Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 519
Filtrer
1.
J Chem Inf Model ; 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38959055

RÉSUMÉ

Libraries of collision cross-section (CCS) values have the potential to facilitate compound identification in metabolomics. Although computational methods provide an opportunity to increase library size rapidly, accurate prediction of CCS values remains challenging due to the structural diversity of small molecules. Here, we developed a machine learning (ML) model that integrates graph attention networks and multimodal molecular representations to predict CCS values on the basis of chemical class. Our approach, referred to as MGAT-CCS, had superior performance in comparison to other ML models in CCS prediction. MGAT-CCS achieved a median relative error of 0.47%/1.14% (positive/negative mode) and 1.40%/1.63% (positive/negative mode) for lipids and metabolites, respectively. When MGAT-CCS was applied to real-world metabolomics data, it reduced the number of false metabolite candidates by roughly 25% across multiple sample types ranging from plasma and urine to cells. To facilitate its application, we developed a user-friendly stand-alone web server for MGAT-CCS that is freely available at https://mgat-ccs-web.onrender.com. This work represents a step forward in predicting CCS values and can potentially facilitate the identification of small molecules when using ion mobility spectrometry coupled with mass spectrometry.

2.
Fa Yi Xue Za Zhi ; 40(2): 118-127, 2024 Apr 25.
Article de Anglais, Chinois | MEDLINE | ID: mdl-38847025

RÉSUMÉ

In the study of age estimation in living individuals, a lot of data needs to be analyzed by mathematical statistics, and reasonable medical statistical methods play an important role in data design and analysis. The selection of accurate and appropriate statistical methods is one of the key factors affecting the quality of research results. This paper reviews the principles and applicable principles of the commonly used medical statistical methods such as descriptive statistics, difference analysis, consistency test and multivariate statistical analysis, as well as machine learning methods such as shallow learning and deep learning in the age estimation research of living individuals, and summarizes the relevance and application prospects between medical statistical methods and machine learning methods. This paper aims to provide technical guidance for the age estimation research of living individuals to obtain more scientific and accurate results.


Sujet(s)
Apprentissage machine , Humains , Détermination de l'âge à partir du squelette/méthodes , Analyse multifactorielle , Détermination de l'âge dentaire/méthodes
3.
Front Neurol ; 15: 1378689, 2024.
Article de Anglais | MEDLINE | ID: mdl-38841698

RÉSUMÉ

Objective: To visualize and analyze the literature related to sciatic nerve injury treatment from January 2019 to December 2023, and summarize the current status, hotspots, and development trends of research in this field. Methods: Using CiteSpace and VOSviewer software, we searched the Web of Science database for literature related to the treatment of sciatic nerve injury. Then we analyzed and plotted visualization maps to show the number of publications, countries, institutions, authors, keywords, references, and journals. Results: A total of 2,653 articles were included in the English database. The annual number of publications exceeded 230, and the citation frequency increased yearly. The United States and China were identified as high-influence nations in this field. Nantong University was the leading institution in terms of close cooperation among institutions. The authors Wang Yu had the highest number of publications and were highly influential in this field. Keyword analysis and reference Burst revealed a research focus on nerve regeneration and neuropathic pain, which involve regenerative medicine and neural tissue engineering. Chronic pain resulting from sciatic nerve injury often manifests alongside anxiety, depression, cognitive-behavioral disorders, and other issues. Interventions such as stem cells, electrical stimulation, electroacupuncture, total joint replacement, pharmacological interventions, gene therapy, nerve conduits, chitosan scaffolds, and exercise promote nerve repair and alleviate pain. Schwann cells have been the focus of much attention in nerve repair and regeneration. Improving the outcome of sciatic nerve injury is a current research challenge and focus in this field. Based on keyword Burst, nerve conduits and grafts may become a potential research hotspot in the treatment of sciatic nerve injury. Conclusion: This visual analysis summarizes research trends and developments of sciatic nerve injury treatment and predicts potential research frontiers and hot directions.

4.
PeerJ Comput Sci ; 10: e2047, 2024.
Article de Anglais | MEDLINE | ID: mdl-38855203

RÉSUMÉ

Numerous impediments beset contemporary art education, notably the unidimensional delivery of content and the absence of real-time interaction during instructional sessions. This study endeavors to surmount these challenges by devising a multimodal perception system entrenched in Internet of Things (IoT) technology. This system captures students' visual imagery, vocalizations, spatial orientation, movements, ambient luminosity, and contextual data by harnessing an array of interaction modalities encompassing visual, auditory, tactile, and olfactory sensors. The synthesis of this manifold information about learning scenarios entails strategically placing sensors within physical environments to facilitate intuitive and seamless interactions. Utilizing digital art flower cultivation as a quintessential illustration, this investigation formulates tasks imbued with multisensory channel interactions, pushing the boundaries of technological advancement. It pioneers advancements in critical domains such as visual feature extraction by utilizing DenseNet networks and voice feature extraction leveraging SoundNet convolutional neural networks. This innovative paradigm establishes a novel art pedagogical framework, accentuating the importance of visual stimuli while enlisting other senses as complementary contributors. Subsequent evaluation of the usability of the multimodal perceptual interaction system reveals a remarkable task recognition accuracy of 96.15% through the amalgamation of Mel-frequency cepstral coefficients (MFCC) speech features with a long-short-term memory (LSTM) classifier model, accompanied by an average response time of merely 6.453 seconds-significantly outperforming comparable models. The system notably enhances experiential fidelity, realism, interactivity, and content depth, ameliorating the limitations inherent in solitary sensory interactions. This augmentation markedly elevates the caliber of art pedagogy and augments learning efficacy, thereby effectuating an optimization of art education.

5.
ChemSusChem ; : e202400840, 2024 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-38924365

RÉSUMÉ

Unfavorable parasitic reactions between the Ni-rich layered oxide cathode and the sulfide solid electrolyte have plagued the realization of all-solid-state rechargeable Li batteries. The accumulation of inactive by-products (P2Sx, S, POxn-and SOxn-) at the cathode-sulfide interface impedes fast Li-ion transfer, which accounts for sluggish reaction kinetics and significant loss of cathode capacity. Herein, we proposed an easily scalable approach to stabilize the cathode electrochemistry via coating the cathode particles by a uniform, Li+-conductive plastic-crystal electrolyte nanolayer on their surface. The electrolyte, which simply consists of succinonitrile and Li bis(trifluoromethanesulphonyl)imide, serves as an interfacial buffer to effectively suppress the adverse phase transition in highly delithiated cathode materials, and the loss of lattice oxygen and generation of inactive oxygenated by-products at the cathode-sulfide interface. Consequently, an all-solid-state rechargeable Li battery with the modified cathode delivers high specific capacities of 168 mAh g-1 at 0.1 C and a high capacity retention >80% after 100 cycles. Our work sheds new light on rational design of electrode-electrolyte interface for the next-generation high-energy batteries.

6.
Cell Genom ; 4(5): 100550, 2024 May 08.
Article de Anglais | MEDLINE | ID: mdl-38697125

RÉSUMÉ

To identify novel susceptibility genes for hepatocellular carcinoma (HCC), we performed a rare-variant association study in Chinese populations consisting of 2,750 cases and 4,153 controls. We identified four HCC-associated genes, including NRDE2, RANBP17, RTEL1, and STEAP3. Using NRDE2 (index rs199890497 [p.N377I], p = 1.19 × 10-9) as an exemplary candidate, we demonstrated that it promotes homologous recombination (HR) repair and suppresses HCC. Mechanistically, NRDE2 binds to the subunits of casein kinase 2 (CK2) and facilitates the assembly and activity of the CK2 holoenzyme. This NRDE2-mediated enhancement of CK2 activity increases the phosphorylation of MDC1 and then facilitates the HR repair. These functions are eliminated almost completely by the NRDE2-p.N377I variant, which sensitizes the HCC cells to poly(ADP-ribose) polymerase (PARP) inhibitors, especially when combined with chemotherapy. Collectively, our findings highlight the relevance of the rare variants to genetic susceptibility to HCC, which would be helpful for the precise treatment of this malignancy.


Sujet(s)
Carcinome hépatocellulaire , Tumeurs du foie , Inhibiteurs de poly(ADP-ribose) polymérases , Réparation de l'ADN par recombinaison , Animaux , Femelle , Humains , Mâle , Souris , Adulte d'âge moyen , Carcinome hépatocellulaire/traitement médicamenteux , Carcinome hépatocellulaire/génétique , Carcinome hépatocellulaire/anatomopathologie , Casein Kinase II/génétique , Casein Kinase II/métabolisme , Lignée cellulaire tumorale , Prédisposition génétique à une maladie , Tumeurs du foie/traitement médicamenteux , Tumeurs du foie/génétique , Tumeurs du foie/anatomopathologie , Inhibiteurs de poly(ADP-ribose) polymérases/usage thérapeutique , Inhibiteurs de poly(ADP-ribose) polymérases/pharmacologie , Réparation de l'ADN par recombinaison/effets des médicaments et des substances chimiques , Souris nude , Souris de lignée BALB C , Adulte
7.
Eur J Med Res ; 29(1): 286, 2024 May 14.
Article de Anglais | MEDLINE | ID: mdl-38745338

RÉSUMÉ

BACKGROUND: Our study aimed to confirm a simplified radiological scoring system, derived from a modified Reiff score, to evaluate its relationship with clinical symptoms and predictive outcomes in Taiwanese patients with noncystic fibrosis bronchiectasis (NCFB). METHODS: This extensive multicenter retrospective study, performed in Taiwan, concentrated on patients diagnosed with NCFB verified through high-resolution computed tomography (HRCT) scans. We not only compared the clinical features of various types of bronchiectasis (cylindrical, varicose, and cystic). Furthermore, we established relationships between the severity of clinical factors, including symptom scores, pulmonary function, pseudomonas aeruginosa colonization, exacerbation and admission rates, and HRCT parameters using modified Reiff scores. RESULTS: Data from 2,753 patients were classified based on HRCT patterns (cylindrical, varicose, and cystic) and severity, assessed by modified Reiff scores (mild, moderate, and severe). With increasing HRCT severity, a significant correlation was found with decreased forced expiratory volume in the first second (FEV1) (p < 0.001), heightened clinical symptoms (p < 0.001), elevated pathogen colonization (pseudomonas aeruginosa) (p < 0.001), and an increased annual hospitalization rate (p < 0.001). In the following multivariate analysis, elderly age, pseudomonas aeruginosa pneumonia, and hospitalizations per year emerged as the only independent predictors of mortality. CONCLUSION: Based on our large cohort study, the simplified CT scoring system (Reiff score) can serve as a useful adjunct to clinical factors in predicting disease severity and prognosis among Taiwanese patients with NCFB.


Sujet(s)
Dilatation des bronches , Indice de gravité de la maladie , Humains , Mâle , Femelle , Dilatation des bronches/physiopathologie , Dilatation des bronches/imagerie diagnostique , Taïwan/épidémiologie , Adulte d'âge moyen , Pronostic , Sujet âgé , Études rétrospectives , Tomodensitométrie/méthodes , Volume expiratoire maximal par seconde , Adulte , Pseudomonas aeruginosa/isolement et purification
8.
PLoS One ; 19(5): e0300500, 2024.
Article de Anglais | MEDLINE | ID: mdl-38820305

RÉSUMÉ

BACKGROUND: The cardiac-brain connection has been identified as the basis for multiple cardio-cerebral diseases. However, effective therapeutic targets for these diseases are still limited. Therefore, this study aimed to identify pleiotropic and specific therapeutic targets for cardio-cerebral diseases using Mendelian randomization (MR) and colocalization analyses. METHODS: This study included two large protein quantitative trait loci studies with over 4,000 plasma proteins were included in the discovery and replication cohorts, respectively. We initially used MR to estimate the associations between protein and 20 cardio-cerebral diseases. Subsequently, Colocalization analysis was employed to enhance the credibility of the results. Protein target prioritization was based solely on including highly robust significant results from both the discovery and replication phases. Lastly, the Drug-Gene Interaction Database was utilized to investigate protein-gene-drug interactions further. RESULTS: A total of 46 target proteins for cardio-cerebral diseases were identified as robust in the discovery and replication phases by MR, comprising 7 pleiotropic therapeutic proteins and 39 specific target proteins. Followed by colocalization analysis and prioritization of evidence grades for target protein, 6 of these protein-disease pairs have achieved the highly recommended level. For instance, the PILRA protein presents a pleiotropic effect on sick sinus syndrome and Alzheimer's disease, whereas GRN exerts specific effects on the latter. APOL3, LRP4, and F11, on the other hand, have specific effects on cardiomyopathy and ischemic stroke, respectively. CONCLUSIONS: This study successfully identified important therapeutic targets for cardio-cerebral diseases, which benefits the development of preventive or therapeutic drugs.


Sujet(s)
Analyse de randomisation mendélienne , Protéome , Locus de caractère quantitatif , Humains , Protéome/métabolisme , Pléiotropie , Maladies cardiovasculaires/génétique , Maladies cardiovasculaires/métabolisme , Maladies cardiovasculaires/traitement médicamenteux , Étude d'association pangénomique , Angiopathies intracrâniennes/génétique , Angiopathies intracrâniennes/métabolisme , Angiopathies intracrâniennes/traitement médicamenteux
9.
Int J Biol Macromol ; 272(Pt 2): 132747, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38821301

RÉSUMÉ

Degradable magnesium alloy stents are considered to be ideal candidates to replace the traditional non-degradable stents for the treatment of cardiovascular diseases. However, bare magnesium alloy stents usually degrade too fast and show poor hemocompatibility and cytocompatibility, which seriously affects their clinical use. In this study, surface modification based on the MgF2 layer, polydopamine (PDA) coating, fucoidan and CAG peptides was performed on the Mg-Zn-Y-Nd (ZE21B) magnesium alloy with the purpose of improving its corrosion resistance, hemocompatibility and cytocompatibility for vascular stent application. After modification, the ZE21B alloy showed better corrosion resistance. Moreover, the lower hemolysis rate, platelet adhesion and activation, and fibrinogen adsorption and denaturation proved the improved hemocompatibility of modified ZE21B alloy in in vitro blood experiments. Furthermore, the co-immobilization of fucoidan and CAG peptides significantly promoted the adhesion, proliferation, migration and NO release of endothelial cells (ECs) on the modified ZE21B alloy, and meanwhile the modification with fucoidan and CAG peptides inhibited the adhesion and proliferation of smooth muscle cells (SMCs) and suppressed the expression of proinflammatory factors in the macrophages (MAs). The surface modification obviously enhanced the corrosion resistance, hemocompatibility and cytocompatibility of ZE21B alloy, and provided an effective strategy for the development of degradable vascular stents.


Sujet(s)
Alliages , Adhérence cellulaire , Magnésium , Test de matériaux , Peptides , Polyosides , Alliages/composition chimique , Alliages/pharmacologie , Polyosides/composition chimique , Polyosides/pharmacologie , Humains , Peptides/composition chimique , Peptides/pharmacologie , Magnésium/composition chimique , Adhérence cellulaire/effets des médicaments et des substances chimiques , Animaux , Prolifération cellulaire/effets des médicaments et des substances chimiques , Hémolyse/effets des médicaments et des substances chimiques , Corrosion , Matériaux revêtus, biocompatibles/composition chimique , Matériaux revêtus, biocompatibles/pharmacologie , Adhésivité plaquettaire/effets des médicaments et des substances chimiques , Souris , Myocytes du muscle lisse/effets des médicaments et des substances chimiques , Myocytes du muscle lisse/cytologie , Myocytes du muscle lisse/métabolisme , Cellules endothéliales de la veine ombilicale humaine/effets des médicaments et des substances chimiques , Matériaux biocompatibles/composition chimique , Matériaux biocompatibles/pharmacologie , Propriétés de surface , Cellules endothéliales/effets des médicaments et des substances chimiques , Cellules endothéliales/métabolisme , Organismes aquatiques/composition chimique , Indoles , Polymères
10.
Front Oncol ; 14: 1390982, 2024.
Article de Anglais | MEDLINE | ID: mdl-38694787

RÉSUMÉ

Background: Typical treatments for cervical high-grade squamous intraepithelial lesion (HSIL) are invasive procedures. However, these procedures often come with several severe side effects, despite their positive effects on cervical HSIL. 5-aminolevulinic acid photodynamic therapy (ALA-PDT) is a non-invasive treatment that has been successfully used to treat cervical low-grade squamous intraepithelial lesion (LSIL). In this study, we aimed to further investigate the clinical efficacy and safety of ALA-PDT in the treatment of patients with cervical HSIL. Methods: A total of 40 patients aged 20 - 41 years with cervical HSIL and high-risk Human Papilloma Virus (HR-HPV) infections were enrolled in this retrospective study from January 2019 to December 2022. Patients were treated with six times of ALA-PDT at intervals of 7-14 days. Three months after the treatment, the efficacy was evaluated through HPV genotyping and cervical cytology examination. If the cytological result was worse than ASC -US, the patient underwent colposcopy-directed biopsy immediately. Otherwise, patients would receive rigorous follow-up observation. Results: Three months after receiving ALA-PDT treatment, 65% (26/40) of cervical HSIL patients at our center showed complete regression (cytological result: normal; HR-HPV: negative). This rate increased to 82.5% (33/40) at the 12-month follow-up. None of the patients experienced disease progression after ALA-PDT therapy. The risk of persistent HR-HPV infection was 32.5% (13/40) at the 3-month follow-up after ALA-PDT. Multivariate analyses identified cervical canal involvement as an independent risk factor for persistent HR-HPV infection at the 3-month follow-up after ALA-PDT treatment. During the treatment of the 40 patients with ALA-PDT, there were no reports of severe adverse reactions. Only a limited number of patients experienced slight discomfort symptoms. Conclusion: ALA-PDT is safe and effective noninvasive therapy for patients with cervical HSIL and HR-HPV infections. It is particularly suitable for young women, who have been confirmed with cervical HSIL and have demand for fertility protection. Three months after ALA-PDT treatment, if a patient still has either ASC-US cervical cytological result and/or HR-HPV infection, rigorous observation is considered safe for her. Cervical canal involvement is an independent risk factor for persistent HR-HPV infection at the 3-month follow-up after ALA-PDT treatment.

11.
Int J Mol Sci ; 25(10)2024 May 09.
Article de Anglais | MEDLINE | ID: mdl-38791195

RÉSUMÉ

Pinus thunbergii Parl. is an economically and medicinally important plant, as well as a world-renowned horticultural species of the Pinus genus. Pine wilt disease is a dangerous condition that affects P. thunbergii. However, understanding of the genetics underlying resistance to this disease is poor. Our findings reveal that P. thunbergii's resistance mechanism is based on differential transcriptome responses generated by the early presence of the pathogen Bursaphelenchus xylophilus, also known as the pine wood nematode. A transcriptome analysis (RNA-seq) was performed to examine gene expression in shoot tissues from resistant and susceptible P. thunbergii trees. RNA samples were collected from the shoots of inoculated pines throughout the infection phases by the virulent Bursaphelenchus xylophilus AMA3 strain. The photosynthesis and plant-pathogen interaction pathways were significantly enriched in the first and third days after infection. Flavonoid biosynthesis was induced in response to late infestation (7 and 14 days post-infestation). Calmodulin, RBOH, HLC protein, RPS, PR1, and genes implicated in phytohormone crosstalk (e.g., SGT1, MYC2, PP2C, and ERF1) showed significant alterations between resistant and susceptible trees. Furthermore, salicylic acid was found to aid pine wood nematodes tolerate adverse conditions and boost reproduction, which may be significant for pine wood nematode colonization within pines. These findings provide new insights into how host defenses overcame pine wood nematode infection in the early stage, which could potentially contribute to the development of novel strategies for the control of pine wilt disease.


Sujet(s)
Résistance à la maladie , Régulation de l'expression des gènes végétaux , Pinus , Maladies des plantes , Transcriptome , Pinus/parasitologie , Pinus/génétique , Animaux , Maladies des plantes/parasitologie , Maladies des plantes/génétique , Résistance à la maladie/génétique , Analyse de profil d'expression de gènes , Tylenchoidea/physiologie , Tylenchoidea/pathogénicité
12.
Small ; : e2403136, 2024 May 21.
Article de Anglais | MEDLINE | ID: mdl-38770989

RÉSUMÉ

Hollandite-type manganese dioxide (α-MnO2) is recognized as a promising cathode material upon high-performance aqueous zinc-ion batteries (ZIBs) owing to the high theoretical capacities, high working potentials, unique Zn2+/H+ co-insertion chemistry, and environmental friendliness. However, its practical applications limited by Zn2+ accommodation, where the strong coulombic interaction and sluggish kinetics cause significant lattice deformation, fast capacity degradation, insufficient rate capability, and undesired interface degradation. It remains challenging to accurately modulate H+ intercalation while suppressing Zn2+ insertion for better lattice stability and electrochemical kinetics. Herein, proton Grotthuss transfer channels are first tunneled by shielding MnO2 with hydrophilic-zincophobic heterointerface, fulfilling the H+-dominating diffusion with the state-of-the-art ZIBs performance. Local atomic structure and theoretical simulation confirm that surface-engineered α-MnO2 affords to the synergy of Mn electron t2g-eg activation, oxygen vacancy enrichment, selective H+ Grotthuss transfer, and accelerated desolvation kinetics. Consequently, fortified α-MnO2 achieves prominent low current density cycle stability (≈100% capacity retention at 1 C after 400 cycles), remarkable long-lifespan cycling performance (98% capacity retention at 20 C after 12 000 cycles), and ultrafast rate performance (up to 30 C). The study exemplifies a new approach of heterointerface engineering for regulation of H+-dominating Grotthuss transfer and lattice stabilization in α-MnO2 toward reliable ZIBs.

13.
Int J Mol Sci ; 25(10)2024 May 12.
Article de Anglais | MEDLINE | ID: mdl-38791306

RÉSUMÉ

Computational drug-repositioning technology is an effective tool for speeding up drug development. As biological data resources continue to grow, it becomes more important to find effective methods to identify potential therapeutic drugs for diseases. The effective use of valuable data has become a more rational and efficient approach to drug repositioning. The disease-drug correlation method (DDCM) proposed in this study is a novel approach that integrates data from multiple sources and different levels to predict potential treatments for diseases, utilizing support-vector regression (SVR). The DDCM approach resulted in potential therapeutic drugs for neoplasms and cardiovascular diseases by constructing a correlation hybrid matrix containing the respective similarities of drugs and diseases, implementing the SVR algorithm to predict the correlation scores, and undergoing a randomized perturbation and stepwise screening pipeline. Some potential therapeutic drugs were predicted by this approach. The potential therapeutic ability of these drugs has been well-validated in terms of the literature, function, drug target, and survival-essential genes. The method's feasibility was confirmed by comparing the predicted results with the classical method and conducting a co-drug analysis of the sub-branch. Our method challenges the conventional approach to studying disease-drug correlations and presents a fresh perspective for understanding the pathogenesis of diseases.


Sujet(s)
Algorithmes , Repositionnement des médicaments , Repositionnement des médicaments/méthodes , Humains , Machine à vecteur de support , Biologie informatique/méthodes , Tumeurs/traitement médicamenteux , Maladies cardiovasculaires/traitement médicamenteux
14.
Heliyon ; 10(7): e28818, 2024 Apr 15.
Article de Anglais | MEDLINE | ID: mdl-38590871

RÉSUMÉ

G protein-coupled receptors (GPCRs), which form the largest family of membrane protein receptors in humans, are highly complex signaling systems with intricate structures and dynamic conformations and locations. Among these receptors, a specific subset is referred to as orphan GPCRs (oGPCRs) and has garnered significant interest in pain research due to their role in both central and peripheral nervous system function. The diversity of GPCR functions is attributed to multiple factors, including allosteric modulators, signaling bias, oligomerization, constitutive signaling, and compartmentalized signaling. This review primarily focuses on the recent advances in oGPCR research on pain mechanisms, discussing the role of specific oGPCRs including GPR34, GPR37, GPR65, GPR83, GPR84, GPR85, GPR132, GPR151, GPR160, GPR171, GPR177, and GPR183. The orphan receptors among these receptors associated with central nervous system diseases are also briefly described. Understanding the functions of these oGPCRs can contribute not only to a deeper understanding of pain mechanisms but also offer a reference for discovering new targets for pain treatment.

15.
Plant Cell ; 2024 Apr 09.
Article de Anglais | MEDLINE | ID: mdl-38593056

RÉSUMÉ

Little is known about the factors regulating carotenoid biosynthesis in roots. In this study, we characterized DCAR_032551, the candidate gene of the Y locus responsible for the transition of root color from ancestral white to yellow during carrot (Daucus carota) domestication. We show that DCAR_032551 encodes a REPRESSOR OF PHOTOSYNTHETIC GENES (RPGE) protein, named DcRPGE1. DcRPGE1 from wild carrot (DcRPGE1W) is a repressor of carotenoid biosynthesis. Specifically, DcRPGE1W physically interacts with DcAPRR2, an ARABIDOPSIS PSEUDO-RESPONSE REGULATOR2 (APRR2)-like transcription factor. Through this interaction, DcRPGE1W suppresses DcAPRR2-mediated transcriptional activation of the key carotenogenic genes phytoene synthase 1 (DcPSY1), DcPSY2, and lycopene ε-cyclase (DcLCYE), which strongly decreases carotenoid biosynthesis. We also demonstrate that the DcRPGE1W-DcAPRR2 interaction prevents DcAPRR2 from binding to the RGATTY elements in the promoter regions of DcPSY1, DcPSY2, and DcLCYE. Additionally, we identified a mutation in the DcRPGE1 coding region of yellow and orange carrots that leads to the generation of alternatively spliced transcripts encoding truncated DcRPGE1 proteins unable to interact with DcAPRR2, thereby failing to suppress carotenoid biosynthesis. These findings provide insights into the transcriptional regulation of carotenoid biosynthesis and offer potential target genes for enhancing carotenoid accumulation in crop plants.

16.
EClinicalMedicine ; 71: 102566, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38686219

RÉSUMÉ

Background: Urine cytology is an important non-invasive examination for urothelial carcinoma (UC) diagnosis and follow-up. We aimed to explore whether artificial intelligence (AI) can enhance the sensitivity of urine cytology and help avoid unnecessary endoscopy. Methods: In this multicentre diagnostic study, consecutive patients who underwent liquid-based urine cytology examinations at four hospitals in China were included for model development and validation. Patients who declined surgery and lacked associated histopathology results, those diagnosed with rare subtype tumours of the urinary tract, or had low-quality images were excluded from the study. All liquid-based cytology slides were scanned into whole-slide images (WSIs) at 40 × magnification and the WSI-labels were derived from the corresponding histopathology results. The Precision Urine Cytology AI Solution (PUCAS) was composed of three distinct stages (patch extraction, features extraction, and classification diagnosis) and was trained to identify important WSI features associated with UC diagnosis. The diagnostic sensitivity was mainly used to validate the performance of PUCAS in retrospective and prospective validation cohorts. This study is registered with the ChiCTR, ChiCTR2300073192. Findings: Between January 1, 2018 and October 31, 2022, 2641 patients were retrospectively recruited in the training cohort, and 2335 in retrospective validation cohorts; 400 eligible patients were enrolled in the prospective validation cohort between July 7, 2023 and September 15, 2023. The sensitivity of PUCAS ranged from 0.922 (95% CI: 0.811-0.978) to 1.000 (0.782-1.000) in retrospective validation cohorts, and was 0.896 (0.837-0.939) in prospective validation cohort. The PUCAS model also exhibited a good performance in detecting malignancy within atypical urothelial cells cases, with a sensitivity of over 0.84. In the recurrence detection scenario, PUCAS could reduce 57.5% of endoscopy use with a negative predictive value of 96.4%. Interpretation: PUCAS may help to improve the sensitivity of urine cytology, reduce misdiagnoses of UC, avoid unnecessary endoscopy, and reduce the clinical burden in resource-limited areas. The further validation in other countries is needed. Funding: National Natural Science Foundation of China; Key Program of the National Natural Science Foundation of China; the National Science Foundation for Distinguished Young Scholars; the Science and Technology Planning Project of Guangdong Province; the National Key Research and Development Programme of China; Guangdong Provincial Clinical Research Centre for Urological Diseases.

17.
J Med Chem ; 67(8): 6313-6326, 2024 Apr 25.
Article de Anglais | MEDLINE | ID: mdl-38574345

RÉSUMÉ

Coactivator-associated arginine methyltransferase 1 (CARM1), an important member of type I protein arginine methyltransferases (PRMTs), has emerged as a promising therapeutic target for various cancer types. In our previous study, we have identified a series of type I PRMT inhibitors, among which ZL-28-6 (6) exhibited increased activity against CARM1 while displaying decreased potency against other type I PRMTs. In this work, we conducted chemical modifications on compound 6, resulting in a series of (2-(benzyloxy)phenyl)methanamine derivatives as potent inhibitors of CARM1. Among them, compound 17e displayed remarkable potency and selectivity for CARM1 (IC50 = 2 ± 1 nM), along with notable antiproliferative effects against melanoma cell lines. Cellular thermal shift assay and western blot experiments confirmed that compound 6 effectively targets CARM1 within cells. Furthermore, compound 17e displayed good antitumor efficacy in a melanoma xenograft model, indicating that this compound warrants further investigation as a potential anticancer agent.


Sujet(s)
Antinéoplasiques , Mélanome , Protein-arginine N-methyltransferases , Humains , Protein-arginine N-methyltransferases/antagonistes et inhibiteurs , Protein-arginine N-methyltransferases/métabolisme , Animaux , Mélanome/traitement médicamenteux , Mélanome/anatomopathologie , Antinéoplasiques/pharmacologie , Antinéoplasiques/composition chimique , Antinéoplasiques/synthèse chimique , Antinéoplasiques/usage thérapeutique , Lignée cellulaire tumorale , Souris , Relation structure-activité , Prolifération cellulaire/effets des médicaments et des substances chimiques , Antienzymes/pharmacologie , Antienzymes/composition chimique , Antienzymes/synthèse chimique , Antienzymes/usage thérapeutique , Tests d'activité antitumorale sur modèle de xénogreffe , Souris nude , Tests de criblage d'agents antitumoraux
18.
Open Med (Wars) ; 19(1): 20240934, 2024.
Article de Anglais | MEDLINE | ID: mdl-38584843

RÉSUMÉ

Renal fibrosis (RF) is an important pathogenesis for renal function deterioration in chronic kidney disease. Secreted frizzled-related protein 5 (SFRP5) is an anti-fibrotic adipokine but its direct role on RF remains unknown. It was aimed to study the protective effect of SFRP5 against RF and interference with Wnt/ß-catenin signaling pathway for the first time. First, the therapeutic efficacy of SFRP5 was evaluated by adenovirus overexpression in rats with unilateral ureteral obstruction (UUO) in vivo. Thirty-six rats were randomly divided into the sham, UUO, and SFRP5 (UUO + Ad-SFRP5) groups. Half rats in each group were selected at random for euthanasia at 7 days and the others until 14 days. Then, the transforming growth factor (TGF)-ß1-induced epithelial-mesenchymal transition (EMT) was established in HK-2 cells in vitro. The cells were divided into four groups: the control group, the TGF-ß1 group, the TGF-ß1 + SFRP5 group, and the TGF-ß1 + SFRP5 + anti-SFRP5 group. The makers of EMT and Wnt/ß-catenin pathway proteins were investigated. In the UUO model, expression of SFRP5 showed compensatory upregulation, and adenoviral-mediated SFRP5 over-expression remarkably attenuated RF, as demonstrated by maintenance of E-cadherin and suppression of α-smooth muscle actin (SMA). In vitro, SFRP5 was shown to inhibit TGF-ß1-mediated positive regulation of α-SMA, fibronectin, collagen I but negative regulation of E-cadherin. Furthermore, SFRP5 abrogated activation of Wnt/ß-catenin, which was the essential pathway in EMT and RF pathogenesis. The changes after a neutralizing antibody to SFRP5 confirmed the specificity of SFRP5 for inhibition. These findings suggest that SFRP5 can directly ameliorate EMT and protect against RF by inhibiting Wnt/ß-catenin pathway.

19.
Article de Anglais | MEDLINE | ID: mdl-38639560

RÉSUMÉ

Rechargeable lithium-sulfur (Li-S) batteries are promising for high-energy storage. However, conventional redox reactions involving sulfur (S) and lithium (Li) can lead to unstable intermediates. Over the past decade, many strategies have emerged to address this challenge, enabling nonconventional electrochemical reactions in Li-S batteries. In our Perspective, we provide a brief review of these strategies and highlight their potential benefits. Specifically, our group has pioneered a top-down approach, investigating Li-S reactions at molecular and subatomic levels, as demonstrated in our recent work on stable S isotopes. These insights not only enhance understanding of charge transfer and storage properties but also offer exciting opportunities for advancements in battery materials research.

20.
Curr Pharm Des ; 2024 Apr 15.
Article de Anglais | MEDLINE | ID: mdl-38629356

RÉSUMÉ

BACKGROUND: ChuShiWeiLing Decoction (CSWLD) is a famous classical Chinese prescription for the treatment of eczema with desirable effect in clinical practice. It has gradually exerted good curative effects on perianal eczema (PE) in recent years, but its specific mechanism is not elucidated yet. OBJECTIVE: This research explores the underlying pharmacological mechanism of CSWLD in addressing PE through network pharmacology combined with molecular docking strategy. METHODS: The key chemical compounds and potential target genes of CSWLD were screened by bioinformatics. The major targets of CSWLD were discovered using network modules. Functional annotation of Gene Ontology (GO) was undertaken, as well as pathway enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG). Molecular docking of core protein-ligand interactions was modeled using AutoDock software. Pymol software was used to perform a molecular dynamics simulation for the ideal core protein-ligand that was discovered by molecular docking. RESULTS: A total of 2,853 active compounds and 922 targets of CSWLD were collected. The target with a higher degree was identified through the PPI network, namely TNF, IL6, ALB, STAT3, EGFR, TLR4, CXCL8 and PTPRC. GO and KEGG analyses suggested that CSWLD treatment of PE mainly involves cellular activation, activation of leukocytes, and adhesion among leukocytes. The molecular docking results showed that wogonin, hederagenin and quercetin of CSWLD could bind to IL-6 and TNF, respectively. CONCLUSION: Our results indicated that the bioactives, potential targets, and molecular mechanism of CSWLD against PE.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...