Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 2.305
Filtrer
1.
J Environ Sci (China) ; 147: 414-423, 2025 Jan.
Article de Anglais | MEDLINE | ID: mdl-39003059

RÉSUMÉ

The anaerobic acid production experiments were conducted with the pretreated kitchen waste under pH adjustment. The results showed that pH 8 was considered to be the most suitable condition for acid production, especially for the formation of acetic acid and propionic acid. The average value of total volatile fatty acid at pH 8 was 8814 mg COD/L, 1.5 times of that under blank condition. The average yield of acetic acid and propionic acid was 3302 mg COD/L and 2891 mg COD/L, respectively. The activities of key functional enzymes such as phosphotransacetylase, acetokinase, oxaloacetate transcarboxylase and succinyl-coA transferase were all enhanced. To further explore the regulatory mechanisms within the system, the distribution of microorganisms at different levels in the fermentation system was obtained by microbial sequencing, results indicating that the relative abundances of Clostridiales, Bacteroidales, Chloroflexi, Clostridium, Bacteroidetes and Propionibacteriales, which were great contributors for the hydrolysis and acidification, increased rapidly at pH 8 compared with the blank group. Besides, the proportion of genes encoding key enzymes was generally increased, which further verified the mechanism of hydrolytic acidification and acetic acid production of organic matter under pH regulation.


Sujet(s)
Acides gras volatils , Concentration en ions d'hydrogène , Acides gras volatils/métabolisme , Fermentation , Acide acétique/métabolisme , Bioréacteurs
2.
Psychiatry Investig ; 21(7): 782-791, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-39089704

RÉSUMÉ

OBJECTIVE: Previous research has explored a variety of mental disorders associated with Internet Gaming Disoder (IGD) and Social Media Addiction (SMA). To date, few studies focused on the network characteristics and investigated mood and sleep symptoms across SMA and IGD of adolescence at a group-specific level. This study aims to identify different characteristics of IGD and SMA and further determine the group-specific psychopathology process among adolescents. METHODS: We conducted a cross-sectional study to recruit a cohort of 7,246 adolescents who were scored passing the cutoff point of Internet Gaming Disorder Scale-Short Form and Bergen Social Media Addiction Scale, as grouped in IGD and SMA, or otherwise into the control group. Patient Health Questionnaire-9, Generalized Anxiety Disorder 7-item, and Pittsburgh Sleep Quality Index were assessed for the current study, and all assessed items were investigated using network analysis. RESULTS: Based on the analytical procedure, the participants were divided into three groups, the IGD group (n=789), SMA group (n=713) and control group (n=5,744). The edge weight bootstrapping analysis shows that different groups of networks reach certain accuracy, and the network structures of the three groups are statistically different (pcontrol-IGD=0.004, pcontrol-SMA<0.001, pIGD-SMA<0.001). The core symptom of SMA is "feeling down, depressed, or hopeless", while IGD is "feeling tired or having little energy". CONCLUSION: Although IGD and SMA are both subtypes of internet addiction, the psychopathology processes of IGD and SMA are different. When dealing with IGD and SMA, different symptoms should be addressed.

3.
Ann Gen Psychiatry ; 23(1): 28, 2024 Aug 02.
Article de Anglais | MEDLINE | ID: mdl-39095916

RÉSUMÉ

BACKGROUND: Even with advances in primary health care, depressive disorders remain a major global public health problem. We conducted an in-depth analysis of global, regional and national trends in depressive disorders incidence over the past 30 years. METHODS: Data on the incidence of depressive disorders were obtained by sex (female, male, and both), location (204 countries), age (5-84 years), year (1990-2019) from the Global Burden of Disease Study (GBD) 2019. Further, age-period-cohort modeling was used to estimate the net drift, local drift, age, period and cohort effects between 1990 and 2019. RESULTS: In 2019, although the incidence of depressive disorders has increased by 59.3% to 290 million (95% UI: 256, 328), the age-standardized incidence rate has decreased by 2.35% to 3588.25 per 100,000 people (3152.71, 4060.42) compared to 1990. There was an emerging transition of incidences from the young and middle-aged population to the old population. From 1990 to 2019, the net drift of incidence rate ranged from -0.54% (-0.61%, -0.47%) in low-middle Socio-demographic Index (SDI) regions to 0.52% (0.25%, 0.79%) in high SDI regions. Globally, the incidence rate of depressive disorders increases with age, period effects showing a decreasing risk and cohort effects beginning to decline after the 1960s. CONCLUSIONS: Our current findings reflect substantial health disparities and potential priority-setting of depressive disorders incidence in the three dimensions of age, period and cohort across SDI regions, countries. The scope of healthcare to improve the progression of depressive disorders events can be expanded to include males, females of all ages.

4.
mSystems ; : e0073824, 2024 Aug 09.
Article de Anglais | MEDLINE | ID: mdl-39120153

RÉSUMÉ

The vaginal microbiome (VM) is associated with human papillomavirus (HPV) infection and progression, but a thorough understanding of the relation between HPV infection, and VM needs to be elucidated. From August to December 2022, women who underwent routine gynecological examinations were screened for HPV infection. The distribution of HPV variants and clinical characteristics were collected. Then, a total of 185 participants were enrolled and divided into HPV-negative (HC), high-risk HPV (H), low-risk HPV (L), multiple high-risk HPV (HH), and mixed high-low risk HPV (HL) groups. Samples were collected from the mid-vagina of these 185 participants and sent for 16S rDNA sequencing (V3-V4 region). Among 712 HPV-positive women, the top 3 most frequently detected genotypes were HPV52, HPV58, and HPV16. Among 185 participants in the microbiology study, the ß diversity of the HC group was significantly different from HPV-positive groups (P < 0.001). LEfSe analysis showed that Lactobacillus iners was a potential biomarker for H group, while Lactobacillus crispatus was for L group. Regarding HPV-positive patients, the α diversity of cervical lesion patients was remarkably lower than those with normal cervix (P < 0.05). Differential abundance analysis showed that Lactobacillus jensenii significantly reduced in cervical lesion patients (P < 0.001). Further community state type (CST) clustering displayed that CST IV was more common than other types in HC group (P < 0.05), while CST I was higher than CST IV in H group (P < 0.05). Different HPV infections had distinct vaginal microbiome features. HPV infection might lead to the imbalance of Lactobacillus spp. and cause cervical lesions. IMPORTANCE: In this study, we first investigated the prevalence of different HPV genotypes in south China, which could provide more information for HPV vaccinations. Then, a total of 185 subjects were selected from HPV-negative, high-risk, low-risk, multiple hr-hr HPV infection, and mixed hr-lr HPV infection populations to explore the vaginal microbiome changes. This study displayed that HPV52, HPV58, and HPV16 were the most prevalent high-risk variants in south China. In addition, high-risk HPV infection was featured by Lactobacillus iners, while low-risk HPV infection was by Lactobacillus crispatus. Further sub-group analysis showed that Lactobacillus jensenii was significantly reduced in patients with cervical lesions. Finally, CST clustering showed that CST IV was the most common type in HC group, while CST I accounted the most in H group. In a word, this study for the first time systemically profiled vaginal microbiome of different HPV infections, which may add bricks to current knowledge on HPV infection and lay the foundation for novel treatment/prevention development.

5.
Plant Physiol ; 2024 Aug 05.
Article de Anglais | MEDLINE | ID: mdl-39102874

RÉSUMÉ

Soil alkalization has become a serious problem that limits plant growth through osmotic stress, ionic imbalance, and oxidative stress. Understanding how plants resist alkali stress has practical implications for alkaline-land utilization. In this study, we identified a small GTPase, PvARFR2 (ADP ribosylation factors related 2), that positively regulates alkali tolerance in switchgrass (Panicum virgatum) and uncovered its potential mode of action. Overexpressing PvARFR2 in switchgrass and Arabidopsis (Arabidopsis thaliana) conferred transformants tolerance to alkali stress, demonstrated by alleviated leaf wilting, less oxidative injury, and a lower Na+/K+ ratio under alkali conditions. Conversely, switchgrass PvARFR2-RNAi and its homolog mutant atgb1 in Arabidopsis displayed alkali sensitives. Transcriptome sequencing analysis showed that cytosolic ABA receptor kinase PvCARK3 transcript levels were higher in PvARFR2 overexpression lines compared to the controls and were strongly induced by alkali treatment in shoots and roots. Phenotyping analysis revealed that PvCARK3-OE×atgb1 lines were sensitive to alkali similar to the Arabidopsis atgb1 mutant, indicating that PvARFR2/AtGB1 functions in the same pathway as PvCARK3 under alkaline stress conditions. Application of ABA on PvARFR2-OE and PvCARK3-OE switchgrass transformants resulted in ABA sensitivity. Moreover, we determined that PvARFR2 physically interacts with PvCARK3 in vitro and in vivo. Our results indicate that a small GTPase, PvARFR2, positively responds to alkali stress by interacting with the cytosolic ABA receptor kinase PvCARK3, connecting the alkaline stress response to ABA signaling.

6.
PLoS One ; 19(8): e0309165, 2024.
Article de Anglais | MEDLINE | ID: mdl-39190747

RÉSUMÉ

The characterization and analysis of rock types based on acoustic emission (AE) signals have long been focal points in earth science research. However, traditional analysis methods struggle to handle the influx of big data. While signal processing methods combined with deep learning have found widespread use in various process analyses and state identification, effective feature extraction using progressive fusion technology still faces challenges in the field of intelligent rock type identification. To address this issue, our study proposes a novel framework for rock type identification based on AE and introduces a new signal identification model called 3CTNet. This model integrates convolutional neural networks (CNNs) and Transformer encoder, intelligently identifying AE of different rock fractures by establishing dependencies between adjacent positions within the data and gradually extracting advanced features. Furthermore, we experimentally compare five oversampling methods, ultimately selecting the adaptive synthetic sampling method (ADASYN) to balance the dataset and enhance the model's robustness and generalization ability. Comparison of the internal structure of our model with a series of time series processing models demonstrates the effectiveness of the proposed model structure. Experimental results showcase the high identification accuracy of the intelligent rock type identification model based on 3CTNet, with an overall identification accuracy reaching 98.780%. Our proposed method lays a solid foundation for the efficient and accurate identification of formation rock types in geological exploration and oil and gas development endeavors.


Sujet(s)
Acoustique , , Traitement du signal assisté par ordinateur , Algorithmes , Modèles théoriques
7.
Pragmat Obs Res ; 15: 121-137, 2024.
Article de Anglais | MEDLINE | ID: mdl-39130528

RÉSUMÉ

Purpose: Hospitalized hypertensive patients rely on blood pressure medication, yet there is limited research on the sole use of amlodipine, despite its proven efficacy in protecting target organs and reducing mortality. This study aims to identify key indicators influencing the efficacy of amlodipine, thereby enhancing treatment outcomes. Patients and Methods: In this multicenter retrospective study, 870 hospitalized patients with primary hypertension exclusively received amlodipine for the first 5 days after admission, and their medical records contained comprehensive blood pressure records. They were categorized into success (n=479) and failure (n=391) groups based on average blood pressure control efficacy. Predictive models were constructed using six machine learning algorithms. Evaluation metrics encompassed the area under the curve (AUC), accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). SHapley Additive exPlanations (SHAP) analysis assessed feature contributions to efficacy. Results: All six machine learning models demonstrated superior predictive performance. Following variable reduction, the model predicting amlodipine efficacy was reconstructed using these algorithms, with the light gradient boosting machine (LightGBM) model achieving the highest overall performance (AUC = 0.803). Notably, amlodipine showed enhanced efficacy in patients with low platelet distribution width (PDW) values, as well as high hematocrit (HCT) and thrombin time (TT) values. Conclusion: This study utilized machine learning to predict amlodipine's effectiveness in hypertension treatment, pinpointing key factors: HCT, PDW, and TT levels. Lower PDW, along with higher HCT and TT, correlated with enhanced treatment outcomes. This facilitates personalized treatment, particularly for hospitalized hypertensive patients undergoing amlodipine monotherapy.

8.
Synapse ; 78(5): e22306, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39135278

RÉSUMÉ

BACKGROUND: Increasing evidence demonstrated the involvement of microRNAs (miRNAs) in the onset and development of neuropathic pain (NP). Exploring the molecular mechanism underlying NP and identifying key molecules could provide potential targets for the therapy of NP. The function and mechanism of miR-125b-5p in regulating NP have been studied, aiming to find a potential therapeutic target for NP. METHODS: NP rat models were established by the chronic constriction injury (CCI) method. The paw withdrawal threshold and paw withdrawal latency were assessed to evaluate the establishment and recovery of rats. Highly aggressive proliferating immortalized (HAPI) micoglia cell, a rat microglia cell line, was treated with lipopolysaccharide (LPS). The M1/M2 polarization and inflammation were evaluated by enzyme-linked immunosorbent assay and western blotting. RESULTS: Decreasing miR-125b-5p and increasing SOX11 were observed in CCI rats and LPS-induced HAPI cells. Overexpressing miR-125b-5p alleviated mechanical allodynia and thermal hyperalgesia and suppressed inflammation in CCI rats. LPS induced M1 polarization and inflammation of HAPI cells, which was attenuated by miR-125b-5p overexpression. miR-125-5p negatively regulated the expression of SOX11 in CCI rats and LPS-induced HAPI cells. Overexpressing SOX11 reversed the protective effects of miR-125b-5p on mechanical pain in CCI rats and the polarization and inflammation in HAPI cells, which was considered the mechanism underlying miR-125b-5p. CONCLUSION: miR-125b-5p showed a protective effect on NP by regulating inflammation and polarization of microglia via negatively modulating SOX11.


Sujet(s)
Lipopolysaccharides , microARN , Microglie , Névralgie , Rat Sprague-Dawley , Facteurs de transcription SOX-C , Animaux , microARN/métabolisme , microARN/génétique , Rats , Névralgie/métabolisme , Facteurs de transcription SOX-C/métabolisme , Facteurs de transcription SOX-C/génétique , Mâle , Microglie/métabolisme , Microglie/effets des médicaments et des substances chimiques , Lipopolysaccharides/pharmacologie , Hyperalgésie/métabolisme , Maladies neuro-inflammatoires/métabolisme , Lignée cellulaire , Modèles animaux de maladie humaine
9.
Water Res ; 265: 122301, 2024 Aug 18.
Article de Anglais | MEDLINE | ID: mdl-39173356

RÉSUMÉ

Methylisothiazolinone (MIT) and Benzisothiazolinone (BIT) are two widely used non-oxidizing biocides of isothiazolinones. Their production and usage volume have sharply increased since the pandemic of COVID-19, inevitably leading to more release into water environment. However, their photochemical behaviors in water environment are still unclear. Therefore, this study investigated photodegradation properties of MIT and BIT in natural water under simulated sunlight. The results demonstrated that direct photolysis was mainly responsible for their photodegradation which occurred through their excited singlet states rather than triplet states. The quantum yields of MIT and BIT photodegradation were 11 - 13.6 × 10-4 and 2.43 - 5.79 × 10-4, respectively. pH had almost no effect on the photodegradation of MIT, while the photodegradation of BIT was significantly promoted under alkaline condition due to abundance of BIT in its deprotonated form (BIT-N-). Cl-, NO3- and dissolved organic matter (DOM) in natural water inhibited the photodegradation of both MIT and BIT, with the light screening effect of DOM being the most significantly inhibitory factor. The addition of other isothiazolinones, which possibly coexisted with MIT and BIT in actual condition, slightly inhibited the photodegradation of MIT and BIT. The estimated half-life under natural sunlight at a 30°N latitude was estimated to be approximately 1.1 days. The photodegradation pathways of MIT and BIT are similar, primarily initiated from the ring-opening at the N-S bond, with Frontier electron densities (FED) calculations suggesting the likelihood of oxidation and ·OH addition reactions at the O, N, and S sites. While the photodegradation products exhibited significantly reduced acute toxicity compared to their parent compounds, they nonetheless posed substantial chronic toxicity. These insights are vital for assessing the ecological impacts of MIT and BIT in aquatic environments.

10.
Heart ; 2024 Aug 22.
Article de Anglais | MEDLINE | ID: mdl-39174317

RÉSUMÉ

BACKGROUND: The relationships between various obesity measures and hypertensive disorders of pregnancy (HDP) remain inadequately explored, and their causal links are not well understood. This study aims to clarify these associations and investigate the mediating role of triglycerides. METHODS: We conducted a comprehensive meta-analysis of observational studies alongside Mendelian randomisation (MR) analysis to assess the impact of 10 obesity measures on HDP risk. Additionally, we evaluated the mediating effect of triglycerides. RESULTS: Our meta-analysis revealed significant associations between maternal prepregnancy overweight/obesity and increased risks of gestational hypertension (GH) (overweight: OR=1.98, 95% CI 1.83 to 2.15; obesity: OR=3.77, 95% CI 3.45 to 4.13) and pre-eclampsia (overweight: OR=1.78, 95% CI 1.67 to 1.90; obesity: OR=3.46, 95% CI 3.16 to 3.79). Higher maternal waist circumference (WC) was also linked to increased pre-eclampsia risk (OR=1.45, 95% CI 1.14 to 1.83). MR analyses indicated that each 1-SD increase in genetically predicted obesity measures (whole body fat mass, body fat percentage, trunk fat mass, trunk fat percentage, body mass index, WC, hip circumference) was associated with higher risks of GH and pre-eclampsia. Triglycerides mediated 4.3%-14.1% of the total genetic effect of these obesity measures on GH and pre-eclampsia risks. CONCLUSIONS: This study demonstrates that various obesity measures are causally linked to increased HDP risk and highlights the mediating role of triglycerides. These findings could inform clinical practices and public health strategies aimed at reducing HDP through targeted obesity and triglyceride management.

11.
J Pharm Biomed Anal ; 251: 116418, 2024 Aug 14.
Article de Anglais | MEDLINE | ID: mdl-39180893

RÉSUMÉ

The deregulation of amino acid and polyamine metabolism is a hallmark of malignancy that regulates cancer cell proliferation, angiogenesis, and invasion. A sensitive mass spectrometry method was developed to simultaneously quantify 10 cancer-associated metabolites in pleural effusion cells for the diagnosis of malignancy and to complement conventional pleural cytology. Analytes were detected by high-performance liquid chromatography-high resolution mass spectrometry (HPLC-HRMS) using C8-reversed-phase HPLC for separation and sequential window acquisition of all theoretical fragment ion spectra (SWATH) acquisition for obtaining high-resolution quantitative MS/MS chromatograms. This method was validated and applied to pleural effusion cells from patients with lung adenocarcinoma (LUAD, n = 48) and those from benign controls (n = 23). The range of the above metabolites was 2-200 ng/mL for proline, aspartate, ornithine, creatine, glutamine, glutamate, arginine, citrulline, and spermine and 10-1000 ng/mL for putrescine. The intra-assay and inter-assay coefficient of variation was below 13.70 % for all analytes. The joint detection of these metabolites in pleural effusion cells achieved a clinical sensitivity of 75.0 % and specificity of 95.7 % differentiating LUAD patients from benign controls. This assay enabled the detection of 10 cancer-associated metabolites in pleural effusion cells, and the increased concentration of these metabolites was correlated with the presence of LUAD.

12.
Chin J Integr Med ; 2024 Aug 21.
Article de Anglais | MEDLINE | ID: mdl-39167283

RÉSUMÉ

OBJECTIVE: To investigate potential mechanisms of anti-atherosclerosis by berberine (BBR) using ApoE-/- mice. METHODS: Eight 8-week-old C57BL/6J mice were used as a blank control group (normal), and 56 8-week-old AopE-/- mice were fed a high-fat diet for 12 weeks, according to a completely random method, and were divided into the model group, BBR low-dose group (50 mg/kg, BBRL), BBR medium-dose group (100 mg/kg, BBRM), BBR high-dose group (150 mg/kg, BBRH), BBR+nuclear factor erythroid 2-related factor 2 (NRF2) inhibitor group (100 mg/kg BBR+30 mg/kg ML385, BBRM+ML385), NRF2 inhibitor group (30 mg/kg, ML385), and positive control group (2.5 mg/kg, atorvastatin), 8 in each group. After 4 weeks of intragastric administration, samples were collected and serum, aorta, heart and liver tissues were isolated. Biochemical kits were used to detect serum lipid content and the expression levels of malondialdehyde (MDA) and superoxide dismutase (SOD) in all experimental groups. The pathological changes of atherosclerosis (AS) were observed by aorta gross Oil Red O, aortic sinus hematoxylin-eosin (HE) and Masson staining. Liver lipopathy was observed in mice by HE staining. The morphology of mitochondria in aorta cells was observed under transmission electron microscope. Flow cytometry was used to detect reactive oxygen species (ROS) expression in aorta of mice in each group. The content of ferrous ion Fe2+ in serum of mice was detected by biochemical kit. The mRNA and protein relative expression levels of NRF2, glutathione peroxidase 4 (GPX4) and recombinant solute carrier family 7 member 11 (SLC7A11) were detected by quantitative real time polymerase chain reaction (RT-qPCR) and Western blot, respectively. RESULTS: BBRM and BBRH groups delayed the progression of AS and reduced the plaque area (P<0.01). The characteristic morphological changes of ferroptosis were rarely observed in BBR-treated AS mice, and the content of Fe2+ in BBR group was significantly lower than that in the model group (P<0.01). BBR decreased ROS and MDA levels in mouse aorta, increased SOD activity (P<0.01), significantly up-regulated NRF2/SLC7A11/GPX4 protein and mRNA expression levels (P<0.01), and inhibited lipid peroxidation. Compared with the model group, the body weight, blood lipid level and aortic plaque area of ML385 group increased (P<0.01); the morphology of mitochondria showed significant ferroptosis characteristics; the serum Fe2+, MDA and ROS levels increased (P<0.05 or P<0.01), and the activity of SOD decreased (P<0.01). Compared with BBRM group, the iron inhibition effect of BBRM+ML385 group was significantly weakened, and the plaque area significantly increased (P<0.01). CONCLUSION: Through NRF2/SLC7A11/GPX4 pathway, BBR can resist oxidative stress, inhibit ferroptosis, reduce plaque area, stabilize plaque, and exert anti-AS effects.

13.
Microb Cell Fact ; 23(1): 233, 2024 Aug 22.
Article de Anglais | MEDLINE | ID: mdl-39174991

RÉSUMÉ

BACKGROUND: Methyl methacrylate (MMA) is a key precursor of polymethyl methacrylate, extensively used as a transparent thermoplastic in various industries. Conventional MMA production poses health and environmental risks; hence, citramalate serves as an alternative bacterial compound precursor for MMA production. The highest citramalate titer was previously achieved by Escherichia coli BW25113. However, studies on further improving citramalate production through metabolic engineering are limited, and phage contamination is a persistent problem in E. coli fermentation. RESULTS: This study aimed to construct a phage-resistant E. coli BW25113 strain capable of producing high citramalate titers from glucose. First, promoters and heterologous cimA genes were screened, and an effective biosynthetic pathway for citramalate was established by overexpressing MjcimA3.7, a mutated cimA gene from Methanococcus jannaschii, regulated by the BBa_J23100 promoter in E. coli. Subsequently, a phage-resistant E. coli strain was engineered by integrating the Ssp defense system into the genome and mutating key components of the phage infection cycle. Then, the strain was engineered to include the non-oxidative glycolysis pathway while removing the acetate synthesis pathway to enhance the supply of acetyl-CoA. Furthermore, glucose utilization by the strain improved, thereby increasing citramalate production. Ultimately, 110.2 g/L of citramalate was obtained after 80 h fed-batch fermentation. The citramalate yield from glucose and productivity were 0.4 g/g glucose and 1.4 g/(L·h), respectively. CONCLUSION: This is the highest reported citramalate titer and productivity in E. coli without the addition of expensive yeast extract and additional induction in fed-bath fermentation, emphasizing its potential for practical applications in producing citramalate and its derivatives.


Sujet(s)
Escherichia coli , Fermentation , Glucose , Glycolyse , Génie métabolique , Escherichia coli/métabolisme , Escherichia coli/génétique , Génie métabolique/méthodes , Glucose/métabolisme , Voies de biosynthèse , Régions promotrices (génétique) , Malates
14.
Intensive Crit Care Nurs ; 85: 103800, 2024 Aug 22.
Article de Anglais | MEDLINE | ID: mdl-39178645

RÉSUMÉ

AIM: This study aims to evaluate the feasibility and clinical utility of measuring cough decibel level as predictive markers for extubation outcomes in mechanically ventilated patients. DESIGN: A prospective observational study. SETTING: Three interdisciplinary medical-surgical intensive care units across China. MAIN OUTCOME MEASURES: The primary outcomes assessed were extubation results in patients. Secondary measures included the cough decibel level, semiquantitative cough intensity scores, and white card test results recorded prior to extubation. RESULTS: A total of 71 patients were included, 55 patients were in the extubation success group and 16 in the failure group. The mean age was 78(71,83) years, mainly male (73.2 %). Despite the baseline characteristics being mostly consistent across both groups, significant differences were noted in duration of mechanical ventilation, and intensive care units and hospital stay. Remarkably, the cough decibel was substantially lower in the extubation failure group compared to the other group (78.69 ± 8.23 vs 92.28 ± 7.01 dB). The Receiver Operating Characteristic curve analysis revealed that a cough decibel below 85.77 dB is the optimal threshold for predicting extubation failure, exhibiting an 80 % sensitivity and 91.67 % specificity. CONCLUSION: The study corroborates that the cough decibel level serves as a quantifiable metric in patients undergoing mechanical ventilation. It posits that the likelihood of extubation failure escalates when the cough decibel falls below 85.77 dB. IMPLICATIONS FOR CLINICAL PRACTICE: Quantification of coughing capacity in decibels may be a good predictor of extubation outcome, thus offering assistance to healthcare professionals in evaluating the readiness of patients for extubation.

15.
Sci Total Environ ; 950: 175401, 2024 Nov 10.
Article de Anglais | MEDLINE | ID: mdl-39127198

RÉSUMÉ

The inherent toxicity and persistence of emerging contaminants such as antibiotics and endocrine disruptors pose substantial threats to the environment. Advanced oxidation processes (AOPs) employed for oxidative degradation could yield toxic oxidation by-products (OBPs), including organic acids and aromatic hydrocarbons. Despite their typically low concentrations, OBPs require scrutiny owing to their potential health risks. Although effective assessment methodologies are available, a comprehensive review focusing on the ecological and environmental effects of these pollutants is lacking. This study offers a succinct overview of existing ecotoxicological exposure assessments for emerging organic pollutants. Further, it encapsulates principal dose-response assessment techniques and provides a comparative analysis of several methods. The straightforward assessment factor method evaluates risk based on exposure and species sensitivity and is suitable for preliminary assessments of single pollutants; Species Sensitivity Distribution (SSD) compares species sensitivities to OBPs, emphasizing the importance of species-specific toxicological responses; microcosm and mesocosm methods simulate and predict the effects of OBPs on aquatic life by considering environmental diversity and biological community structures and are ideal for assessing the toxicity of multiple OBPs; the ecological risk analysis model employs mathematical and probabilistic approaches to comprehensively and accurately assess exposures and effects, accounting for the complexities and uncertainties inherent in ecotoxicological evaluations. Different risk characterization techniques are outlined in this study, including the risk quotient (RQ), which is ideal for quantifying and comparing risks; probabilistic ecological risk assessment (PERA), suitable for managing significant uncertainty; and the Environmental Pollution Index (EPI), the preferred method for quantitative assessment of OBP pollution levels. The merits and limitations of each of these quantitative assessment tools are evaluated, providing a comprehensive view of their applications in risk analysis. In addition, pressing contemporary challenges are identified and trajectories and pivotal issues suggested for future research.


Sujet(s)
Oxydoréduction , Appréciation des risques/méthodes , Surveillance de l'environnement/méthodes , Polluants chimiques de l'eau/analyse , Écotoxicologie , Polluants environnementaux/analyse
16.
ACS Nano ; 18(34): 23428-23444, 2024 Aug 27.
Article de Anglais | MEDLINE | ID: mdl-39150010

RÉSUMÉ

Wound rehabilitation is invariably time-consuming, scar formation further weakens therapeutic efficacy, and detailed mechanisms at the molecular level remain unclear. In this work, a Mo4/3B2-x nanoscaffold was fabricated and utilized for wound healing and scar removing in a mice model, while metabolomics was used to study the metabolic reprogramming of metabolome during therapy at the molecular level. The results showed that transition metal borides, called Mo4/3B2-x nanoscaffolds, could mimic superoxide dismutase and glutathione peroxidase to eliminate excess reactive oxygen species (ROS) in the wound microenvironment. During the therapeutic process, the Mo4/3B2-x nanoscaffold could facilitate the regeneration of wounds and removal of scars by regulating the biosynthesis of collagen, fibers, and blood vessels at the pathological, imaging, and molecular levels. Subsequent metabolomics study revealed that the Mo4/3B2-x nanoscaffold effectively ameliorated metabolic disorders in both wound and scar microenvironments through regulating ROS-related pathways including the amino acid metabolic process (including glycine and serine metabolism and glutamate metabolism) and the purine metabolic process. This study is anticipated to illuminate the potential clinical application of the Mo4/3B2-x nanoscaffold as an effective therapeutic agent in traumatic diseases and provide insights into the development of analytical methodology for interrogating wound healing and scar removal-related metabolic mechanisms.


Sujet(s)
Acides aminés , Cicatrice , Purines , Cicatrisation de plaie , Animaux , Cicatrisation de plaie/effets des médicaments et des substances chimiques , Cicatrice/métabolisme , Cicatrice/anatomopathologie , Cicatrice/traitement médicamenteux , Souris , Acides aminés/composition chimique , Acides aminés/métabolisme , Purines/composition chimique , Purines/pharmacologie , Espèces réactives de l'oxygène/métabolisme , Mâle
17.
ACS Nano ; 18(34): 23001-23013, 2024 Aug 27.
Article de Anglais | MEDLINE | ID: mdl-39150454

RÉSUMÉ

The currently available immune checkpoint therapy shows a disappointing therapeutic efficacy for glioblastoma multiforme (GBM), and it is of great importance to discover better immune checkpoints and develop innovative targeting strategies. The discovered metabolic immune checkpoint ecto-5-nucleotidase (CD73) in a tumor contributes to its immune evasion due to the dysregulation of extracellular adenosine (ADO), which significantly inhibits the function of antitumor T cells and increases the activity of immunosuppressive cells. Herein, we drastically inhibit the expression of CD73 to reduce the production of ADO by using versatile Au@Cu2-xSe nanoparticles (ACS NPs). ACS NPs can decrease the expression of CD73 by alleviating the tumor hypoxia through their Fenton-like reaction to weaken the ADO-driven immunosuppression for enhancing antitumor T cell infiltration and activity of GBM. The copper ions (Cu2+) released from ACS NPs can chelate with disulfide, leading to the formation of cytotoxic bis(N,N-diethyldithiocarbamate)-copper complex (CuET), which can be combined with radiotherapy to recruit more antitumor T cells to infiltrate into the tumor site. Based on the inhibition of CD73 to promote the infiltration and activity of antitumor T cells, a cascade of enhancing GBM immunotherapy effects can be achieved. The significant increase in CD8+ T and CD4+ T cells within the tumor and the memory T cells in the spleen effectively reduces tumor size by 92%, which demonstrates the excellent efficacy of immunotherapy achieved by a combination of metabolic immune checkpoint CD73 inhibition with chemoradiotherapy. This work demonstrates that modulation of CD73-mediated tumor immunosuppression is an important strategy of improving the outcome of GBM immunotherapy.


Sujet(s)
5'-Nucleotidase , Glioblastome , Immunothérapie , Glioblastome/thérapie , Glioblastome/immunologie , Glioblastome/anatomopathologie , Glioblastome/traitement médicamenteux , 5'-Nucleotidase/métabolisme , 5'-Nucleotidase/antagonistes et inhibiteurs , Animaux , Humains , Souris , Lymphocytes T/immunologie , Lymphocytes T/effets des médicaments et des substances chimiques , Cuivre/composition chimique , Cuivre/pharmacologie , Or/composition chimique , Tumeurs du cerveau/immunologie , Tumeurs du cerveau/thérapie , Tumeurs du cerveau/anatomopathologie , Tumeurs du cerveau/traitement médicamenteux , Lignée cellulaire tumorale , Nanoparticules métalliques/composition chimique , Protéines liées au GPI/métabolisme , Protéines liées au GPI/immunologie , Protéines liées au GPI/antagonistes et inhibiteurs , Adénosine/composition chimique , Adénosine/pharmacologie
18.
Plant J ; 2024 Aug 13.
Article de Anglais | MEDLINE | ID: mdl-39137160

RÉSUMÉ

The domestication process progressively differentiated wild relatives from modern cultivars, thus impacting plant-associated microorganisms. Endophytic bacterial communities play vital roles in plant growth, development, and health, which contribute to the crop's sustainable development. However, how plant domestication impacts endophytic bacterial communities and relevant root exudates in wheat remains unclear. First, we have observed that the domestication process increased the root endophytic microbial community diversity of wheat while decreasing functional diversity. Second, domestication decreased the endophytic bacterial co-occurrence network stability, and it did significantly alter the abundances of core microorganisms or potential probiotics. Third, untargeted LC-MS metabolomics revealed that domestication significantly altered the metabolite profiles, and the abundances of various root exudates released were significantly correlated with keystone taxa including the Chryseobacterium, Massilia, and Lechevalieria. Moreover, we found that root exudates, especially L-tyrosine promote the growth of plant-beneficial bacteria, such as Chryseobacterium. Additionally, with L-tyrosine and Chryseobacterium colonized in the roots, the growth of wild wheat's roots was significantly promoted, while no notable effect could be found in the domesticated cultivars. Overall, this study suggested that wild wheat as a key germplasm material, and its native endophytic microbes may serve as a resource for engineering crop microbiomes to improve the morphological and physiological traits of crops in widely distributed poor soils.

19.
Med ; 2024 Aug 13.
Article de Anglais | MEDLINE | ID: mdl-39151420

RÉSUMÉ

BACKGROUND: Bilirubin has antioxidant properties, and elevated levels within the normal range have been associated with improved lung function and decreased risk of asthma in adults, but studies of young children are scarce. Here, we investigate associations between bilirubin in early life and respiratory health endpoints during preschool age in two independent birth cohorts. METHODS: Bilirubin metabolites were assessed at ages 0.5, 1.5, and 6 years in COPSAC2010 (Copenhagen Prospective Studies on Asthma in Childhood 2010) and ages 1, 3, and 6 years in the VDAART (The Vitamin D Antenatal Asthma Reduction Trial) cohort. Meta-analyses were done to summarize the relationship between levels of bilirubin metabolites and asthma, infections, lung function, and allergic sensitization until age 6 across the cohorts. Interaction with the glucuronosyltransferase family 1 member A1 (UGT1A) genotype encoding for an enzyme in the bilirubin metabolism was explored, and metabolomics data were integrated to study underlying mechanisms. FINDINGS: Increasing bilirubin (Z,Z) at ages 1.5-3 years was associated with an increased risk of allergic sensitization (adjusted relative risk [aRR] = 1.85 [1.20-2.85], p = 0.005), and age 6 bilirubin (Z,Z) also showed a trend of association with allergic sensitization at age 6 (aRR = 1.31 [0.97-1.77], p = 0.08), which showed significant interaction for the age 6 bilirubin (Z,Z)xUGT1A genotype. Further, increasing bilirubin (E,E), bilirubin (Z,Z), and biliverdin at ages 1.5-3 years was associated with a lower forced expiratory volume at age 6 (aRR range = 0.81-0.91, p < 0.049) but without a significant interaction with the UGT1A genotype (p interactions > 0.05). Network analysis showed a significant correlation between bilirubin metabolism and acyl carnitines. There were no associations between bilirubin metabolites and the risk of asthma and infections. CONCLUSIONS: Bilirubin metabolism in early life may play a role in childhood respiratory health, particularly in children with specific UGT1A genotypes. FUNDING: The Lundbeck Foundation (Grant no R16-A1694), The Ministry of Health (Grant no 903516), Danish Council for Strategic Research (Grant no 0603-00280B), and The Capital Region Research Foundation have provided core support to the COPSAC research center. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 946228). The Vitamin D Antenatal Asthma Reduction Trial (VDDART, ClinicalTrials.gov identifier: NCT00920621) was supported by grant U01HL091528 from NHLBI, U54TR001012 from the National Centers for Advancing Translational Sciences (NCATS). Metabolomics work by VDAART was supported by the National Heart, Lung, and Blood Institute (NHLBI) grant R01HL123915 and R01HL141826. S.T.W. was supported by R01HL091528 from the NHLBI, UG3OD023268 from Office of The Director, National Institute of Health, and P01HL132825 from the NHLBI.

20.
Sci Total Environ ; : 175562, 2024 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-39153621

RÉSUMÉ

Arsenic (As) is the most prolific contaminant in food, triggering arseniasis primarily via contaminated rice and drinking contaminated water. However, toxicological data for arsenite (As (III)) and arsenate (As (V)) on antioxidant enzyme catalase (CAT) at molecular level is shortage. The interaction mechanism of As (III) and As (V) with CAT was investigated using enzyme activity detection, multi-spectroscopic techniques, isothermal titration calorimetry and computational simulations. Results indicated As (III) and As (V) induced protein skeleton relaxation, secondary structure transformation, fluorescence sensitization and particle alteration of CAT, particularly As (III). Moreover, As (III)/As (V) bound to CAT through hydrogen bonding and hydrophobic. As (III) and As (V) contacted with core residues His 74, Asn 147 and His A74, Trp A357, respectively, thereby inhibiting CAT activity. Overall, As (III) is more aggressive against the structure and physiological function of CAT than As (V). Our findings enhance the understanding of health risk related to dietary As exposure.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE