 10, and 15 years were all above 0.8, with better performance than the Fibrosis-4 score. Furthermore, compared to the low-risk group, the medium-risk and high-risk groups in the two follow-up cohorts had a significantly higher risk of liver-related and diabetes-related mortality. Finally, the cost-effectiveness analysis showed that the incremental cost-effectiveness ratio for LiverRisk score compared to FIB-4 was USD $18,170 per additional quality-adjusted life-year (QALY) gained, below the willingness-to-pay threshold of $50,000/QALY. CONCLUSIONS: The LiverRisk score is an accurate, cost-effective tool to predict liver fibrosis and liver-related and diabetes-related mortality in the general population. FUNDING: The National Natural Science Foundation of China (nos. 82330060, 92059202, and 92359304); the Key Research and Development Program of Jiangsu Province (BE2023767a); the Fundamental Research Fund of Southeast University (3290002303A2); Changjiang Scholars Talent Cultivation Project of Zhongda Hospital of Southeast University (2023YJXYYRCPY03); and the Research Personnel Cultivation Program of Zhongda Hospital Southeast University (CZXM-GSP-RC125).


Sujet(s)
Analyse coût-bénéfice , Cirrhose du foie , Humains , Cirrhose du foie/mortalité , Cirrhose du foie/économie , Femelle , Mâle , Adulte d'âge moyen , Adulte , Études transversales , Diabète/mortalité , Diabète/épidémiologie , Diabète/économie , Sujet âgé , Appréciation des risques , Imagerie d'élasticité tissulaire/économie , Valeur prédictive des tests , Enquêtes nutritionnelles , Courbe ROC
14.
Science ; 383(6685): eadj2609, 2024 Feb 23.
Article de Anglais | MEDLINE | ID: mdl-38305684

RÉSUMÉ

Insects rely on a family of seven transmembrane proteins called gustatory receptors (GRs) to encode different taste modalities, such as sweet and bitter. We report structures of Drosophila sweet taste receptors GR43a and GR64a in the apo and sugar-bound states. Both GRs form tetrameric sugar-gated cation channels composed of one central pore domain (PD) and four peripheral ligand-binding domains (LBDs). Whereas GR43a is specifically activated by the monosaccharide fructose that binds to a narrow pocket in LBDs, disaccharides sucrose and maltose selectively activate GR64a by binding to a larger and flatter pocket in LBDs. Sugar binding to LBDs induces local conformational changes, which are subsequently transferred to the PD to cause channel opening. Our studies reveal a structural basis for sugar recognition and activation of GRs.


Sujet(s)
Protéines de Drosophila , Drosophila melanogaster , Sucres , Perception du goût , Goût , Animaux , Goût/physiologie , Perception du goût/physiologie , Drosophila melanogaster/physiologie , Protéines de Drosophila/composition chimique , Conformation des protéines
15.
Ann Hepatol ; 29(4): 101478, 2024.
Article de Anglais | MEDLINE | ID: mdl-38354949

RÉSUMÉ

INTRODUCTION AND OBJECTIVES: Type 2 Diabetes Mellitus (T2DM), a prevalent metabolic disorder, often coexists with a range of complications, with retinopathy being particularly common. Recent studies have shed light on a potential connection between diabetic retinopathy (DR) and hepatic fibrosis, indicating a possible shared pathophysiological foundation in T2DM. This study investigates the correlation between retinopathy and hepatic fibrosis among individuals with T2DM, as well as evaluates the diagnostic value of DR for significant hepatic fibrosis. MATERIALS AND METHODS: Our cross-sectional analysis incorporated 5413 participants from the National Health and Nutrition Examination Survey (NHANES) 2005-2008. The Fibrosis-4 score (FIB-4) classified hepatic fibrosis into different grades (F0-F4), with significant hepatic fibrosis marked as F2 or higher. Retinopathy severity was determined using retinal imaging and categorized into four levels. The analysis of variance or Chi-square tests facilitated group comparisons. Additionally, the receiver operating characteristic (ROC) analysis appraised the predictive accuracy of retinopathy for significant hepatic fibrosis in the T2DM population. RESULTS: Among 5413 participants, the mean age was 59.56 ± 12.41, with 50.2% male. And 20.6% were diagnosed with T2DM. Hepatic fibrosis grading was positively associated with retinopathy severity (OR [odds ratio]: 1.521, 95%CI [confidence interval]: 1.152-2.008, P = 0.003) across the entire population. The association was amplified in the T2DM population according to Pearson's analysis results. The ROC curve demonstrated retinopathy's diagnostic capacity for significant hepatic fibrosis in the T2DM population (AUC [area under curve] = 0.72, 95%CI: 0.651-0.793, P < 0.001). CONCLUSIONS: Retinopathy could serve as an independent predictor of significant hepatic fibrosis in T2DM population. Ophthalmologists are advised to closely monitor T2DM patients with retinopathy.


Sujet(s)
Diabète de type 2 , Rétinopathie diabétique , Cirrhose du foie , Enquêtes nutritionnelles , Valeur prédictive des tests , Courbe ROC , Indice de gravité de la maladie , Humains , Mâle , Études transversales , Cirrhose du foie/diagnostic , Cirrhose du foie/complications , Femelle , Adulte d'âge moyen , Rétinopathie diabétique/diagnostic , Rétinopathie diabétique/épidémiologie , Diabète de type 2/complications , Sujet âgé , États-Unis/épidémiologie , Facteurs de risque , Adulte , Aire sous la courbe , Loi du khi-deux , Prévalence
16.
Psychoneuroendocrinology ; 163: 106984, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38340540

RÉSUMÉ

PURPOSE: This prospective cohort study aimed to investigate the effect of maternal polycystic ovary syndrome (PCOS) on the offspring early development. METHODS: A total of 91 mother-child pairs, consisting of 33 PCOS and 58 non-PCOS, were recruited. Peripheral blood tests were performed during 12-16, 24-28, and 32-36 weeks of gestation. Ages & Stages Questionnaires (ASQ) were utilized to assess the motor development of offspring at 27 months of age. Logistic regression models were employed to compare groups and control confounding variables. RESULTS: Women with PCOS had a higher level of testosterone and free androgen index than the non-PCOS group in all three detection windows. There were no intergroup differences in any of the five domains of specific ASQ domain scores or the body measurements of the offspring at 27 months old. Stratification by sex of offspring suggested that no significant differences were detected in the male offspring. However, in the female offspring, the PCOS group exhibited lower gross motor scores in female offspring than the non-PCOS group (48.1 ± 11.8 vs. 55.2 ± 8.1, P = 0.027), as well as lower fine motor scores (48.5 ± 8.5 vs. 53.6 ± 11.0, P = 0.028). The gross motor score of female offspring in the PCOS group remained lower even after adjustments. Each 1 ng/mL increase in testosterone at 12-16 weeks of gestation was associated with a decrease in gross motor score of female offspring by 12.2 (95% CI = -23.3 to -1.0, P = 0.038). The highest tertile of testosterone at 12-16 weeks of gestation was associated with a 7.75-point decrease in gross motor score of female offspring compared to the lowest tertile of testosterone (95% CI = -14.9 to -0.6, P = 0.040), with a significant linear trend observed (P for trend = 0.031). CONCLUSIONS: The findings of this study suggest that maternal PCOS could exert a negative influence on the gross motor development of female offspring, potentially associated with intrauterine androgen exposure during the early stages of pregnancy.


Sujet(s)
Syndrome des ovaires polykystiques , Grossesse , Humains , Mâle , Femelle , Enfant d'âge préscolaire , Études de cohortes , Androgènes , Études prospectives , Testostérone
17.
BMC Public Health ; 24(1): 486, 2024 Feb 15.
Article de Anglais | MEDLINE | ID: mdl-38360585

RÉSUMÉ

BACKGROUND: Nutritional deficiencies remain serious medical and public health issues worldwide, especially in children. This study aims to analyze cross-country inequality in four common nutritional deficiencies (protein-energy malnutrition, dietary iron deficiency, vitamin A deficiency and iodine deficiency) among children from 1990 to 2019 based on Global Burden of Disease (GBD) 2019 data. METHODS: Prevalence and disability-adjusted life years (DALYs) data as measures of four nutritional deficiency burdens in people aged 0 to 14 years were extracted from the GBD Results Tool. We analyzed temporal trends in prevalence by calculating the average annual percent change (AAPC) and quantified cross-country inequalities in disease burden using the slope index. RESULTS: Globally, the age-standardized prevalence rates of dietary iron deficiency, vitamin A deficiency and iodine deficiency decreased, with AAPCs of -0.14 (-0.15 to -0.12), -2.77 (-2.96 to -2.58), and -2.17 (-2.3 to -2.03) from 1999 to 2019, respectively. Significant reductions in socio-demographic index (SDI)-related inequality occurred in protein-energy malnutrition and vitamin A deficiency, while the health inequality for dietary iron deficiency and iodine deficiency remained basically unchanged. The age-standardized prevalence and DALY rates of the four nutritional deficiencies decreased as the SDI and healthcare access and quality index increased. CONCLUSIONS: The global burden of nutritional deficiency has decreased since 1990, but cross-country health inequalities still exist. More efficient public health measures are needed to reduce disease burdens, particularly in low-SDI countries/territories.


Sujet(s)
Iode , Carences en fer , Malnutrition , Malnutrition protéinocalorique , Carence en vitamine A , Enfant , Humains , Charge mondiale de morbidité , Années de vie ajustées sur la qualité , Disparités de l'état de santé , Fer alimentaire , Inégalités en matière de santé , Santé mondiale
18.
JMIR Public Health Surveill ; 10: e53170, 2024 Feb 22.
Article de Anglais | MEDLINE | ID: mdl-38386387

RÉSUMÉ

BACKGROUND: Maternal smoking during pregnancy (MSDP) is a known risk factor for offspring developing chronic obstructive pulmonary disease (COPD), but the underlying mechanism remains unclear. OBJECTIVE: This study aimed to explore whether the increased COPD risk associated with MSDP could be attributed to tobacco dependence (TD). METHODS: This case-control study used data from the nationwide cross-sectional China Pulmonary Health study, with controls matched for age, sex, and smoking status. TD was defined as smoking within 30 minutes of waking, and the severity of TD was assessed using the Fagerstrom Test for Nicotine Dependence. COPD was diagnosed when the ratio of forced expiratory volume in 1 second to forced vital capacity was <0.7 in a postbronchodilator pulmonary function test according to the 2017 Global Initiative for Chronic Obstructive Lung Disease criteria. Logistic regression was used to examine the correlation between MSDP and COPD, adjusting for age, sex, BMI, educational attainment, place of residence, ethnic background, occupation, childhood passive smoking, residential fine particulate matter, history of childhood pneumonia or bronchitis, average annual household income, and medical history (coronary heart disease, hypertension, and diabetes). Mediation analysis examined TD as a potential mediator in the link between MSDP and COPD risk. The significance of the indirect effect was assessed through 1000 iterations of the "bootstrap" method. RESULTS: The study included 5943 participants (2991 with COPD and 2952 controls). Mothers of the COPD group had higher pregnancy smoking rates (COPD: n=305, 10.20%; controls: n=211, 7.10%; P<.001). TD was more prevalent in the COPD group (COPD: n=582, 40.40%; controls: n=478, 33.90%; P<.001). After adjusting for covariates, MSDP had a significant effect on COPD (ß=.097; P<.001). There was an association between MSDP and TD (ß=.074; P<.001) as well as between TD and COPD (ß=.048; P=.007). Mediation analysis of TD in the MSDP-COPD association showed significant direct and indirect effects (direct: ß=.094; P<.001 and indirect: ß=.004; P=.03). The indirect effect remains present in the smoking population (direct: ß=.120; P<.001 and indirect: ß=.002; P=.03). CONCLUSIONS: This study highlighted the potential association between MSDP and the risk of COPD in offspring, revealing the mediating role of TD in this association. These findings contribute to a deeper understanding of the impact of prenatal tobacco exposure on lung health, laying the groundwork for the development of relevant prevention and treatment strategies.


Sujet(s)
Broncho-pneumopathie chronique obstructive , Trouble lié au tabagisme , Femelle , Grossesse , Humains , Études cas-témoins , Études transversales , Fumer , Broncho-pneumopathie chronique obstructive/épidémiologie , Broncho-pneumopathie chronique obstructive/étiologie
19.
Cell Death Discov ; 10(1): 34, 2024 Jan 17.
Article de Anglais | MEDLINE | ID: mdl-38233385

RÉSUMÉ

N-methyl-D-aspartate receptors (NMDARs) are ligand-gated, voltage-dependent channels of the ionotropic glutamate receptor family. The present study explored whether NMDAR activation induced ferroptosis in vascular endothelial cells and its complicated mechanisms in vivo and in vitro. Various detection approaches were used to determine the ferroptosis-related cellular iron content, lipid reactive oxygen species (LOS), siRNA molecules, RNA-sequence, MDA, GSH, and western blotting. The AMPK activator Acadesine (AICAR), HMGB1 inhibitor glycyrrhizin (GLY), PP2A inhibitor LB-100, and NMDAR inhibitor MK801 were used to investigate the involved in vivo and in vitro pathways. The activation of NMDAR with L-glutamic acid (GLU) or NMDA significantly promoted cellular ferroptosis, iron content, MDA, and the PTGS2 expression, while decreasing GPX4 expression and GSH concentration in human umbilical vein endothelial cells (HUVECs), which was reversed by ferroptosis inhibitors Ferrostatin-1(Fer-1), Liproxstatin-1 (Lip-1), or Deferoxamine (DFO). RNA-seq revealed that ferroptosis and SLC7A11 participate in NMDA or GLU-mediated NMDAR activation. The PP2A-AMPK-HMGB1 pathway was majorly associated with NMDAR activation-induced ferroptosis, validated using the PP2A inhibitor LB-100, AMPK activator AICAR, or HMGB1 siRNA. The role of NMDAR in ferroptosis was validated in HUVECs induced with the ferroptosis activator errasin or RSL3 and counteracted by the NMDAR inhibitor MK-801. The in vivo results showed that NMDA- or GLU-induced ferroptosis and LOS production was reversed by MK-801, LB-100, AICAR, MK-801, and GLY, confirming that the PP2A-AMPK-HMGB1 pathway is involved in NMDAR activation-induced vascular endothelium ferroptosis. In conclusion, the present study demonstrated a novel role of NMDAR in endothelial cell injury by regulating ferroptosis via the PP2A-AMPK-HMGB1 pathway.

20.
Sci Total Environ ; 913: 169752, 2024 Feb 25.
Article de Anglais | MEDLINE | ID: mdl-38163601

RÉSUMÉ

As the representative item of environmental chemical carcinogen, MNNG was closely associated with the onset of Gastric cancer (GC), while the underlying mechanisms remain largely unknown. Here, we comprehensively analyzed the potential clinical significance of METTL3 in multiple GC patient cohorts. Additionally, we demonstrated that long-term exposure to MNNG elevated METTL3 and EMT marker expression by in vitro and in vivo models. Furthermore, the depletion of METTL3 impacted the proliferation, migration, invasion, and tumorigenesis of MNNG malignant transformation cells and GC cells. By me-RIP sequencing, we identified a panel of vital miRNAs potentially regulated by METTL3 that aberrantly expressed in MNNG-induced GC cells. Mechanistically, we showed that METTL3 meditated miR-1184/TRPM2 axis by regulating the process of miRNA-118. Our results provide novel insights into critical epigenetic molecular events vital to MNNG-induced gastric carcinogenesis. These findings suggest the potential therapeutic targets of METTL3 for GC treatment.


Sujet(s)
Adénine/analogues et dérivés , microARN , Tumeurs de l'estomac , Humains , 1-Méthyl-3-nitro-1-nitroso-guanidine , Lignée cellulaire tumorale , microARN/métabolisme , Carcinogenèse/induit chimiquement , Tumeurs de l'estomac/induit chimiquement , Tumeurs de l'estomac/métabolisme , Tumeurs de l'estomac/anatomopathologie , Transition épithélio-mésenchymateuse , Methyltransferases
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...