Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Int. microbiol ; 27(2): 459-476, Abr. 2024. graf
Article de Anglais | IBECS | ID: ibc-232293

RÉSUMÉ

Gellan gum (GG) has gained tremendous attention owing to its diversified applications. However, its high production and hence market cost are still a bottleneck in its widespread utilization. In the present study, high GG producing mutant of Sphingomonas spp. was developed by random mutagenesis using ethyl methylsulphonate (EMS) for industrial fermentation and identified as Sphingomonas trueperi after 16S rRNA and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF–MS) analysis. The fermentation conditions such as pH, temperature, and inoculum ratio were optimized by one factor at a time (OFAT) followed by screening of medium components by the Plackett–Burman statistical design. The most critical nutrients were further optimized by response surface methodology for maximizing GG production. The effect of dissolved oxygen tension in bioreactor on cell growth, substrate consumption, GG production, and batch productivity was elucidated. The highest GG titer (23 ± 2.4 g/L) was attained in optimized medium at 10% inoculum (6.45 ± 0.5 log cfu/mL) under controlled fermentation conditions of pH (7), temperature (30 °C), agitation (300–600 rpm), and aeration (0.5–2.0 SLPM) at 22 ± 2% dissolved oxygen tension in a 10-L bioreactor. Kinetic modeling of optimized batch process revealed that logistic growth model could best explain biomass accumulation, while GG formation and substrate consumption were best explained by Luedeking-Piret and exponential decay model, respectively. Structural and physico-functional features of GG produced by mutant Sphingomonas spp. were characterized by HPLC, FTIR, NMR, DSC, TGA, GPC, SEM, and rheological analysis. The higher productivity (0.51 g/L/h) under optimized fermentation conditions suggests potential consideration of mutant and process for commercial utilization.(AU)


Sujet(s)
Humains , Mutagenèse , Sphingomonas , ARN ribosomique 16S , Oxygène , Fermentation , Polyosides bactériens
2.
Int Microbiol ; 27(2): 459-476, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-37495894

RÉSUMÉ

Gellan gum (GG) has gained tremendous attention owing to its diversified applications. However, its high production and hence market cost are still a bottleneck in its widespread utilization. In the present study, high GG producing mutant of Sphingomonas spp. was developed by random mutagenesis using ethyl methylsulphonate (EMS) for industrial fermentation and identified as Sphingomonas trueperi after 16S rRNA and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) analysis. The fermentation conditions such as pH, temperature, and inoculum ratio were optimized by one factor at a time (OFAT) followed by screening of medium components by the Plackett-Burman statistical design. The most critical nutrients were further optimized by response surface methodology for maximizing GG production. The effect of dissolved oxygen tension in bioreactor on cell growth, substrate consumption, GG production, and batch productivity was elucidated. The highest GG titer (23 ± 2.4 g/L) was attained in optimized medium at 10% inoculum (6.45 ± 0.5 log cfu/mL) under controlled fermentation conditions of pH (7), temperature (30 °C), agitation (300-600 rpm), and aeration (0.5-2.0 SLPM) at 22 ± 2% dissolved oxygen tension in a 10-L bioreactor. Kinetic modeling of optimized batch process revealed that logistic growth model could best explain biomass accumulation, while GG formation and substrate consumption were best explained by Luedeking-Piret and exponential decay model, respectively. Structural and physico-functional features of GG produced by mutant Sphingomonas spp. were characterized by HPLC, FTIR, NMR, DSC, TGA, GPC, SEM, and rheological analysis. The higher productivity (0.51 g/L/h) under optimized fermentation conditions suggests potential consideration of mutant and process for commercial utilization.


Sujet(s)
Sphingomonas , Sphingomonas/génétique , ARN ribosomique 16S , Fermentation , Polyosides bactériens , Mutagenèse , Oxygène
3.
Bioresour Technol ; 359: 127498, 2022 Sep.
Article de Anglais | MEDLINE | ID: mdl-35724911

RÉSUMÉ

Multiple microbial exopolysaccharides have been reported in recent decade with their structural and functional features. Gellan gum (GG) is among these emerging biopolymers with versatile properties. Low production yield, high downstream cost, and abundant market demand have made GG a high cost material. Hence, an understanding on the various possibilities to develop cost-effective gellan gum bioprocess is desirable. This review focuses on details of upstream and downstream process of GG from an industrial perspective. It emphasizes on GG producing Sphingomonas spp., updates on biosynthesis, strain and media engineering, kinetic modeling, bioreactor design and scale-up considerations. Details of the downstream operations with possible modifications to make it cost-effective and environmentally sustainable have been discussed. The updated regulatory criteria for GG as a food ingredient and analytical tools required to validate the same have been briefly discussed. Derivatives of GG and their applications in various industrial segments have also been highlighted.


Sujet(s)
Sphingomonas , Bioréacteurs , Fermentation , Polyosides bactériens/composition chimique , Sphingomonas/composition chimique , Sphingomonas/métabolisme
4.
J Biol Chem ; 280(19): 18959-66, 2005 May 13.
Article de Anglais | MEDLINE | ID: mdl-15743765

RÉSUMÉ

The molecular mechanisms involved in the aberrant expression of T cell receptor (TCR) zeta chain of patients with systemic lupus erythematosus are not known. Previously we demonstrated that although normal T cells express high levels of TCR zeta mRNA with wild-type (WT) 3' untranslated region (3' UTR), systemic lupus erythematosus T cells display significantly high levels of TCR zeta mRNA with the alternatively spliced (AS) 3' UTR form, which is derived by splice deletion of nucleotides 672-1233 of the TCR zeta transcript. Here we report that the stability of TCR zeta mRNA with an AS 3' UTR is low compared with TCR zeta mRNA with WT 3' UTR. AS 3' UTR, but not WT 3' UTR, conferred similar instability to the luciferase gene. Immunoblotting of cell lysates derived from transfected COS-7 cells demonstrated that TCR zeta with AS 3' UTR produced low amounts of 16-kDa protein. In vitro transcription and translation also produced low amounts of protein from TCR zeta with AS 3' UTR. Taken together our findings suggest that nucleotides 672-1233 bp of TCR zeta 3' UTR play a critical role in its stability and also have elements required for the translational regulation of TCR zeta chain expression in human T cells.


Sujet(s)
Lupus érythémateux disséminé/métabolisme , Protéines membranaires/composition chimique , ARN messager/métabolisme , Récepteurs aux antigènes des cellules T/composition chimique , Régions 3' non traduites , Épissage alternatif , Animaux , Cellules COS , Clonage moléculaire , Amorces ADN/composition chimique , Densitométrie , Régulation négative , Régulation de l'expression des gènes , Gènes rapporteurs , Humains , Immunotransfert , Cellules Jurkat , Luciferases/métabolisme , Protéines membranaires/métabolisme , Biosynthèse des protéines , Structure tertiaire des protéines , Récepteurs aux antigènes des cellules T/métabolisme , RT-PCR , Lymphocytes T/métabolisme , Facteurs temps , Transcription génétique , Transfection
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE