Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 1.195
Filtrer
1.
Eur J Med Chem ; 276: 116635, 2024 Jun 28.
Article de Anglais | MEDLINE | ID: mdl-38964258

RÉSUMÉ

Fifteen betulonic/betulinic acid conjugated with nucleoside derivatives were synthesized to enhance antitumor potency and water solubility. Among these, the methylated betulonic acid-azidothymidine compound (8c) exhibited a broad-spectrum of antitumor activity against three tested tumor cell lines, including SMMC-7721 (IC50 = 5.02 µM), KYSE-150 (IC50 = 5.68 µM), and SW620 (IC50 = 4.61 µM) and along with lower toxicity (TC50 > 100 µM) estimated by zebrafish embryos assay. Compared to betulinic acid (<0.05 µg/mL), compound 8c showed approximately 40-fold higher water solubility (1.98 µg/mL). In SMMC-7721 cells, compound 8c induced autophagy and apoptosis as its concentration increased. Transcriptomic sequencing analysis was used to understand the potential impacts of the underlying mechanism of 8c on SMMC-7721 cells. Transcriptomic studies indicated that compound 8c could activate autophagy by inhibiting the PI3K/AKT pathway in SMMC-7721 cells. Furthermore, in the xenograft mice study, compound 8c significantly slowed down the tumor growth, as potent as paclitaxel treated group. In conclusion, methylated betulonic acid-azidothymidine compound (8c) not only increases water solubility, but also enhances the potency against hepatocellular carcinoma cells by inducing autophagy and apoptosis, and suppressing the PI3K/Akt/mTOR signaling pathway.

2.
Nat Commun ; 15(1): 5640, 2024 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-38965235

RÉSUMÉ

The Structural Genomics Consortium is an international open science research organization with a focus on accelerating early-stage drug discovery, namely hit discovery and optimization. We, as many others, believe that artificial intelligence (AI) is poised to be a main accelerator in the field. The question is then how to best benefit from recent advances in AI and how to generate, format and disseminate data to enable future breakthroughs in AI-guided drug discovery. We present here the recommendations of a working group composed of experts from both the public and private sectors. Robust data management requires precise ontologies and standardized vocabulary while a centralized database architecture across laboratories facilitates data integration into high-value datasets. Lab automation and opening electronic lab notebooks to data mining push the boundaries of data sharing and data modeling. Important considerations for building robust machine-learning models include transparent and reproducible data processing, choosing the most relevant data representation, defining the right training and test sets, and estimating prediction uncertainty. Beyond data-sharing, cloud-based computing can be harnessed to build and disseminate machine-learning models. Important vectors of acceleration for hit and chemical probe discovery will be (1) the real-time integration of experimental data generation and modeling workflows within design-make-test-analyze (DMTA) cycles openly, and at scale and (2) the adoption of a mindset where data scientists and experimentalists work as a unified team, and where data science is incorporated into the experimental design.


Sujet(s)
Science des données , Découverte de médicament , Apprentissage machine , Découverte de médicament/méthodes , Science des données/méthodes , Humains , Intelligence artificielle , Diffusion de l'information/méthodes , Fouille de données/méthodes , Informatique en nuage , Bases de données factuelles
3.
Nature ; 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38961300

RÉSUMÉ

In biological systems, the activities of macromolecular complexes must sometimes be turned off. Thus, a wide variety of protein inhibitors has evolved for this purpose. These inhibitors function through diverse mechanisms, including steric blocking of crucial interactions, enzymatic modification of key residues or substrates, and perturbation of post-translational modifications1. Anti-CRISPRs-proteins that block the activity of CRISPR-Cas systems-are one of the largest groups of inhibitors described, with more than 90 families that function through diverse mechanisms2-4. Here, we characterize the anti-CRISPR AcrIF25, and we show that it inhibits the type I-F CRISPR-Cas system by pulling apart the fully assembled effector complex. AcrIF25 binds to the predominant CRISPR RNA-binding components of this complex, comprising six Cas7 subunits, and strips them from the RNA. Structural and biochemical studies indicate that AcrIF25 removes one Cas7 subunit at a time, starting at one end of the complex. Notably, this feat is achieved with no apparent enzymatic activity. To our knowledge, AcrIF25 is the first example of a protein that disassembles a large and stable macromolecular complex in the absence of an external energy source. As such, AcrIF25 establishes a paradigm for macromolecular complex inhibitors that may be used for biotechnological applications.

4.
J Integr Plant Biol ; 2024 Jul 11.
Article de Anglais | MEDLINE | ID: mdl-38990113

RÉSUMÉ

Domestication has shaped the population structure and agronomic traits of tea plants, yet the complexity of tea population structure and genetic variation that determines these traits remains unclear. We here investigated the resequencing data of 363 diverse tea accessions collected extensively from almost all tea distributions and found that the population structure of tea plants was divided into eight subgroups, which were basically consistent with their geographical distributions. The genetic diversity of tea plants in China decreased from southwest to east as latitude increased. Results also indicated that Camellia sinensis var. assamica (CSA) illustrated divergent selection signatures with Camellia sinensis var. sinensis (CSS). The domesticated genes of CSA were mainly involved in leaf development, flavonoid and alkaloid biosynthesis, while the domesticated genes in CSS mainly participated in amino acid metabolism, aroma compounds biosynthesis, and cold stress. Comparative population genomics further identified ~730 Mb novel sequences, generating 6,058 full-length protein-encoding genes, significantly expanding the gene pool of tea plants. We also discovered 217,376 large-scale structural variations and 56,583 presence and absence variations (PAVs) across diverse tea accessions, some of which were associated with tea quality and stress resistance. Functional experiments demonstrated that two PAV genes (CSS0049975 and CSS0006599) were likely to drive trait diversification in cold tolerance between CSA and CSS tea plants. The overall findings not only revealed the genetic diversity and domestication of tea plants, but also underscored the vital role of structural variations in the diversification of tea plant traits.

5.
Theranostics ; 14(10): 3927-3944, 2024.
Article de Anglais | MEDLINE | ID: mdl-38994017

RÉSUMÉ

Rationale: Myocardial infarction (MI) is a severe global clinical condition with widespread prevalence. The adult mammalian heart's limited capacity to generate new cardiomyocytes (CMs) in response to injury remains a primary obstacle in developing effective therapies. Current approaches focus on inducing the proliferation of existing CMs through cell-cycle reentry. However, this method primarily elevates cyclin dependent kinase 6 (CDK6) and DNA content, lacking proper cytokinesis and resulting in the formation of dysfunctional binucleated CMs. Cytokinesis is dependent on ribosome biogenesis (Ribo-bio), a crucial process modulated by nucleolin (Ncl). Our objective was to identify a novel approach that promotes both DNA synthesis and cytokinesis. Methods: Various techniques, including RNA/protein-sequencing analysis, Ribo-Halo, Ribo-disome, flow cytometry, and cardiac-specific tumor-suppressor retinoblastoma-1 (Rb1) knockout mice, were employed to assess the series signaling of proliferation/cell-cycle reentry and Ribo-bio/cytokinesis. Echocardiography, confocal imaging, and histology were utilized to evaluate cardiac function. Results: Analysis revealed significantly elevated levels of Rb1, bur decreased levels of circASXL1 in the hearts of MI mice compared to control mice. Deletion of Rb1 induces solely cell-cycle reentry, while augmenting the Ribo-bio modulator Ncl leads to cytokinesis. Mechanically, bioinformatics and the loss/gain studies uncovered that circASXL1/CDK6/Rb1 regulates cell-cycle reentry. Moreover, Ribo-Halo, Ribo-disome and circRNA pull-down assays demonstrated that circASXL1 promotes cytokinesis through Ncl/Ribo-bio. Importantly, exosomes derived from umbilical cord mesenchymal stem cells (UMSC-Exo) had the ability to enhance cardiac function by facilitating the coordinated signaling of cell-cycle reentry and Ribo-bio/cytokinesis. These effects were attenuated by silencing circASXL1 in UMSC-Exo. Conclusion: The series signaling of circASXL1/CDK6/Rb1/cell-cycle reentry and circASXL1/Ncl/Ribo-bio/cytokinesis plays a crucial role in cardiac repair. UMSC-Exo effectively repairs infarcted myocardium by stimulating CM cell-cycle reentry and cytokinesis in a circASXL1-dependent manner. This study provides innovative therapeutic strategies targeting the circASXL1 signaling network for MI and offering potential avenues for enhanced cardiac repair.


Sujet(s)
Cycle cellulaire , Cytocinèse , Souris knockout , Infarctus du myocarde , Myocytes cardiaques , Ribosomes , Animaux , Souris , Infarctus du myocarde/métabolisme , Infarctus du myocarde/anatomopathologie , Myocytes cardiaques/métabolisme , Ribosomes/métabolisme , Phosphoprotéines/métabolisme , Phosphoprotéines/génétique , , Protéines de liaison à l'ARN/métabolisme , Protéines de liaison à l'ARN/génétique , Protéine du rétinoblastome/métabolisme , Protéine du rétinoblastome/génétique , Prolifération cellulaire , Mâle , Humains
6.
J Orthop Surg Res ; 19(1): 417, 2024 Jul 20.
Article de Anglais | MEDLINE | ID: mdl-39030552

RÉSUMÉ

STUDY DESIGN: A systematic review and Bayesian network meta-analysis (NMA). OBJECTIVE: To compare the effectiveness and safety of different posterior decompression techniques for LSS. Lumbar spinal stenosis (LSS) is one of the most common degenerative spinal diseases that result in claudication, back and leg pain, and disability. Currently, posterior decompression techniques are widely used as an effective treatment for LSS. METHODS: An electronic literature search was performed using the EMBASE, Web of Science, PubMed, and Cochrane Library databases. Two authors independently performed data extraction and quality assessment. A Bayesian random effects model was constructed to incorporate the estimates of direct and indirect treatment comparisons and rank the interventions in order. RESULTS: In all, 14 eligible studies comprising 1,260 patients with LSS were included. Five interventions were identified, namely, spinal processes osteotomy (SPO), conventional laminotomy/laminectomy (CL), unilateral laminotomy/laminectomy (UL), bilateral laminotomy/ laminectomy (BL), and spinous process-splitting laminotomy/laminectomy (SPSL). Among these, SPO was the most promising surgical option for decreasing back and leg pain and for lowering the Oswestry Disability Index (ODI). SSPL had the shortest operation time, while SPSL was associated with maximum blood loss. SPO and UL were superior to other posterior decompression techniques concerning lesser blood loss and shorter length of hospital stay, respectively. Patients who underwent BL had the lowest postoperative complication rates. CONCLUSION: Overall, SPO was found to be a good surgical choice for patients with LSS.


Sujet(s)
Théorème de Bayes , Décompression chirurgicale , Vertèbres lombales , Méta-analyse en réseau , Sténose du canal vertébral , Sténose du canal vertébral/chirurgie , Humains , Décompression chirurgicale/méthodes , Vertèbres lombales/chirurgie , Résultat thérapeutique , Laminectomie/méthodes
7.
Foods ; 13(13)2024 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-38998555

RÉSUMÉ

Due to the growing demand for human-edible protein sources, microalgae are recognized as an economically viable alternative source of proteins. The investigation into the structural characteristics and functional properties of microalgin is highly significant for its potential application in the food industry as an alternative source of protein. In this research, we extracted protein from Euglena gracilis by using alkaline extraction and acid precipitation and investigated its structural characteristics and functional properties in different acidic and alkaline environments. The molecular weight distribution of Euglena gracilis protein (EGP), as revealed by the size exclusion chromatography results, ranges from 152 to 5.7 kDa. EGP was found to be rich in hydrophobic amino acids and essential amino acids. Fourier infrared analysis revealed that EGP exhibited higher α-helix structure content and lower ß-sheet structure content in alkaline environments compared with acidic ones. EGP exhibited higher foaming properties, emulsifying activity index, solubility, free sulfhydryl, and total sulfhydryl in pH environments far from its isoelectric point, and lower fluorescence intensity (2325 A.U.), lower surface hydrophobicity, larger average particle size (25.13 µm), higher emulsifying stability index, and water-holding capacity in pH environments near its isoelectric point. In addition, X-ray diffraction (XRD) patterns indicated that different acidic and alkaline environments lead to reductions in the crystal size and crystallinity of EGP. EGP exhibited high denaturation temperature (Td; 99.32 °C) and high enthalpy (ΔH; 146.33 J/g) at pH 11.0, as shown by the differential scanning calorimetry (DSC) results. The findings from our studies on EGP in different acidic and alkaline environments provide a data basis for its potential commercial utilization as a food ingredient in products such as emulsions, gels, and foams.

8.
Molecules ; 29(13)2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38999090

RÉSUMÉ

Phaeodactylum tricornutum is identified by its capacity for rapid growth, reproduction, and in vitro cultivation, as well as the presence of a range of high-value active compounds, including proteins, with potential food applications. The objective of this study was to investigate the effects of pH shift treatments (pH of 3, 5, 7, 9, and 11) on the structural and functional properties of the Phaeodactylum tricornutum protein (PTP). The molecular weight of the PTP was predominantly distributed within the following ranges: below 5 kDa, 5-100 kDa, and above 100 kDa. Compared to the acidic environment, the PTP demonstrated higher solubility and greater free sulfhydryl group content in the alkaline environment. Additionally, PTP had a smaller particle size and higher thermal stability in alkaline environments. The PTP exhibited superior foaming ability (135%), emulsification activity index (3.72 m2/g), and emulsion stability index (137.71 min) in alkaline environments. The results of this investigation provide a foundation for the future development and application of the PTP in the food industry.


Sujet(s)
Diatomées , Concentration en ions d'hydrogène , Diatomées/composition chimique , Solubilité , Masse moléculaire , Taille de particule
9.
Biomed Chromatogr ; : e5960, 2024 Jul 11.
Article de Anglais | MEDLINE | ID: mdl-38992861

RÉSUMÉ

Coptidis Rhizoma (CR) holds significant clinical importance. In this study, we conducted a comparative analysis of CR's dispensing granule decoction (DGD) and traditional decoction (TD) to establish a comprehensive evaluation method for the quality of DGD. We selected nine batches of DGD (three from each of manufacturers A, B and C) and 10 batches of decoction pieces for analysis. We determined the content of representative components using high-performance liquid chromatography and assessed the content of blood components in vivo post-administration using ultra-performance liquid chromatography-mass spectrometry. The antibacterial activity was measured using the drug-sensitive tablet method. To evaluate the overall consistency of DGD and TD, we employed the CRITIC method and Grey relational analysis method. Our CRITIC results indicated no significant difference between the CRITIC scores of DGD-B and TD, with DGD-B exhibiting the highest consistency and overall quality. However, DGD-A and DGD-C showed variations in CRITIC scores compared with TD. After equivalent correction, the quality of DGD-A and DGD-C approached that of TD. Furthermore, our Grey relational analysis results supported the findings of the CRITIC method. This study offers a novel approach to evaluate the consistency between DGD and TD, providing insights into improving the quality of DGD.

10.
Clin Psychol Psychother ; 31(4): e3023, 2024.
Article de Anglais | MEDLINE | ID: mdl-38978207

RÉSUMÉ

OBJECTIVE: This study aims to assess the clinical effectiveness of combining mindfulness-based stress reduction (MBSR) with exercise intervention in improving anxiety, depression, sleep quality and mood regulation in patients with non-small cell lung cancer (NSCLC). METHODS: A total of 60 patients with NSCLC who had not received surgical treatment were selected using convenience sampling and divided into an intervention group and control group, with 30 patients in each group. The control group received conventional psychological nursing care, whereas the intervention group received a combination of MBwSR and exercise therapy. Before the intervention, a questionnaire was completed to collect the basic data of the two groups. Further questionnaires were administered at 6 and 8 weeks after treatment to assess anxiety, depression, sleep quality and other items included in the five-item Brief Symptom Rating Scale (BSRS-5). RESULTS: No significant differences between the intervention and control groups were identified in terms of personal and clinical characteristics (p > 0.05). No significant differences were determined in the BSRS-5, Self-Rating Anxiety Scale (SAS), Self-Rating Depression Scale (SDS) or Pittsburgh Sleep Quality Index (PSQI) scores between the intervention and control groups before the intervention. However, 6 and 8 weeks after the intervention, scores were significantly lower in both groups (p < 0.001). Significant differences in the BSRS-5, SAS, SDS and PSQI scores were identified between the two groups at different time points (p < 0.001). CONCLUSION: The combination of MBSR and exercise intervention demonstrated improvements in anxiety, depression, sleep quality and BSRS-5 scores in patients with NSCLC.


Sujet(s)
Carcinome pulmonaire non à petites cellules , Traitement par les exercices physiques , Tumeurs du poumon , Pleine conscience , Stress psychologique , Humains , Pleine conscience/méthodes , Femelle , Mâle , Carcinome pulmonaire non à petites cellules/psychologie , Carcinome pulmonaire non à petites cellules/thérapie , Adulte d'âge moyen , Tumeurs du poumon/psychologie , Tumeurs du poumon/thérapie , Traitement par les exercices physiques/méthodes , Traitement par les exercices physiques/psychologie , Stress psychologique/thérapie , Stress psychologique/psychologie , Résultat thérapeutique , Sujet âgé , Enquêtes et questionnaires , Adulte , Qualité du sommeil , Association thérapeutique , Bien-être psychologique
11.
Plant Physiol Biochem ; 214: 108930, 2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-39013356

RÉSUMÉ

Selenium (Se) is an essential micronutrient in organisms that has a significant impact on physiological activity and gene expression in plants, thereby affecting growth and development. Humans and animals acquire Se from plants. Tomato (Solanum lycopersicum L.) is an important vegetable crop worldwide. Improving the Se nutrient level not only is beneficial for growth, development and stress resistance in tomato plants but also contributes to improving human health. However, the molecular basis of Se-mediated tomato plant growth has not been fully elucidated. In this study, using physiological and transcriptomic analyses, we investigated the effects of a low dosage of selenite [Se(Ⅳ)] on tomato seedling growth. Se(IV) enhanced the photosynthetic efficiency and increased the accumulation of soluble sugars, dry matter and organic matter, thereby promoting tomato plant growth. Transcriptome analysis revealed that Se(IV) reprogrammed primary and secondary metabolic pathways, thus modulating plant growth. Se(IV) also increased the concentrations of auxin, jasmonic acid and salicylic acid in leaves and the concentration of cytokinin in roots, thus altering phytohormone signaling pathways and affecting plant growth and stress resistance in tomato plants. Furthermore, exogenous Se(IV) alters the expression of genes involved in flavonoid biosynthesis, thereby modulating plant growth and development in tomato plants. Taken together, these findings provide important insights into the regulatory mechanisms of low-dose Se(IV) on tomato growth and contribute to the breeding of Se-accumulating tomato cultivars.

12.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 630-634, 2024 May 20.
Article de Chinois | MEDLINE | ID: mdl-38948270

RÉSUMÉ

Objective: To investigate the effect of Sanshentongmai (SSTM) mixture on the regulation of oxidative damage to rat cardiomyocytes (H9C2) through microRNA-146a and its mechanism. Methods: H9C2 were cultured in vitro, H2O2 was used as an oxidant to create an oxidative damage model in H9C2 cells. SSTM intervention was administered to the H9C2 cells. Then, the changes in H2O2-induced oxidative damage in H9C2 cells and the expression of microRNA-146a were observed to explore the protective effect of SSTM on H9C2 and its mechanism. H9C2 cells cultured i n vitro were divided into 3 groups, including a control group, a model group of H2O2-induced oxidative damage (referred to hereafter as the model group), and a group given H2O2 modeling plus SSTM intervention at 500 µg/L for 72 h (referred to hereafter as the treatment group). The cell viability was measured by CCK8 assay. In addition, the levels of N-terminal pro-brain natriuretic peptide (Nt-proBNP), nitric oxide (NO), high-sensitivity C-reactive protein (Hs-CRP), and angiotensin were determined by enzyme-linked immunosorbent assay (ELISA). The expression level of microRNA-146a was determined by real-time PCR (RT-PCR). Result: H9C2 cells were pretreated with SSTM at mass concentrations ranging from 200 to 1500 µg/L. Then, CCK8 assay was performed to measure cell viability and the findings showed that the improvement in cell proliferation reached its peak when the mass concentration of SSTM was 500 µg/L, which was subsequently used as the intervention concentration. ELISA was performed to measure the indicators related to heart failure, including Nt-proBNP, NO, Hs-CRP, and angiotensin Ⅱ. Compared with those of the control group, the expressions of Nt-proBNP and angiotensin Ⅱ in the treatment group were up-regulated (P<0.05), while the expression of NO was down-regulated (P<0.05). There was no significant difference in the expression of Hs-CRP between the treatment group and the control group. These findings indicate that SSTM could effectively ameliorate oxidative damage in H9C2 rat cardiomyocytes. Finally, according to the RT-PCR findings for the expression of microRNA-146a in each group, H2O2 treatment at 15 µmol/L could significantly reduce the expression of microRNA-146a, and the expression of microRNA-146a in the treatment group was nearly doubled compared with that in the model group. There was no significant difference between the treatment group and the control group. Conclusion: SSTM can significantly resist the H2O2-induced oxidative damage of H9C2 cells and may play a myocardial protective role by upregulating microRNA-146a.


Sujet(s)
Médicaments issus de plantes chinoises , Peroxyde d'hydrogène , microARN , Myocytes cardiaques , Stress oxydatif , Régulation positive , Myocytes cardiaques/métabolisme , Myocytes cardiaques/effets des médicaments et des substances chimiques , Myocytes cardiaques/cytologie , Animaux , microARN/métabolisme , microARN/génétique , Rats , Stress oxydatif/effets des médicaments et des substances chimiques , Peroxyde d'hydrogène/toxicité , Médicaments issus de plantes chinoises/pharmacologie , Régulation positive/effets des médicaments et des substances chimiques , Survie cellulaire/effets des médicaments et des substances chimiques , Lignée cellulaire , Association médicamenteuse
13.
Oncol Lett ; 28(2): 394, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38966577

RÉSUMÉ

Long non-coding RNAs, such as homeobox A cluster antisense RNA2 (HOXA-AS2) are understood to be involved in tumor growth and development of numerous cancers. However, the role of HOXA-AS2 in the progression of human epithelial ovarian cancer (EOC) remains unclear. In the present study, the expression of HOXA-AS2 was found to be upregulated in EOC tissues compared with noncancerous tissues, and to be strongly correlated to an advanced Federation International of Gynecology and Obstetrics grade and poor prognosis. Knockdown of HOXA-AS2 in the EOC cells inhibited cell proliferation, invasion and migration, as well as inducing cell apoptosis. The ENCORI database was used to screen the microRNAs (miRNAs/miRs) that bound to HOXA-AS2, and one was tested using RNA pull-down and luciferase reporter assays. It was demonstrated that HOXA-AS2 functioned through the competing endogenous RNA mechanism to regulate miR-372. It was also demonstrated that the downregulation of miR-372 reversed the inhibitory effects of the knockdown of HOXA-AS2 in EOC cells. These results indicated that HOXA-AS2 promoted EOC progression by regulating the miR-372, which suggests that HOXA-AS2 may be a therapy target for EOC.

14.
Front Physiol ; 15: 1402478, 2024.
Article de Anglais | MEDLINE | ID: mdl-38911325

RÉSUMÉ

Introduction: This study was undertaken to explore the potential therapeutic effects of Tongyang Huoxue Granules (TYHX) on sinoatrial node (SAN) dysfunction, a cardiac disorder characterized by impaired impulse generation or conduction. The research question addressed whether TYHX could positively influence SAN ion channel function, specifically targeting the sodium-calcium exchanger (I NCX) and L-type calcium channel (I CaL) of the SAN. Methods: Sinoatrial node cells (SANCs) were isolated and cultured from neonatal Japanese big-eared white rabbits within 24 h of birth. The study encompassed five groups: Control, H/R (hypoxia/reoxygenation), H/R+100 µg/mL TYHX, H/R+200 µg/mL TYHX, and H/R+400 µg/mL TYHX. The H/R model, simulating hypoxia/reoxygenation stress, was induced within 5 days of culture. Whole-cell patch clamp technique was employed to record currents following a 3-min perfusion and stabilization period with TYHX. Results: TYHX administration demonstrated improvements in the ignition phase of impaired SANCs. The half-maximal effective dose of TYHX, as determined by SANC beating frequency, was found to be 323.63 µg/mL. Inward current density of I NCX increased in response to TYHX (200 and 400 µg/mL), while TYHX enhanced I CaL current density in H/R SANCs, with 400 µg/mL exhibiting greater efficacy. Additionally, TYHX regulated the gating mechanisms of I CaL by right-shifting the steady-state inactivation curve and accelerating recovery from inactivation. Notably, TYHX increased the activation time constant under 200 and 400 µg/mL, prolonged the fast inactivation time constant τ1 with 400 µg/mL, and extended the slow inactivation time constant τ2 with 100 and 400 µg/mL. Discussion and conclusion: The findings suggest that TYHX may hold promise as a therapeutic intervention for sinus node dysfunction, offering potential avenues for drug development aimed at safeguarding SAN function.

15.
Brief Bioinform ; 25(4)2024 May 23.
Article de Anglais | MEDLINE | ID: mdl-38856167

RÉSUMÉ

The genome-wide single-cell chromosome conformation capture technique, i.e. single-cell Hi-C (ScHi-C), was recently developed to interrogate the conformation of the genome of individual cells. However, single-cell Hi-C data are much sparser than bulk Hi-C data of a population of cells, and noise in single-cell Hi-C makes it difficult to apply and analyze them in biological research. Here, we developed the first generative diffusion models (HiCDiff) to denoise single-cell Hi-C data in the form of chromosomal contact matrices. HiCDiff uses a deep residual network to remove the noise in the reverse process of diffusion and can be trained in both unsupervised and supervised learning modes. Benchmarked on several single-cell Hi-C test datasets, the diffusion models substantially remove the noise in single-cell Hi-C data. The unsupervised HiCDiff outperforms most supervised non-diffusion deep learning methods and achieves the performance comparable to the state-of-the-art supervised deep learning method in terms of multiple metrics, demonstrating that diffusion models are a useful approach to denoising single-cell Hi-C data. Moreover, its good performance holds on denoising bulk Hi-C data.


Sujet(s)
Analyse sur cellule unique , Analyse sur cellule unique/méthodes , Humains , Biologie informatique/méthodes , Apprentissage profond , Algorithmes
16.
bioRxiv ; 2024 Jun 15.
Article de Anglais | MEDLINE | ID: mdl-38915688

RÉSUMÉ

The oviduct is the site of fertilization and preimplantation embryo development in mammals. Evidence suggests that gametes alter oviductal gene expression. To delineate the adaptive interactions between the oviduct and gamete/embryo, we performed a multi-omics characterization of oviductal tissues utilizing bulk RNA-sequencing (RNA-seq), single-cell RNA-sequencing (scRNA-seq), and proteomics collected from distal and proximal at various stages after mating in mice. We observed robust region-specific transcriptional signatures. Specifically, the presence of sperm induces genes involved in pro-inflammatory responses in the proximal region at 0.5 days post-coitus (dpc). Genes involved in inflammatory responses were produced specifically by secretory epithelial cells in the oviduct. At 1.5 and 2.5 dpc, genes involved in pyruvate and glycolysis were enriched in the proximal region, potentially providing metabolic support for developing embryos. Abundant proteins in the oviductal fluid were differentially observed between naturally fertilized and superovulated samples. RNA-seq data were used to identify transcription factors predicted to influence protein abundance in the proteomic data via a novel machine learning model based on transformers of integrating transcriptomics and proteomics data. The transformers identified influential transcription factors and correlated predictive protein expressions in alignment with the in vivo-derived data. In conclusion, our multi-omics characterization and subsequent in vivo confirmation of proteins/RNAs indicate that the oviduct is adaptive and responsive to the presence of sperm and embryos in a spatiotemporal manner.

17.
Thromb J ; 22(1): 56, 2024 Jun 28.
Article de Anglais | MEDLINE | ID: mdl-38943162

RÉSUMÉ

BACKGROUND: Hypercoagulability emerges as a central pathological feature and clinical complication in nephrotic syndrome. Increased platelet activation and aggregability are closely related to hypercoagulability in nephrotic syndrome. Monocyte-platelet aggregates (MPAs) have been proposed to represent a robust biomarker of platelet activation. The aim of this study was to investigate levels of the circulating MPAs and MPAs with the different monocyte subsets to evaluate the association of MPAs with hypercoagulability in nephrotic syndrome. METHODS: Thirty-two patients with nephrotic syndrome were enrolled. In addition, thirty-two healthy age and sex matched adult volunteers served as healthy controls. MPAs were identified by CD14 monocytes positive for CD41a platelets. The classical (CD14 + + CD16-, CM), the intermediate (CD14 + + CD16+, IM) and the non-classical (CD14 + CD16++, NCM) monocytes, as well as subset specific MPAs, were measured by flow cytometry. RESULTS: Patients with nephrotic syndrome showed a higher percentage of circulating MPAs as compared with healthy controls (p < 0.001). The percentages of MPAs with CM, IM, and NCM were higher than those of healthy controls (p = 0.012, p < 0.001 and p < 0.001, respectively). Circulating MPAs showed correlations with hypoalbuminemia (r=-0.85; p < 0.001), hypercholesterolemia (r = 0.54; p < 0.001), fibrinogen (r = 0.70; p < 0.001) and D-dimer (r = 0.37; p = 0.003), but not with hypertriglyceridemia in nephrotic syndrome. The AUC for the prediction of hypercoagulability in nephrotic syndrome using MPAs was 0.79 (95% CI 0.68-0.90, p < 0.001). The sensitivity of MPAs in predicting hypercoagulability was 0.71, and the specificity was 0.78. CONCLUSION: Increased MPAs were correlated with hypercoagulability in nephrotic syndrome. MPAs may serve as a potential biomarker for thrombophilic or hypercoagulable state and provide novel insight into the mechanisms of anticoagulation in nephrotic syndrome.

18.
J Clin Nurs ; 2024 Jun 17.
Article de Anglais | MEDLINE | ID: mdl-38886988

RÉSUMÉ

AIM: The objective of this study was to identify symptom clusters in lung cancer patients receiving immunotherapy and explore their impact on the quality of life of patients. BACKGROUND: Immunotherapy is widely used in lung cancer; however, there is little understanding of symptom clusters and their impacts on the quality of life of this population. DESIGN: Cross-sectional study. METHODS: The survey contained the Memorial Symptom Assessment Scale (MSAS), Quality of Life Questionnaire-Lung Cancer 43 and a self-designed General Information Evaluation Form. Symptom clusters were identified using exploratory factor analysis (EFA) based on the symptom scores. Spearman correlation analysis was performed to evaluate the associations between each symptom cluster and the patients' quality of life. Multiple linear regression analysis was employed to examine the impact of the symptom clusters on quality of life. This study adhered to the STROBE guidelines. RESULTS: In total, 240 participants completed the survey. Five symptom clusters were identified and named according to their characteristics: emotional-related symptom cluster, lung cancer-related symptom cluster, physical symptom cluster, skin symptom cluster and neural symptom cluster. All symptom clusters, except for the neural symptom cluster, had a significantly detrimental impact on patient quality of life. CONCLUSION: Lung cancer patients undergoing immunotherapy experience a range of symptoms, which can be categorized into five clusters. These symptom clusters have a negative impact on patients' quality of life. Future research should focus on developing interventions for each symptom cluster and their influencing factors. PATIENT OR PUBLIC CONTRIBUTION: In the data collection phase, lung cancer patients undergoing immunotherapy were recruited to participate in the survey.

19.
PeerJ ; 12: e17551, 2024.
Article de Anglais | MEDLINE | ID: mdl-38887622

RÉSUMÉ

Background: Keloid is a chronic proliferative fibrotic disease caused by abnormal fibroblasts proliferation and excessive extracellular matrix (ECM) production. Numerous fibrotic disorders are significantly influenced by ferroptosis, and targeting ferroptosis can effectively mitigate fibrosis development. This study aimed to investigate the role and mechanism of ferroptosis in keloid development. Methods: Keloid tissues from keloid patients and normal skin tissues from healthy controls were collected. Iron content, lipid peroxidation (LPO) level, and the mRNA and protein expression of ferroptosis-related genes including solute carrier family 7 member 11 (SLC7A11), glutathione peroxidase 4 (GPX4), transferrin receptor (TFRC), and nuclear factor erythroid 2-related factor 2 (Nrf2) were determined. Mitochondrial morphology was observed using transmission electron microscopy (TEM). Keloid fibroblasts (KFs) were isolated from keloid tissues, and treated with ferroptosis inhibitor ferrostatin-1 (fer-1) or ferroptosis activator erastin. Iron content, ferroptosis-related marker levels, LPO level, mitochondrial membrane potential, ATP content, and mitochondrial morphology in KFs were detected. Furthermore, the protein levels of α-smooth muscle actin (α-SMA), collagen I, and collagen III were measured to investigate whether ferroptosis affect fibrosis in KFs. Results: We found that iron content and LPO level were substantially elevated in keloid tissues and KFs. SLC7A11, GPX4, and Nrf2 were downregulated and TFRC was upregulated in keloid tissues and KFs. Mitochondria in keloid tissues and KFs exhibited ferroptosis-related pathology. Fer-1 treatment reduced iron content, restrained ferroptosis and mitochondrial dysfunction in KFs, Moreover, ferrostatin-1 restrained the protein expression of α-SMA, collagen I, and collagen III in KFs. Whereas erastin treatment showed the opposite results. Conclusion: Ferroptosis exists in keloid. Ferrostatin-1 restrained ECM deposition and fibrosis in keloid through inhibiting ferroptosis, and erastin induced ECM deposition and fibrosis through intensifying ferroptosis.


Sujet(s)
Cyclohexylamines , Ferroptose , Fibroblastes , Fibrose , Chéloïde , Facteur-2 apparenté à NF-E2 , Phénylènediamines , Phospholipid hydroperoxide glutathione peroxidase , Humains , Ferroptose/effets des médicaments et des substances chimiques , Chéloïde/anatomopathologie , Chéloïde/métabolisme , Chéloïde/traitement médicamenteux , Fibroblastes/effets des médicaments et des substances chimiques , Fibroblastes/métabolisme , Fibroblastes/anatomopathologie , Cyclohexylamines/pharmacologie , Fibrose/métabolisme , Fibrose/anatomopathologie , Phénylènediamines/pharmacologie , Facteur-2 apparenté à NF-E2/métabolisme , Facteur-2 apparenté à NF-E2/génétique , Phospholipid hydroperoxide glutathione peroxidase/métabolisme , Phospholipid hydroperoxide glutathione peroxidase/génétique , Mâle , Peroxydation lipidique/effets des médicaments et des substances chimiques , Femelle , Adulte , Fer/métabolisme , Système y+ de transport d'acides aminés/métabolisme , Système y+ de transport d'acides aminés/génétique , Récepteurs à la transferrine/métabolisme , Récepteurs à la transferrine/génétique , Pipérazines/pharmacologie , Actines/métabolisme , Actines/génétique , Mitochondries/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Mitochondries/anatomopathologie , Potentiel de membrane mitochondriale/effets des médicaments et des substances chimiques
20.
Plant Physiol ; 2024 Jun 14.
Article de Anglais | MEDLINE | ID: mdl-38875158

RÉSUMÉ

Cold stress declines the quality and yield of tea, yet the molecular basis underlying cold tolerance of tea plants (Camellia sinensis) remains largely unknown. Here, we identified a circadian rhythm component LUX ARRHYTHMO (LUX) that potentially regulates cold tolerance of tea plants through a genome-wide association study and transcriptomic analysis. The expression of CsLUX phased with sunrise and sunset and was strongly induced by cold stress. Genetic assays indicated that CsLUX is a positive regulator of freezing tolerance in tea plants. CsLUX was directly activated by CsCBF1 and repressed the expression level of CsLOX2, which regulates the cold tolerance of tea plants through dynamically modulating jasmonic acid content. Furthermore, we showed that the CsLUX-CsJAZ1 complex attenuated the physical interaction of CsJAZ1 with CsICE1, liberating CsICE1 with transcriptional activities to withstand cold stress. Notably, a single-nucleotide variation of C-to-A in the coding region of CsLUX was functionally validated as the potential elite haplotype for cold response, which provided valuable molecular markers for future cold resistance breeding in tea plants.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE