Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Gamme d'année
2.
Stem Cell Res Ther ; 10(1): 325, 2019 11 15.
Article de Anglais | MEDLINE | ID: mdl-31730485

RÉSUMÉ

INTRODUCTION: Multiple sclerosis (MS) is one of the most common autoimmune diseases of the central nervous system (CNS). CNS has its own unique structural and functional features, while the lack of precision regulatory element with high specificity as therapeutic targets makes the development of disease treatment in the bottleneck. Recently, the immunomodulation and neuroprotection capabilities of bone marrow stromal stem cells (BMSCs) were shown in experimental autoimmune encephalomyelitis (EAE). However, the administration route and the safety evaluation limit the application of BMSC. In this study, we investigated the therapeutic effect of BMSC supernatant by nasal administration. METHODS: In the basis of the establishment of the EAE model, the BMSC supernatant were treated by nasal administration. The clinical score and weight were used to determine the therapeutic effect. The demyelination of the spinal cord was detected by LFB staining. ELISA was used to detect the expression of inflammatory factors in serum of peripheral blood. Flow cytometry was performed to detect pro-inflammatory cells in the spleen and draining lymph nodes. RESULTS: BMSC supernatant by nasal administration can alleviate B cell-mediated clinical symptoms of EAE, decrease the degree of demyelination, and reduce the inflammatory cells infiltrated into the central nervous system; lessen the antibody titer in peripheral bloods; and significantly lower the expression of inflammatory factors. As a new, non-invasive treatment, there are no differences in the therapeutic effects between BMSC supernatant treated by nasal route and the conventional applications, i.e. intraperitoneal or intravenous injection. CONCLUSIONS: BMSC supernatant administered via the nasal cavity provide new sights and new ways for the EAE therapy.


Sujet(s)
Encéphalomyélite auto-immune expérimentale/thérapie , Transplantation de cellules souches mésenchymateuses , Cellules souches mésenchymateuses/cytologie , Administration par voie nasale , Animaux , Lymphocytes B/immunologie , Encéphale/anatomopathologie , Maladies démyélinisantes/anatomopathologie , Encéphalomyélite auto-immune expérimentale/sang , Encéphalomyélite auto-immune expérimentale/immunologie , Encéphalomyélite auto-immune expérimentale/anatomopathologie , Femelle , Médiateurs de l'inflammation/sang , Médiateurs de l'inflammation/métabolisme , Souris de lignée C57BL , Moelle spinale/anatomopathologie , Lymphocytes T/immunologie
3.
Mar Biotechnol (NY) ; 18(6): 659-671, 2016 Dec.
Article de Anglais | MEDLINE | ID: mdl-27819120

RÉSUMÉ

Sponges host complex symbiotic communities, but to date, the whole picture of the metabolic potential of sponge microbiota remains unclear, particularly the difference between the shallow-water and deep-sea sponge holobionts. In this study, two completely different sponges, shallow-water sponge Theonella swinhoei from the South China Sea and deep-sea sponge Neamphius huxleyi from the Indian Ocean, were selected to compare their whole symbiotic communities and metabolic potential, particularly in element transformation. Phylogenetically diverse bacteria, archaea, fungi, and algae were detected in both shallow-water sponge T. swinhoei and deep-sea sponge N. huxleyi, and different microbial community structures were indicated between these two sponges. Metagenome-based gene abundance analysis indicated that, though the two sponge microbiota have similar core functions, they showed different potential strategies in detailed metabolic processes, e.g., in the transformation and utilization of carbon, nitrogen, phosphorus, and sulfur by corresponding microbial symbionts. This study provides insight into the putative metabolic potentials of the microbiota associated with the shallow-water and deep-sea sponges at the whole community level, extending our knowledge of the sponge microbiota's functions, the association of sponge- microbes, as well as the adaption of sponge microbiota to the marine environment.


Sujet(s)
Archéobactéries/génétique , Bactéries/génétique , Champignons/génétique , Métagénome , Porifera/microbiologie , Straménopiles/génétique , Animaux , Archéobactéries/classification , Archéobactéries/métabolisme , Bactéries/classification , Bactéries/métabolisme , Évolution biologique , Carbone/métabolisme , Champignons/classification , Champignons/métabolisme , Séquençage nucléotidique à haut débit , Voies et réseaux métaboliques/génétique , Microbiote/génétique , Azote/métabolisme , Phosphore/métabolisme , Phylogenèse , Porifera/classification , Porifera/génétique , ARN ribosomique 16S/génétique , ARN ribosomique 18S/génétique , ARN ribosomique 28S/génétique , Straménopiles/classification , Straménopiles/métabolisme , Soufre/métabolisme , Symbiose/physiologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...