Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Pathol Res Pract ; 260: 155413, 2024 Jul 06.
Article de Anglais | MEDLINE | ID: mdl-38981344

RÉSUMÉ

INTRODUCTION: Osteoclasts, which are responsible for bone resorption, are specialized multinucleated cells generated from monocyte/macrophage progenitor cells or hematopoietic stem cells (HSCs). Physiological bone remodeling can become pathological, such as osteoporosis, when osteoclastogenesis is out of balance. Thousands of long noncoding RNAs (lncRNAs) influence important molecular and biological processes. Recent research has revealed gene expression regulation function that numerous lncRNAs regulate nuclear domain organization, genome stability. Furthermore, the research of lncRNAs has substantial clinical implications for the treatment of existing and new diseases. AREAS COVERED: In this review, we gather the most recent research on lncRNAs and their potential for basic research and clinical applications in osteoclast and osteoporosis. We also discuss the findings here in order to fully understand the role of lncRNAs in osteoclast differentiation and osteoporosis, as well as to provide a solid basis for future research exploring associated mechanisms and treatments. EXPERT OPINION: LncRNA has been considered as an important role in the regulation of osteoclast differentiation and osteoporosis. It is exciting to investigate pathophysiological processes in osteoporosis and the therapeutic potential of lncRNAs. We hope that this review will offer promising prospects for the development of precision and individualized approaches to treatment.

2.
J Biol Chem ; 299(6): 104823, 2023 06.
Article de Anglais | MEDLINE | ID: mdl-37187293

RÉSUMÉ

An imbalance of human mesenchymal stem cells (MSCs) adipogenic and osteogenic differentiation plays an important role in the pathogenesis of osteoporosis. Our previous study verified that Adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1 (APPL1)/myoferlin deficiency promotes adipogenic differentiation of MSCs by blocking autophagic flux in osteoporosis. However, the function of APPL1 in the osteogenic differentiation of MSCs remains unclear. This study aimed to investigate the role of APPL1 in the osteogenic differentiation of MSCs in osteoporosis and the underlying regulatory mechanism. In this study, we demonstrated the downregulation of APPL1 expression in patients with osteoporosis and osteoporosis mice. The severity of clinical osteoporosis was negatively correlated with the expression of APPL1 in bone marrow MSCs. We found that APPL1 positively regulates the osteogenic differentiation of MSCs in vitro and in vivo. Moreover, RNA sequencing showed that the expression of MGP, an osteocalcin/matrix Gla family member, was significantly upregulated after APPL1 knockdown. Mechanistically, our study showed that reduced APPL1 impaired the osteogenic differentiation of mesenchymal stem cells by facilitating Matrix Gla protein expression to disrupt the BMP2 pathway in osteoporosis. We also evaluated the significance of APPL1 in promoting osteogenesis in a mouse model of osteoporosis. These results suggest that APPL1 may be an important target for the diagnosis and treatment of osteoporosis.


Sujet(s)
Protéines adaptatrices de la transduction du signal , Protéines de liaison au calcium , Cellules souches mésenchymateuses , Ostéoporose , Animaux , Humains , Souris , Protéines adaptatrices de la transduction du signal/génétique , Protéines adaptatrices de la transduction du signal/métabolisme , Protéine morphogénétique osseuse de type 2/génétique , Protéine morphogénétique osseuse de type 2/métabolisme , Différenciation cellulaire , Cellules cultivées , Protéines membranaires/métabolisme , Cellules souches mésenchymateuses/métabolisme , Protéines du muscle/métabolisme , Ostéogenèse , Ostéoporose/métabolisme , Protéines de liaison au calcium/métabolisme ,
3.
Cell Mol Life Sci ; 79(9): 488, 2022 Aug 19.
Article de Anglais | MEDLINE | ID: mdl-35984564

RÉSUMÉ

An imbalance of human mesenchymal stem cells (hMSCs) adipogenic and osteogenic differentiation is crucial in the pathogenesis of osteoporosis, and elucidation of the underlying mechanism is urgently needed. APPL1, an adaptor protein of the adiponectin receptor, was recently shown to be closely related to bone mass. However, the role of APPL1 in the imbalance of hMSC differentiation in osteoporosis is unclear. Therefore, we aimed to explore the mechanisms by which APPL1 alters hMSCs adipogenic differentiation in osteoporosis. Here, we found that APPL1 expression was downregulated in elderly patients with osteoporosis and in mouse osteoporosis model. APPL1 negatively regulated hMSC adipogenic differentiation in vivo and in vitro. Mechanistically, by enhancing ubiquitination-mediated Myoferlin degradation, downregulated APPL1 expression increased the risk of lysosome dysfunction during hMSCs adipogenic differentiation. Lysosomal dysfunction inhibited autophagy flux by suppressing autophagosome degradation and promoted hMSC differentiation towards the adipocyte lineage. Our findings suggest that APPL1/Myoferlin downregulation promoted hMSCs adipogenic differentiation by inhibiting autophagy flux, further impairing the balance of hMSCs adipogenic and osteogenic differentiation in osteoporosis; the APPL1/ Myoferlin axis may be a promising diagnostic and therapeutic target for osteoporosis.


Sujet(s)
Protéines adaptatrices de la transduction du signal , Protéines membranaires , Cellules souches mésenchymateuses , Protéines du muscle , Ostéoporose , Protéines adaptatrices de la transduction du signal/génétique , Protéines adaptatrices de la transduction du signal/métabolisme , Adipogenèse/génétique , Sujet âgé , Animaux , Autophagie/physiologie , Protéines de liaison au calcium , Différenciation cellulaire/physiologie , Cellules cultivées , Humains , Protéines membranaires/génétique , Protéines membranaires/métabolisme , Cellules souches mésenchymateuses/métabolisme , Souris , Protéines du muscle/métabolisme , Ostéogenèse/génétique , Ostéoporose/génétique , Ostéoporose/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...