Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Plant J ; 97(2): 378-390, 2019 01.
Article de Anglais | MEDLINE | ID: mdl-30326542

RÉSUMÉ

Ethylene plays a critical role in many diverse processes in plant development. Recent studies have demonstrated that overexpression of the maize ARGOS8 gene reduces the plant's response to ethylene by decreasing ethylene signaling and enhances grain yield in transgenic maize plants. The objective of this study was to determine the effects of ethylene on the development of nodal roots, which are primarily responsible for root-lodging resistance in maize. Exogenous application of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) was found to promote the emergence of nodal roots. Transcriptome analysis of nodal tissues revealed that the expression of genes involved in metabolic processes and cell wall biogenesis was upregulated in response to ACC treatment, supporting the notion that ethylene is a positive regulator for the outgrowth of young root primordia. In BSV::ARGOS8 transgenic plants with reduced ethylene sensitivity due to constitutive overexpression of ARGOS8, nodal root emergence was delayed and the promotional effect of ACC on nodal root emergence decreased. Field tests showed that the BSV::ARGOS8 plants had higher root lodging relative to non-transgenic controls. When ARGOS8 expression was controlled by the developmentally regulated promoter FTM1, which conferred ARGOS8 overexpression in adult plants but not in the nodal roots and nodes in juvenile plants, the FTM1::ARGOS8 plants had no significant difference in root lodging compared with the wild type but produced a higher grain yield. These results suggest that ethylene has a role in promoting nodal root emergence and that a delay in nodal root development has a negative effect on root-lodging resistance in maize.


Sujet(s)
Éthylènes/métabolisme , Facteur de croissance végétal/métabolisme , Zea mays/génétique , Produits agricoles , Grains comestibles , Inondations , Phénotype , Amélioration des plantes , Racines de plante/génétique , Racines de plante/croissance et développement , Racines de plante/physiologie , Végétaux génétiquement modifiés , Zea mays/croissance et développement , Zea mays/physiologie
2.
Plant Physiol ; 169(1): 266-82, 2015 Sep.
Article de Anglais | MEDLINE | ID: mdl-26220950

RÉSUMÉ

Lack of sufficient water is a major limiting factor to crop production worldwide, and the development of drought-tolerant germplasm is needed to improve crop productivity. The phytohormone ethylene modulates plant growth and development as well as plant response to abiotic stress. Recent research has shown that modifying ethylene biosynthesis and signaling can enhance plant drought tolerance. Here, we report novel negative regulators of ethylene signal transduction in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). These regulators are encoded by the ARGOS gene family. In Arabidopsis, overexpression of maize ARGOS1 (ZmARGOS1), ZmARGOS8, Arabidopsis ARGOS homolog ORGAN SIZE RELATED1 (AtOSR1), and AtOSR2 reduced plant sensitivity to ethylene, leading to enhanced drought tolerance. RNA profiling and genetic analysis suggested that the ZmARGOS1 transgene acts between an ethylene receptor and CONSTITUTIVE TRIPLE RESPONSE1 in the ethylene signaling pathway, affecting ethylene perception or the early stages of ethylene signaling. Overexpressed ZmARGOS1 is localized to the endoplasmic reticulum and Golgi membrane, where the ethylene receptors and the ethylene signaling protein ETHYLENE-INSENSITIVE2 and REVERSION-TO-ETHYLENE SENSITIVITY1 reside. In transgenic maize plants, overexpression of ARGOS genes also reduces ethylene sensitivity. Moreover, field testing showed that UBIQUITIN1:ZmARGOS8 maize events had a greater grain yield than nontransgenic controls under both drought stress and well-watered conditions.


Sujet(s)
Arabidopsis/génétique , Sécheresses , Éthylènes/pharmacologie , Gènes de plante , Protéines végétales/génétique , Zea mays/génétique , Adaptation physiologique/effets des médicaments et des substances chimiques , Adaptation physiologique/génétique , Arabidopsis/effets des médicaments et des substances chimiques , Arabidopsis/physiologie , Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Régulation négative/effets des médicaments et des substances chimiques , Régulation négative/génétique , Réticulum endoplasmique/effets des médicaments et des substances chimiques , Réticulum endoplasmique/métabolisme , Éthylènes/biosynthèse , Régulation de l'expression des gènes végétaux/effets des médicaments et des substances chimiques , Appareil de Golgi/effets des médicaments et des substances chimiques , Appareil de Golgi/métabolisme , Membranes intracellulaires/effets des médicaments et des substances chimiques , Membranes intracellulaires/métabolisme , Mutation/génétique , Protéines végétales/métabolisme , Végétaux génétiquement modifiés , Graines/effets des médicaments et des substances chimiques , Graines/croissance et développement , Transduction du signal/effets des médicaments et des substances chimiques , Transduction du signal/génétique , Zea mays/effets des médicaments et des substances chimiques , Zea mays/physiologie
3.
J Exp Bot ; 65(1): 249-60, 2014 Jan.
Article de Anglais | MEDLINE | ID: mdl-24218327

RÉSUMÉ

Crop improvement for yield and drought tolerance is challenging due to the complex genetic nature of these traits and environmental dependencies. This study reports that transgenic over-expression of Zea mays AR GOS1 (ZAR1) enhanced maize organ growth, grain yield, and drought-stress tolerance. The ZAR1 transgene exhibited environmental interactions, with yield increase under Temperate Dry and yield reduction under Temperate Humid or High Latitude environments. Native ZAR1 allele variation associated with drought-stress tolerance. Two founder alleles identified in the mid-maturity germplasm of North America now predominate in Pioneer's modern breeding programme, and have distinct proteins, promoters and expression patterns. These two major alleles show heterotic group partitioning, with one predominant in Pioneer's female and the other in the male heterotic groups, respectively. These two alleles also associate with favourable crop performance when heterozygous. Allele-specific transgene testing showed that, of the two alleles discussed here, each allele differed in their impact on yield and environmental interactions. Moreover, when transgenically stacked together the allelic pair showed yield and environmental performance advantages over either single allele, resembling heterosis effects. This work demonstrates differences in transgenic efficacy of native alleles and the differences reflect their association with hybrid breeding performance.


Sujet(s)
Vigueur hybride , Protéines végétales/génétique , Zea mays/génétique , Allèles , Séquence nucléotidique , Biomasse , Sélection , Sécheresses , Expression des gènes , Interaction entre gènes et environnement , Variation génétique , Haplotypes , Données de séquences moléculaires , Famille multigénique , Phénotype , Protéines végétales/métabolisme , Végétaux génétiquement modifiés , Graines/génétique , Graines/croissance et développement , Graines/physiologie , Analyse de séquence d'ADN , Transgènes , Zea mays/croissance et développement , Zea mays/physiologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...