Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 80
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Nat Commun ; 15(1): 7647, 2024 Sep 02.
Article de Anglais | MEDLINE | ID: mdl-39223129

RÉSUMÉ

Depression, a widespread and highly heritable mental health condition, profoundly affects millions of individuals worldwide. Neuroimaging studies have consistently revealed volumetric abnormalities in subcortical structures associated with depression. However, the genetic underpinnings shared between depression and subcortical volumes remain inadequately understood. Here, we investigate the extent of polygenic overlap using the bivariate causal mixture model (MiXeR), leveraging summary statistics from the largest genome-wide association studies for depression (N = 674,452) and 14 subcortical volumetric phenotypes (N = 33,224). Additionally, we identify shared genomic loci through conditional/conjunctional FDR analyses. MiXeR shows that subcortical volumetric traits share a substantial proportion of genetic variants with depression, with 44 distinct shared loci identified by subsequent conjunctional FDR analysis. These shared loci are predominantly located in intronic regions (58.7%) and non-coding RNA intronic regions (25.4%). The 269 protein-coding genes mapped by these shared loci exhibit specific developmental trajectories, with the expression level of 55 genes linked to both depression and subcortical volumes, and 30 genes linked to cognitive abilities and behavioral symptoms. These findings highlight a shared genetic architecture between depression and subcortical volumetric phenotypes, enriching our understanding of the neurobiological underpinnings of depression.


Sujet(s)
Encéphale , Dépression , Étude d'association pangénomique , Hérédité multifactorielle , Humains , Dépression/génétique , Hérédité multifactorielle/génétique , Encéphale/imagerie diagnostique , Encéphale/anatomopathologie , Phénotype , Prédisposition génétique à une maladie , Imagerie par résonance magnétique , Mâle , Neuroimagerie , Polymorphisme de nucléotide simple , Femelle , Taille d'organe/génétique
2.
CNS Neurosci Ther ; 30(8): e14906, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39118226

RÉSUMÉ

AIMS: Schizophrenia is characterized by alterations in resting-state spontaneous brain activity; however, it remains uncertain whether variations at diverse spatial scales are capable of effectively distinguishing patients from healthy controls. Additionally, the genetic underpinnings of these alterations remain poorly elucidated. We aimed to address these questions in this study to gain better understanding of brain alterations and their underlying genetic factors in schizophrenia. METHODS: A cohort of 103 individuals with diagnosed schizophrenia and 110 healthy controls underwent resting-state functional MRI scans. Spontaneous brain activity was assessed using the regional homogeneity (ReHo) metric at four spatial scales: voxel-level (Scale 1) and regional-level (Scales 2-4: 272, 53, 17 regions, respectively). For each spatial scale, multivariate pattern analysis was performed to classify schizophrenia patients from healthy controls, and a transcriptome-neuroimaging association analysis was performed to establish connections between gene expression data and ReHo alterations in schizophrenia. RESULTS: The ReHo metrics at all spatial scales effectively discriminated schizophrenia from healthy controls. Scale 2 showed the highest classification accuracy at 84.6%, followed by Scale 1 (83.1%) and Scale 3 (78.5%), while Scale 4 exhibited the lowest accuracy (74.2%). Furthermore, the transcriptome-neuroimaging association analysis showed that there were not only shared but also unique enriched biological processes across the four spatial scales. These related biological processes were mainly linked to immune responses, inflammation, synaptic signaling, ion channels, cellular development, myelination, and transporter activity. CONCLUSIONS: This study highlights the potential of multi-scale ReHo as a valuable neuroimaging biomarker in the diagnosis of schizophrenia. By elucidating the complex molecular basis underlying the ReHo alterations of this disorder, this study not only enhances our understanding of its pathophysiology, but also pave the way for future advancements in genetic diagnosis and treatment of schizophrenia.


Sujet(s)
Encéphale , Imagerie par résonance magnétique , Neuroimagerie , Schizophrénie , Transcriptome , Humains , Schizophrénie/génétique , Schizophrénie/imagerie diagnostique , Schizophrénie/métabolisme , Femelle , Mâle , Adulte , Imagerie par résonance magnétique/méthodes , Encéphale/imagerie diagnostique , Encéphale/métabolisme , Neuroimagerie/méthodes , Analyse multifactorielle , Jeune adulte , Adulte d'âge moyen , Études de cohortes , Marqueurs biologiques/métabolisme
3.
Phys Chem Chem Phys ; 26(30): 20645-20652, 2024 Jul 31.
Article de Anglais | MEDLINE | ID: mdl-39037460

RÉSUMÉ

Cation substitution is an effective strategy to regulate the defects/electronic properties of kesterite Cu2ZnSn(S,Se)4 (CZTSSe) absorbers and improve the device photovoltaic performance. Here, we report Ge alloying kesterite Cu2Zn(Sn,Ge)(S,Se)4 (CZTGSSe) via a solution approach. The results demonstrate that the same chemical reaction of Ge4+ to Sn4+ ensures homogeneous Ge incorporation in the whole range of concentrations (from 0 to unit). Ge alloying promotes grain growth and linearly enlarges the absorber band gap by solely raising the conduction band minimum, which maintains a "spike" conduction band offset at the heterojunction interface until 15% alloying concentration and thus facilitates effective charge carrier collection. A promising efficiency of 11.57% has been achieved at 15% Ge alloying concentration with a significant enhancement in open-circuit voltage and fill factor. By further 10% Ag alloying to improve the absorber film morphology, a champion device with an efficiency of 12.25% has been achieved without an antireflective coating. This result emphasizes the feasibility of achieving homogeneous and controllable Ge alloying of kesterite semiconductors through the solution method, paving the way for further improvement and optimization of device performance.

4.
Heliyon ; 10(13): e33833, 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-39050435

RÉSUMÉ

Major depressive disorder (MDD) is a debilitating mental health condition that poses significant risks and burdens. Resting-state functional magnetic resonance imaging (fMRI) has emerged as a promising tool in investigating the neural mechanisms underlying MDD. However, a comprehensive bibliometric analysis of resting-state fMRI in MDD is currently lacking. Here, we aimed to thoroughly explore the trends and frontiers of resting-state fMRI in MDD research. The relevant publications were retrieved from the Web of Science database for the period between 1998 and 2022, and the CiteSpace software was employed to identify the influence of authors, institutions, countries/regions, and the latest research trends. A total of 1501 publications met the search criteria, revealing a gradual increase in the number of annual publications over the years. China contributed the largest publication output, accounting for the highest percentage among all countries. Particularly, the University of Electronic Science and Technology of China, Capital Medical University, and Harvard Medical School were identified as key institutions that have made substantial contributions to this growth. Neuroimage, Biological Psychiatry, Journal of Affective Disorders, and Proceedings of the National Academy of Sciences of the United States of America are among the influential journals in the field of resting-state fMRI research in MDD. Burst keywords analysis suggest the emerging research frontiers in this field are characterized by prominent keywords such as dynamic functional connectivity, cognitive control network, transcranial brain stimulation, and childhood trauma. Overall, our study provides a systematic overview into the historical development, current status, and future trends of resting-state fMRI in MDD, thus offering a useful guide for researchers to plan their future research.

5.
Thromb J ; 22(1): 50, 2024 Jun 17.
Article de Anglais | MEDLINE | ID: mdl-38886735

RÉSUMÉ

BACKGROUND: About 13-25% of cerebral venous thrombosis (CVT) cases lack clear etiology, which may be associated with underlying genetic factors. This study aims to investigate genetic factors in CVT patients using whole exome sequencing (WES). METHODS: Thirty-eight CVT patients hospitalized underwent WES. 977 subjects with WES data from a community cohort study --the Shunyi cohort were as the control group. Using bioinformatics analysis, differential genes with rare damaging variants between two groups were filtered (P < 0.05). KEGG enrichment analysis was performed on the screened genes to identify pathways associated with CVT. RESULTS: Through analysis of medical history, routine tests, and imaging examinations, the etiology of 38 patients: 8 cases of antiphospholipid syndrome, 6 cases with hematologic diseases, 3 cases of protein C deficiency, and 2 cases of protein S deficiency. Five cases occurred during pregnancy or puerperium, and 3 cases had a history of oral contraceptive use, and so on. The etiology was unknown in 12 cases (31.6%), and the etiology of 4 patients were further clarified through WES: F9 c.838 + 1_838 + 16del, Hemizygote: F9 EX1-EX7 Dup; CBS c.430G > A, CBS c.949 A > G; F2 c.1787G > A; SERPINC1 c.409-11G > T. Comparing the WES data of two groups, a total of 179 different genes with rare damaging variants were screened (P < 0.05), with 5 genes of interest (JAK2, C3, PROC, PROZ, SERPIND1). Enrichment analysis of the 179 different genes revealed the complement and coagulation pathway and the mitogen activated protein kinases (MAPK) pathway were associated with CVT. CONCLUSION: For CVT patients with unknown etiology, WES could help identify the cause of CVT early, which is of great significance for treatment decisions and prognosis. In addition to the complement and coagulation pathway, MAPK pathway is associated with CVT, potentially related to platelet regulation and inflammatory response.

6.
Brain Res ; 1840: 149049, 2024 Oct 01.
Article de Anglais | MEDLINE | ID: mdl-38825161

RÉSUMÉ

BACKGROUND: Previous studies have revealed structural brain abnormalities in individuals with depression, but the causal relationship between depression and brain structure remains unclear. METHODS: A genetic correlation analysis was conducted using summary statistics from the largest genome-wide association studies for depression (N = 674,452) and 1,265 brain structural imaging-derived phenotypes (IDPs, N = 33,224). Subsequently, a bidirectional two-sample Mendelian Randomization (MR) approach was employed to explore the causal relationships between depression and the IDPs that showed genetic correlations with depression. The main MR results were obtained using the inverse variance weighted (IVW) method, and other MR methods were further employed to ensure the reliability of the findings. RESULTS: Ninety structural IDPs were identified as being genetically correlated with depression and were included in the MR analyses. The IVW MR results indicated that reductions in the volume of several brain regions, including the bilateral subcallosal cortex, right medial orbitofrontal cortex, and right middle-posterior part of the cingulate cortex, were causally linked to an increased risk of depression. Additionally, decreases in surface area of the right middle temporal visual area, right middle temporal cortex, right inferior temporal cortex, and right middle-posterior part of the cingulate cortex were causally associated with a heightened risk of depression. Validation and sensitivity analyses supported the robustness of these findings. However, no evidence was found for a causal effect of depression on structural IDPs. CONCLUSIONS: Our findings reveal the causal influence of specific brain structures on depression, providing evidence to consider brain structural changes in the etiology and treatment of depression.


Sujet(s)
Encéphale , Dépression , Étude d'association pangénomique , Imagerie par résonance magnétique , Analyse de randomisation mendélienne , Phénotype , Humains , Encéphale/imagerie diagnostique , Encéphale/anatomopathologie , Dépression/génétique , Dépression/imagerie diagnostique , Imagerie par résonance magnétique/méthodes , Mâle , Femelle , Neuroimagerie/méthodes
7.
Biotechnol Bioeng ; 121(9): 2662-2677, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-38708676

RÉSUMÉ

Gene therapy using recombinant adeno-associated virus (rAAV) as delivery vehicles has garnered much interest in recent years. There are still significant gaps in our fundamental understanding of the manufacturing processes to deliver sufficient products. Manufacturing efforts of rAAV using HEK293 cells have commonly relied on fixed bed falling film bioreactors like the iCELLis®. We used computational fluid dynamics (CFD) to validate the operating conditions required for a predictive iCELLis® 500 scale-down model. The small-scale and at-scale systems have different flow paths causing validation of the corresponding agitation rates required to achieve the same linear flow through the fixed bed across scales to be non-trivial. Therefore, we used CFD to predict the theoretical scaling relationship. In addition, CFD could predict kLa differences between the two systems and the operating conditions required to match kLa between scales. We also confirmed that the location of DO control must be the same in both systems to achieve proper scaling. Experimental runs confirming the validity of the novel scale-down model showed that based on the modifications to the iCELLis® Nano system, we achieved similar DO, key metabolite, pH, and GC titer trends in both systems.


Sujet(s)
Bioréacteurs , Dependovirus , Thérapie génétique , Hydrodynamique , Dependovirus/génétique , Humains , Thérapie génétique/méthodes , Cellules HEK293 , Simulation numérique , Vecteurs génétiques/génétique
8.
BMC Neurol ; 24(1): 182, 2024 May 31.
Article de Anglais | MEDLINE | ID: mdl-38822265

RÉSUMÉ

OBJECTIVES: To investigate the risk factors and underlying causes of pregnancy-related cerebral venous thrombosis (PCVT). METHODS: A retrospective cohort of 16 patients diagnosed with CVT during pregnancy and postpartum (within six weeks after delivery) in a comprehensive hospital in China between 2009 and 2022 were carefully reviewed, focusing on demographic, clinical, and etiological characteristics, especially underlying causes. We matched 16 PCVT patients with 64 pregnant and puerperal women without PCVT to explore risk factors and clinical susceptibility to PCVT. RESULTS: PCVT occurred commonly during the first trimester (43.75%) and the puerperium (37.5%). The frequency of anemia, thrombocytosis and thrombocytopenia during pregnancy, dehydration, and pre-pregnancy anemia was significantly higher in women with PCVT than in those without PCVT (P < 0.05). Among the 16 patients, five were diagnosed with antiphospholipid syndrome and one was diagnosed with systemic lupus erythematosus. Three patients had distinct protein S deficiency and one had protein C deficiency. Whole Exome Sequencing (WES) was performed for five patients and revealed likely pathogenic mutations associated with CVT, including heterozygous PROC c.1218G > A (p. Met406Ile), heterozygous PROS1 c.301C > T (p. Arg101Cys), composite heterozygous mutation in the F8 gene (c.144-1259C > T; c.6724G > A (p. Val2242Met)) and homozygous MTHFR c.677C > T (p. Ala222Val). CONCLUSIONS: The occurrence of anemia, thrombocytopenia and thrombocytosis during pregnancy, dehydration and pre-pregnancy anemia suggested a greater susceptibility to PCVT. For confirmed PCVT patients, autoimmune diseases, hereditary thrombophilia, and hematological disorders were common causes. Screening for potential etiologies should be paid more attention, as it has implications for treatment and long-term management.


Sujet(s)
Thrombose intracrânienne , Thrombose veineuse , Humains , Femelle , Grossesse , Études rétrospectives , Adulte , Thrombose intracrânienne/épidémiologie , Facteurs de risque , Thrombose veineuse/épidémiologie , Chine/épidémiologie , Jeune adulte , Complications hématologiques de la grossesse/épidémiologie , Complications hématologiques de la grossesse/diagnostic , Déficit en protéine S/épidémiologie , Déficit en protéine S/complications , Déficit en protéine S/diagnostic , Déficit en protéine S/génétique
9.
iScience ; 27(4): 109411, 2024 Apr 19.
Article de Anglais | MEDLINE | ID: mdl-38510150

RÉSUMÉ

To investigate the impact of paracrine IL-2 signals on memory precursor (MP) cell differentiation, we activated CD8 T cell in vitro in the presence or absence of exogenous IL-2 (ex-IL-2). We assessed memory differentiation by transferring these cells into virus-infected mice. Both conditions generated CD8 T cells that participate in the ongoing response and gave rise to similar memory cells. Nevertheless, when transferred into a naive host, T cells activated with ex-IL-2 generated a higher frequency of memory cells displaying increased functional memory traits. Single-cell RNA-seq analysis indicated that without ex-IL-2, cells rapidly acquire an MP signature, while in its presence they adopted an effector signature. This was confirmed at the protein level and in a functional assay. Overall, ex-IL-2 delays the transition into MP cells, allowing the acquisition of effector functions that become imprinted in their progeny. These findings may help to optimize the generation of therapeutic T cells.

10.
Schizophrenia (Heidelb) ; 10(1): 35, 2024 Mar 15.
Article de Anglais | MEDLINE | ID: mdl-38490990

RÉSUMÉ

Schizophrenia, a multifaceted mental disorder characterized by disturbances in thought, perception, and emotion, has been extensively investigated through resting-state fMRI, uncovering changes in spontaneous brain activity among those affected. However, a bibliometric examination regarding publication trends in resting-state fMRI studies related to schizophrenia is lacking. This study obtained relevant publications from the Web of Science Core Collection spanning the period from 1998 to 2022. Data extracted from these publications included information on countries/regions, institutions, authors, journals, and keywords. The collected data underwent analysis and visualization using VOSviewer software. The primary analyses included examination of international and institutional collaborations, authorship patterns, co-citation analyses of authors and journals, as well as exploration of keyword co-occurrence and temporal trend networks. A total of 859 publications were retrieved, indicating an overall growth trend from 1998 to 2022. China and the United States emerged as the leading contributors in both publication outputs and citations, with Central South University and the University of New Mexico being identified as the most productive institutions. Vince D. Calhoun had the highest number of publications and citation counts, while Karl J. Friston was recognized as the most influential author based on co-citations. Key journals such as Neuroimage, Schizophrenia Research, Schizophrenia Bulletin, and Biological Psychiatry played pivotal roles in advancing this field. Recent popular keywords included support vector machine, antipsychotic medication, transcranial magnetic stimulation, and related terms. This study systematically synthesizes the historical development, current status, and future trends in resting-state fMRI research in schizophrenia, offering valuable insights for future research directions.

11.
Schizophrenia (Heidelb) ; 10(1): 31, 2024 Mar 05.
Article de Anglais | MEDLINE | ID: mdl-38443399

RÉSUMÉ

Schizophrenia (SCZ), a highly heritable mental disorder, is characterized by cognitive impairment, yet the extent of the shared genetic basis between schizophrenia and cognitive performance (CP) remains poorly understood. Therefore, we aimed to explore the polygenic overlap between SCZ and CP. Specifically, the bivariate causal mixture model (MiXeR) was employed to estimate the extent of genetic overlap between SCZ (n = 130,644) and CP (n = 257,841), and conjunctional false discovery rate (conjFDR) approach was used to identify shared genetic loci. Subsequently, functional annotation and enrichment analysis were carried out on the identified genomic loci. The MiXeR analyses revealed that 9.6 K genetic variants are associated with SCZ and 10.9 K genetic variants for CP, of which 9.5 K variants are shared between these two traits (Dice coefficient = 92.8%). By employing conjFDR, 236 loci were identified jointly associated with SCZ and CP, of which 139 were novel for the two traits. Within these shared loci, 60 exhibited consistent effect directions, while 176 had opposite effect directions. Functional annotation analysis indicated that the shared genetic loci were mainly located in intronic and intergenic regions, and were found to be involved in relevant biological processes such as nervous system development, multicellular organism development, and generation of neurons. Together, our findings provide insights into the shared genetic architecture between SCZ and CP, suggesting common pathways and mechanisms contributing to both traits.

12.
Schizophrenia (Heidelb) ; 9(1): 87, 2023 Dec 16.
Article de Anglais | MEDLINE | ID: mdl-38104130

RÉSUMÉ

Neuroimaging studies have revealed that patients with schizophrenia exhibit disrupted resting-state functional connectivity. However, the inconsistent findings across these studies have hindered our comprehensive understanding of the functional connectivity changes associated with schizophrenia, and the molecular mechanisms associated with these alterations remain largely unclear. A quantitative meta-analysis was first conducted on 21 datasets, involving 1057 patients and 1186 healthy controls, to examine disrupted resting-state functional connectivity in schizophrenia, as measured by whole-brain voxel-wise functional network centrality (FNC). Subsequently, partial least squares regression analysis was employed to investigate the relationship between FNC changes and gene expression profiles obtained from the Allen Human Brain Atlas database. Finally, gene enrichment analysis was performed to unveil the biological significance of the altered FNC-related genes. Compared with healthy controls, patients with schizophrenia show consistently increased FNC in the right inferior parietal cortex extending to the supramarginal gyrus, angular gyrus, bilateral medial prefrontal cortex, and right dorsolateral prefrontal cortex, while decreased FNC in the bilateral insula, bilateral postcentral gyrus, and right inferior temporal gyrus. Meta-regression analysis revealed that increased FNC in the right inferior parietal cortex was positively correlated with clinical score. In addition, these observed functional connectivity changes were found to be spatially associated with the brain-wide expression of specific genes, which were enriched in diverse biological pathways and cell types. These findings highlight the aberrant functional connectivity observed in schizophrenia and its potential molecular underpinnings, providing valuable insights into the neuropathology of dysconnectivity associated with this disorder.

13.
Shanghai Kou Qiang Yi Xue ; 32(3): 255-260, 2023 Jun.
Article de Chinois | MEDLINE | ID: mdl-37803979

RÉSUMÉ

PURPOSE: To summarize the CT and MR imaging features of carcinoma ex pleomorphic adenoma(Ca-ex-PA) in minor salivary gland, and analyze the correlation between various features and pathological classification. METHODS: Forty-three patients with Ca-ex-PA in minor salivary gland were collected. The CT and MRI findings were retrospectively analyzed and correlated with their pathological types. Fisher's exact test was used to analyze the correlation between various imaging features (tumor morphology, boundary, internal structure, bone invasion, cervical lymph node metastasis) and pathological types with SPSS 25.0 software package. RESULTS: Among the 43 patients with Ca-ex-PA, 83.7%(36/43) of the tumors were lobulated; 81.4%(35/43) showed cystic degeneration or necrosis, with heterogeneous enhancement. Coarse calcification or mixed calcification was found in 37.2%(16/43), 25.6%(11/43) had compressive absorption of adjacent bone. 75%(12/16) of type Ⅰ/Ⅱ tumors had regular morphology (round or oval), and 77.8%(21/27) of type Ⅲ tumors had irregular morphology, 93.8%(15/16) of type Ⅰ/Ⅱ tumors had well-defined margin and 66.7%(18/27) of type Ⅲ tumors had ill-defined margin. Osteolytic bone resorption occurred in 59.3%(16/27) of type Ⅲ tumors. The average maximum diameter of type Ⅰ/Ⅱ tumors was significantly shorter than that of type Ⅲ(P<0.05). Fisher's exact test showed the characteristics of tumor morphology, boundary and osteolytic bone resorption were related to pathological grouping(P<0.001). CONCLUSIONS: Most Ca-ex-PA in minor salivary glands is characterized by lobular and heterogeneous enhanced neoplasm on CT and MR imaging. A round or oval tumor with well-defined margin usually correlates with typeⅠ and Ⅱ, contrarily, an irregular mass with ill-defined margin and osteolytic bone destruction usually correlates with type Ⅲ. Combining the three characteristics of morphology, boundary and osteolysis is more helpful to distinguish type Ⅰ/Ⅱ and type Ⅲ tumors.


Sujet(s)
Adénome pléomorphe , Résorption osseuse , Carcinomes , Tumeurs des glandes salivaires , Humains , Adénome pléomorphe/imagerie diagnostique , Adénome pléomorphe/anatomopathologie , Glandes salivaires mineures/imagerie diagnostique , Glandes salivaires mineures/anatomopathologie , Tumeurs des glandes salivaires/imagerie diagnostique , Études rétrospectives
14.
Plants (Basel) ; 12(17)2023 Aug 24.
Article de Anglais | MEDLINE | ID: mdl-37687288

RÉSUMÉ

The RADIALIS-like (RL) proteins are v-myb avian myeloblastosis viral oncogene homolog (MYB)-related transcription factors (TFs), and are involved in many biological processes, including metabolism, development, and response to biotic and abiotic stresses. However, the studies on the RL genes of Camellia sinensis are not comprehensive enough. Therefore, we undertook this study and identified eight CsaRLs based on the typical conserved domain SANT Associated domain (SANT) of RL. These genes have low molecular weights and theoretical pI values ranging from 5.67 to 9.76. Gene structure analysis revealed that six CsaRL genes comprise two exons and one intron, while the other two contain a single exon encompassing motifs 1 and 2, and part of motif 3. The phylogenetic analysis divided one hundred and fifty-eight RL proteins into five primary classes, in which CsaRLs clustered in Group V and were homologous with CssRLs of the Shuchazao variety. In addition, we selected different tissue parts to analyze the expression profile of CsaRLs, and the results show that almost all genes displayed variable expression levels across tissues, with CsaRL1a relatively abundant in all tissues. qRT-PCR (real-time fluorescence quantitative PCR) was used to detect the relative expression levels of the CsaRL genes under various abiotic stimuli, and it was found that CsaRL1a expression levels were substantially higher than other genes, with abscisic acid (ABA) causing the highest expression. The self-activation assay with yeast two-hybrid system showed that CsaRL1a has no transcriptional activity. According to protein functional interaction networks, CsaRL1a was well connected with WIN1-like, lysine histidine transporter-1-like, ß-amylase 3 chloroplastic-like, carbonic anhydrase-2-like (CA2), and carbonic anhydrase dnaJC76 (DJC76). This study adds to our understanding of the RL family and lays the groundwork for further research into the function and regulatory mechanisms of the CsaRLs gene family in Camellia sinensis.

15.
Int J Mol Sci ; 24(8)2023 Apr 08.
Article de Anglais | MEDLINE | ID: mdl-37108101

RÉSUMÉ

Terpenes, especially volatile terpenes, are important components of tea aroma due to their unique scents. They are also widely used in the cosmetic and medical industries. In addition, terpene emission can be induced by herbivory, wounding, light, low temperature, and other stress conditions, leading to plant defense responses and plant-plant interactions. The transcriptional levels of important core genes (including HMGR, DXS, and TPS) involved in terpenoid biosynthesis are up- or downregulated by the MYB, MYC, NAC, ERF, WRKY, and bHLH transcription factors. These regulators can bind to corresponding cis-elements in the promoter regions of the corresponding genes, and some of them interact with other transcription factors to form a complex. Recently, several key terpene synthesis genes and important transcription factors involved in terpene biosynthesis have been isolated and functionally identified from tea plants. In this work, we focus on the research progress on the transcriptional regulation of terpenes in tea plants (Camellia sinensis) and thoroughly detail the biosynthesis of terpene compounds, the terpene biosynthesis-related genes, the transcription factors involved in terpene biosynthesis, and their importance. Furthermore, we review the potential strategies used in studying the specific transcriptional regulation functions of candidate transcription factors that have been discriminated to date.


Sujet(s)
Camellia sinensis , Terpènes , Terpènes/métabolisme , Camellia sinensis/génétique , Camellia sinensis/métabolisme , Régulation de l'expression des gènes végétaux , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme , Thé/métabolisme , Protéines végétales/génétique , Protéines végétales/métabolisme
16.
Sci Bull (Beijing) ; 67(3): 263-269, 2022 Feb 15.
Article de Anglais | MEDLINE | ID: mdl-36546075

RÉSUMÉ

The use of organic hole transport layer (HTL) Spiro-OMeTAD in various solar cells imposes serious stability and cost problems, and thus calls for inorganic substitute materials. In this work, a novel inorganic MnS film prepared by thermal evaporation has been demonstrated to serve as a decent HTL in high-performance Sb2(S, Se)3 solar cells, providing a cost-effective all-inorganic solution. A low-temperature air-annealing process for the evaporated MnS layer was found to result in a significant positive effect on the power conversion efficiency (PCE) of Sb2(S, Se)3 solar cells, due to its better-matched energy band alignment after partial oxidation. Impressively, the device with the optimized MnS HTL has achieved an excellent PCE of about 9.24%, which is the highest efficiency among all-inorganic Sb2(S, Se)3 solar cells. Our result has revealed that MnS is a feasible substitute for organic HTL in Sb-based solar cells to achieve high PCE, low cost, and high stability.

17.
J Virol ; 96(24): e0143822, 2022 12 21.
Article de Anglais | MEDLINE | ID: mdl-36448807

RÉSUMÉ

All living organisms have evolved DNA damage response (DDR) strategies in coping with threats to the integrity of their genome. In response to DNA damage, Sulfolobus islandicus activates its DDR network in which Orc1-2, an ortholog of the archaeal Orc1/Cdc6 superfamily proteins, plays a central regulatory role. Here, we show that pretreatment with UV irradiation reduced virus genome replication in S. islandicus infected with the fusellovirus SSV2. Like treatment with UV or the DNA-damaging agent 4-nitroquinoline-1-oxide (NQO), infection with SSV2 facilitated the expression of orc1-2 and significantly raised the cellular level of Orc1-2. The inhibitory effect of UV irradiation on the virus DNA level was no longer apparent in the infected culture of an S. islandicus orc1-2 deletion mutant strain. On the other hand, the overexpression of orc1-2 decreased virus genomic DNA by ~102-fold compared to that in the parent strain. Furthermore, as part of the Orc1-2-mediated DDR response genes for homologous recombination repair (HRR), cell aggregation and intercellular DNA transfer were upregulated, whereas genes for cell division were downregulated. However, the HRR pathway remained functional in host inhibition of SSV2 genome replication in the absence of UpsA, a subunit of pili essential for intercellular DNA transfer. In agreement with this finding, lack of the general transcriptional activator TFB3, which controls the expression of the ups genes, only moderately affected SSV2 genome replication. Our results demonstrate that infection of S. islandicus by SSV2 triggers the host DDR pathway that, in return, suppresses virus genome replication. IMPORTANCE Extremophiles thrive in harsh habitats and thus often face a daunting challenge to the integrity of their genome. How these organisms respond to virus infection when their genome is damaged remains unclear. We found that the thermophilic archaeon Sulfolobus islandicus became more inhibitory to genome replication of the virus SSV2 after preinfection UV irradiation than without the pretreatment. On the other hand, like treatment with UV or other DNA-damaging agents, infection of S. islandicus by SSV2 triggers the activation of Orc1-2-mediated DNA damage response, including the activation of homologous recombination repair, cell aggregation and DNA import, and the repression of cell division. The inhibitory effect of pretreatment with UV irradiation on SSV2 genome replication was no longer observed in an S. islandicus mutant lacking Orc1-2. Our results suggest that DNA damage response is employed by S. islandicus as a strategy to defend against virus infection.


Sujet(s)
Fuselloviridae , Sulfolobus , Altération de l'ADN/génétique , Réparation de l'ADN/génétique , Fuselloviridae/génétique , Sulfolobus/génétique , Sulfolobus/effets des radiations , Sulfolobus/virologie , Réplication virale , Régulation de l'expression des gènes/effets des médicaments et des substances chimiques , Régulation de l'expression des gènes/effets des radiations , Rayons ultraviolets , 4-Nitro-quinoléine-1-oxyde/pharmacologie , Complexe ORC/génétique , Complexe ORC/métabolisme
18.
iScience ; 25(9): 104927, 2022 Sep 16.
Article de Anglais | MEDLINE | ID: mdl-36065187

RÉSUMÉ

In this work, we studied the generation of memory precursor cells following an acute infection by analyzing single-cell RNA-seq data that contained CD8 T cells collected during the postinfection expansion phase. We used different tools to reconstruct the developmental trajectory that CD8 T cells followed after activation. Cells that exhibited a memory precursor signature were identified and positioned on this trajectory. We found that these memory precursors are generated continuously with increasing numbers arising over time. Similarly, expression of genes associated with effector functions was also found to be raised in memory precursors at later time points. The ability of cells to enter quiescence and differentiate into memory cells was confirmed by BrdU pulse-chase experiment in vivo. Analysis of cell counts indicates that the vast majority of memory cells are generated at later time points from cells that have extensively divided.

19.
Adv Sci (Weinh) ; 9(25): 2202356, 2022 Sep.
Article de Anglais | MEDLINE | ID: mdl-36093410

RÉSUMÉ

Antimony selenosulfide (Sb2(S,Se)3), a simple alloyed compound containing earth-abundant constituents, with a tunable bandgap and high absorption coefficient has attracted significant attention in high-efficiency photovoltaic applications. Optimizing interfacial defects and absorber layers to a high standard is essential in improving the efficiency of Sb2(S,Se)3 solar cells. In particular, the electron transport layer (ETL) greatly affects the final device performance of the superstrate structure. In this study, a simple and effective hydrazine hydrate (N2H4) solution post-treatment is proposed to modify CdS ETL in order to enhance Sb2(S,Se)3 solar cell efficiency. By this process, oxides and residual chlorides, caused by CdCl2 treated CdS under a high temperature over 400 °C in air, are appropriately removed, rendering smoother and flatter CdS ETL as well as high-quality Sb2(S,Se)3 thin films. Furthermore, the interfacial energy band alignment and recombination loss are both improved, resulting in an as-fabricated FTO/CdS-N2H4/Sb2(S,Se)3/spiro-OMeTAD/Au solar cell with a high PCE of 10.30%, placing it in the top tier of Sb-based solar devices. This study provides a fresh perspective on interfacial optimization and promotes the future development of antimony chalcogenide-based planar solar cells.

20.
Adv Mater ; 34(41): e2206242, 2022 Oct.
Article de Anglais | MEDLINE | ID: mdl-36030361

RÉSUMÉ

Sb2 S3 as a light-harvesting material has attracted great attention for applications in both single-junction and tandem solar cells. Such solar cell has been faced with current challenge of low power conversion efficiency (PCE), which has stagnated for 8 years. It has been recognized that the synthesis of high-quality absorber film plays a critical role in efficiency improvement. Here, using fresh precursor materials for antimony (antimony potassium tartrate) and combined sulfur (sodium thiosulfate and thioacetamide), a unique chemical bath deposition procedure is created. Due to the complexation of sodium thiosulfate and the advantageous hydrolysis cooperation between these two sulfur sources, the heterogeneous nucleation and the S2- releasing processes are boosted. As a result, there are noticeable improvements in the deposition rate, film morphology, crystallinity, and preferred orientations. Additionally, the improved film quality efficiently lowers charge trapping capacity, suppresses carrier recombination, and prolongs carrier lifetimes, leading to significantly improved photoelectric properties. Ultimately, the PCE exceeds 8% for the first time since 2014, representing the highest efficiency in all kinds of Sb2 S3 solar cells to date. This study is expected to shed new light on the fabrication of high-quality Sb2 S3 film and further efficiency improvement in Sb2 S3 solar cells.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE