Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Nat Commun ; 13(1): 1607, 2022 03 25.
Article de Anglais | MEDLINE | ID: mdl-35338132

RÉSUMÉ

The wild relatives and progenitors of wheat have been widely used as sources of disease resistance (R) genes. Molecular identification and characterization of these R genes facilitates their manipulation and tracking in breeding programmes. Here, we develop a reference-quality genome assembly of the wild diploid wheat relative Aegilops sharonensis and use positional mapping, mutagenesis, RNA-Seq and transgenesis to identify the stem rust resistance gene Sr62, which has also been transferred to common wheat. This gene encodes a tandem kinase, homologues of which exist across multiple taxa in the plant kingdom. Stable Sr62 transgenic wheat lines show high levels of resistance against diverse isolates of the stem rust pathogen, highlighting the utility of Sr62 for deployment as part of a polygenic stack to maximize the durability of stem rust resistance.


Sujet(s)
Aegilops , Basidiomycota , Aegilops/génétique , Basidiomycota/génétique , Résistance à la maladie/génétique , Gènes de plante/génétique , Amélioration des plantes , Maladies des plantes/génétique , Triticum/génétique
2.
Nat Commun ; 12(1): 6915, 2021 11 25.
Article de Anglais | MEDLINE | ID: mdl-34824299

RÉSUMÉ

Crop losses caused by plant pathogens are a primary threat to stable food production. Stripe rust (Puccinia striiformis) is a fungal pathogen of cereal crops that causes significant, persistent yield loss. Stripe rust exhibits host species specificity, with lineages that have adapted to infect wheat and barley. While wheat stripe rust and barley stripe rust are commonly restricted to their corresponding hosts, the genes underlying this host specificity remain unknown. Here, we show that three resistance genes, Rps6, Rps7, and Rps8, contribute to immunity in barley to wheat stripe rust. Rps7 cosegregates with barley powdery mildew resistance at the Mla locus. Using transgenic complementation of different Mla alleles, we confirm allele-specific recognition of wheat stripe rust by Mla. Our results show that major resistance genes contribute to the host species specificity of wheat stripe rust on barley and that a shared genetic architecture underlies resistance to the adapted pathogen barley powdery mildew and non-adapted pathogen wheat stripe rust.


Sujet(s)
Hordeum/immunologie , Spécificité d'hôte , Immunité des plantes , Protéines végétales/immunologie , Adaptation physiologique , Allèles , Produits agricoles/génétique , Grains comestibles , Amélioration des plantes , Maladies des plantes/immunologie , Puccinia (genre) , Récepteurs immunologiques , Protéines ribosomiques , Triticum
3.
Theor Appl Genet ; 130(6): 1207-1222, 2017 Jun.
Article de Anglais | MEDLINE | ID: mdl-28275817

RÉSUMÉ

KEY MESSAGE: We identified two novel wheat stem rust resistance genes, Sr-1644-1Sh and Sr-1644-5Sh in Aegilops sharonensis that are effective against widely virulent African races of the wheat stem rust pathogen. Stem rust is one of the most important diseases of wheat in the world. When single stem rust resistance (Sr) genes are deployed in wheat, they are often rapidly overcome by the pathogen. To this end, we initiated a search for novel sources of resistance in diverse wheat relatives and identified the wild goatgrass species Aegilops sharonesis (Sharon goatgrass) as a rich reservoir of resistance to wheat stem rust. The objectives of this study were to discover and map novel Sr genes in Ae. sharonensis and to explore the possibility of identifying new Sr genes by genome-wide association study (GWAS). We developed two biparental populations between resistant and susceptible accessions of Ae. sharonensis and performed QTL and linkage analysis. In an F6 recombinant inbred line and an F2 population, two genes were identified that mapped to the short arm of chromosome 1Ssh, designated as Sr-1644-1Sh, and the long arm of chromosome 5Ssh, designated as Sr-1644-5Sh. The gene Sr-1644-1Sh confers a high level of resistance to race TTKSK (a member of the Ug99 race group), while the gene Sr-1644-5Sh conditions strong resistance to TRTTF, another widely virulent race found in Yemen. Additionally, GWAS was conducted on 125 diverse Ae. sharonensis accessions for stem rust resistance. The gene Sr-1644-1Sh was detected by GWAS, while Sr-1644-5Sh was not detected, indicating that the effectiveness of GWAS might be affected by marker density, population structure, low allele frequency and other factors.


Sujet(s)
Résistance à la maladie/génétique , Gènes de plante , Maladies des plantes/génétique , Poaceae/génétique , Basidiomycota , Cartographie chromosomique , Études d'associations génétiques , Liaison génétique , Modèles linéaires , Déséquilibre de liaison , Modèles génétiques , Phénotype , Maladies des plantes/microbiologie , Poaceae/microbiologie , Locus de caractère quantitatif
4.
PLoS One ; 8(8): e72782, 2013.
Article de Anglais | MEDLINE | ID: mdl-23951332

RÉSUMÉ

Aegilops sharonensis Eig (Sharon goatgrass) is a wild diploid relative of wheat within the Sitopsis section of Aegilops. This species represents an untapped reservoir of genetic diversity for traits of agronomic importance, especially as a source of novel disease resistance. To gain a foothold in this genetic resource, we sequenced the cDNA from leaf tissue of two geographically distinct Ae. sharonensis accessions (1644 and 2232) using the 454 Life Sciences platform. We compared the results of two different assembly programs using different parameter sets to generate 13 distinct assemblies in an attempt to maximize representation of the gene space in de novo transcriptome assembly. The most sensitive assembly (71,029 contigs; N50 674 nts) retrieved 18,684 unique best reciprocal BLAST hits (BRBH) against six previously characterised grass proteomes while the most specific assembly (30,609 contigs; N50 815 nts) retrieved 15,687 BRBH. We combined these two assemblies into a set of 62,243 non-redundant sequences and identified 139 belonging to plant disease resistance genes of the nucleotide binding leucine-rich repeat class. Based on the non-redundant sequences, we predicted 37,743 single nucleotide polymorphisms (SNP), equivalent to one per 1,142 bp. We estimated the level of heterozygosity as 1.6% in accession 1644 and 30.1% in 2232. The Ae. sharonensis leaf transcriptome provides a rich source of sequence and SNPs for this wild wheat relative. These sequences can be used with existing monocot genome sequences and EST sequence collections (e.g. barley, Brachypodium, wheat, rice, maize and Sorghum) to assist with genetic and physical mapping and candidate gene identification in Ae. sharonensis. These resources provide an initial framework to further build on and characterise the genetic and genomic structure of Ae. sharonensis.


Sujet(s)
Génome végétal , Poaceae/génétique , Transcriptome , Triticum/génétique , Hétérozygote , Maladies des plantes/génétique , Feuilles de plante/génétique , Polymorphisme de nucléotide simple
5.
Annu Rev Phytopathol ; 51: 383-406, 2013.
Article de Anglais | MEDLINE | ID: mdl-23725472

RÉSUMÉ

Transcription activator-like (TAL) effectors are encoded by plant-pathogenic bacteria and induce expression of plant host genes. TAL effectors bind DNA on the basis of a unique code that specifies binding of amino acid residues in repeat units to particular DNA bases in a one-to-one correspondence. This code can be used to predict binding sites of natural TAL effectors and to design novel synthetic DNA-binding domains for targeted genome manipulation. Natural mechanisms of resistance in plants against TAL effector-containing pathogens have given insights into new strategies for disease control.


Sujet(s)
Produits agricoles/microbiologie , Résistance à la maladie , Maladies des plantes/immunologie , Xanthomonas/pathogénicité , Motifs d'acides aminés , Séquence d'acides aminés , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , Produits agricoles/génétique , Produits agricoles/immunologie , Protéines de liaison à l'ADN/génétique , Protéines de liaison à l'ADN/métabolisme , Génie génétique , Modèles moléculaires , Maladies des plantes/microbiologie , Virulence , Xanthomonas/génétique
6.
Curr Opin Plant Biol ; 14(4): 468-76, 2011 Aug.
Article de Anglais | MEDLINE | ID: mdl-21531167

RÉSUMÉ

Crop disease remains a major cause of yield loss and emerging diseases pose new threats to global food security. Despite the dearth of commercial development to date, progress in using our rapidly expanding knowledge of plant-pathogen interactions to invent new ways of controlling diseases in crops has been good. Many major resistance genes have now been shown to retain function when transferred between species, and evidence indicates that resistance genes are more effective when deployed in a background containing quantitative resistance traits. The EFR pattern-recognition receptor, present in only the Brassicaceae, functions to provide bacterial disease control in the Solanaceae. Knowledge of how transcription activator-like effectors bind DNA is leading to new methods for triggering disease resistance and broader applications in genome engineering.


Sujet(s)
Produits agricoles/immunologie , Résistance à la maladie , Gènes de plante , Maladies des plantes/immunologie , Immunité des plantes , Clonage moléculaire , Produits agricoles/génétique , Produits agricoles/microbiologie , Produits agricoles/virologie , Régulation de l'expression des gènes végétaux , Interactions hôte-pathogène , Maladies des plantes/microbiologie , Maladies des plantes/prévention et contrôle , Maladies des plantes/virologie , Végétaux génétiquement modifiés/génétique , Végétaux génétiquement modifiés/immunologie , Végétaux génétiquement modifiés/microbiologie , Végétaux génétiquement modifiés/virologie , Récepteurs de reconnaissance de motifs moléculaires/immunologie , Récepteurs de reconnaissance de motifs moléculaires/métabolisme , Activation de la transcription , Transgènes
7.
Plant Physiol ; 133(2): 736-47, 2003 Oct.
Article de Anglais | MEDLINE | ID: mdl-12972658

RÉSUMÉ

In this article, we report the isolation of plant protoporphyrinogen oxidase (PPO) genes and the isolation of herbicide-tolerant mutants. Subsequently, an Arabidopsis double mutant (Y426M + S305L) was used to develop a selectable marker system for Agrobacterium tumefaciens-mediated transformation of maize (Zea mays) and to obtain multiple events tolerant to the PPO family of herbicides. Maize transformants were produced via butafenacil selection using a flexible light regime to increase selection pressure. Butafenacil selection per se did not change transgene copy number distribution relative to other selectable marker systems, but the most tolerant events identified in the greenhouse were more likely to contain multiple copies of the introduced mutant PPO gene. To date, more than 2,500 independent transgenic maize events have been produced using butafenacil selection. The high frequency of A. tumefaciens-mediated transformation via PPO selection enabled us to obtain single-copy transgenic maize lines tolerant to field levels of butafenacil.


Sujet(s)
Agrobacterium tumefaciens/enzymologie , Oxidoreductases acting on CH-CH group donors/génétique , Zea mays/génétique , Arabidopsis/enzymologie , Arabidopsis/génétique , Test de complémentation , Lumière , Protéines végétales/génétique , Végétaux génétiquement modifiés/génétique , Protoporphyrinogen oxidase , Sélection génétique , Transformation génétique/effets des radiations
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...