Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
PLoS Negl Trop Dis ; 14(11): e0008868, 2020 11.
Article de Anglais | MEDLINE | ID: mdl-33226987

RÉSUMÉ

Our ability to effectively prevent the transmission of the dengue virus through targeted control of its vector, Aedes aegypti, depends critically on our understanding of the link between mosquito abundance and human disease risk. Mosquito and clinical surveillance data are widely collected, but linking them requires a modeling framework that accounts for the complex non-linear mechanisms involved in transmission. Most critical are the bottleneck in transmission imposed by mosquito lifespan relative to the virus' extrinsic incubation period, and the dynamics of human immunity. We developed a differential equation model of dengue transmission and embedded it in a Bayesian hierarchical framework that allowed us to estimate latent time series of mosquito demographic rates from mosquito trap counts and dengue case reports from the city of Vitória, Brazil. We used the fitted model to explore how the timing of a pulse of adult mosquito control influences its effect on the human disease burden in the following year. We found that control was generally more effective when implemented in periods of relatively low mosquito mortality (when mosquito abundance was also generally low). In particular, control implemented in early September (week 34 of the year) produced the largest reduction in predicted human case reports over the following year. This highlights the potential long-term utility of broad, off-peak-season mosquito control in addition to existing, locally targeted within-season efforts. Further, uncertainty in the effectiveness of control interventions was driven largely by posterior variation in the average mosquito mortality rate (closely tied to total mosquito abundance) with lower mosquito mortality generating systems more vulnerable to control. Broadly, these correlations suggest that mosquito control is most effective in situations in which transmission is already limited by mosquito abundance.


Sujet(s)
Aedes/virologie , Dengue/prévention et contrôle , Dengue/transmission , Lutte contre les moustiques/méthodes , Vecteurs moustiques/virologie , Animaux , Théorème de Bayes , Brésil , Virus de la dengue , Humains , Longévité/physiologie , Modèles biologiques , Saisons
2.
Prev Vet Med ; 150: 52-59, 2018 Feb 01.
Article de Anglais | MEDLINE | ID: mdl-29406084

RÉSUMÉ

Risk-based sampling is an essential component of livestock health surveillance because it targets resources towards sub-populations with a higher risk of infection. Risk-based surveillance in U.S. livestock is limited because the locations of high-risk herds are often unknown and data to identify high-risk herds based on shipments are often unavailable. In this study, we use a novel, data-driven network model for the shipments of cattle in the U.S. (the U.S. Animal Movement Model, USAMM) to provide surveillance suggestions for cattle imported into the U.S. from Mexico. We describe the volume and locations where cattle are imported and analyze their predicted shipment patterns to identify counties that are most likely to receive shipments of imported cattle. Our results suggest that most imported cattle are sent to relatively few counties. Surveillance at 10 counties is predicted to sample 22-34% of imported cattle while surveillance at 50 counties is predicted to sample 43%-61% of imported cattle. These findings are based on the assumption that USAMM accurately describes the shipments of imported cattle because their shipments are not tracked separately from the remainder of the U.S. herd. However, we analyze two additional datasets - Interstate Certificates of Veterinary Inspection and brand inspection data - to ensure that the characteristics of potential post-import shipments do not change on an annual scale and are not dependent on the dataset informing our analyses. Overall, these results highlight the utility of USAMM to inform targeted surveillance strategies when complete shipment information is unavailable.


Sujet(s)
Maladies des bovins/épidémiologie , Surveillance épidémiologique/médecine vétérinaire , Transports , Animaux , Bovins , Maladies des bovins/étiologie , Mexique , Modèles théoriques , Appréciation des risques , États-Unis/épidémiologie
3.
Parasit Vectors ; 8: 98, 2015 Feb 15.
Article de Anglais | MEDLINE | ID: mdl-25889533

RÉSUMÉ

BACKGROUND: Vector control remains the primary defense against dengue fever. Its success relies on the assumption that vector density is related to disease transmission. Two operational issues include the amount by which mosquito density should be reduced to minimize transmission and the spatio-temporal allotment of resources needed to reduce mosquito density in a cost-effective manner. Recently, a novel technology, MI-Dengue, was implemented city-wide in several Brazilian cities to provide real-time mosquito surveillance data for spatial prioritization of vector control resources. We sought to understand the role of city-wide mosquito density data in predicting disease incidence in order to provide guidance for prioritization of vector control work. METHODS: We used hierarchical Bayesian regression modeling to examine the role of city-wide vector surveillance data in predicting human cases of dengue fever in space and time. We used four years of weekly surveillance data from Vitoria city, Brazil, to identify the best model structure. We tested effects of vector density, lagged case data and spatial connectivity. We investigated the generality of the best model using an additional year of data from Vitoria and two years of data from other Brazilian cities: Governador Valadares and Sete Lagoas. RESULTS: We found that city-wide, neighborhood-level averages of household vector density were a poor predictor of dengue-fever cases in the absence of accounting for interactions with human cases. Effects of city-wide spatial patterns were stronger than within-neighborhood or nearest-neighborhood effects. Readily available proxies of spatial relationships between human cases, such as economic status, population density or between-neighborhood roadway distance, did not explain spatial patterns in cases better than unweighted global effects. CONCLUSIONS: For spatial prioritization of vector controls, city-wide spatial effects should be given more weight than within-neighborhood or nearest-neighborhood connections, in order to minimize city-wide cases of dengue fever. More research is needed to determine which data could best inform city-wide connectivity. Once these data become available, MI-dengue may be even more effective if vector control is spatially prioritized by considering city-wide connectivity between cases together with information on the location of mosquito density and infected mosquitos.


Sujet(s)
Dengue/épidémiologie , Dengue/prévention et contrôle , Transmission de maladie infectieuse/prévention et contrôle , Surveillance épidémiologique , Rationnement des services de santé/méthodes , Lutte contre les moustiques/méthodes , Animaux , Brésil/épidémiologie , Villes/épidémiologie , Dengue/transmission , Humains , Modèles statistiques , Analyse spatio-temporelle
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE