Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Food Res Int ; 174(Pt 1): 113547, 2023 12.
Article de Anglais | MEDLINE | ID: mdl-37986427

RÉSUMÉ

Lactic acid bacteria (LAB) fermentation is frequently employed to improve the nutritional, functional, and sensory characteristics of foods. Our study explored the effects of co-fermentation with Lacticaseibacillus paracasei ZH8 and Lactococcus lactis subsp. lactis YM313 on the physicochemical properties, antioxidant activity, and metabolomic profiles of wolfberry-longan juice (WLJ). Fermentation was carried out at 35 °C for 15 h. The results suggest that WLJ is a favorable substrate for LAB growth, reaching a total viable count exceeding 8 log CFU/mL after fermentation. LAB fermentation increased acidity, reduced the sugar content, and significantly impacted the juice color. The total phenolic and flavonoid contents of the WLJ and the antioxidant capacities based on 2,2-diphenyl-1-picrylhydrazyl (DPPH), ABTS radical scavenging abilities and FRAP were significantly improved by LAB fermentation. Nontargeted metabolomics analysis suggested that the contents of small molecule substances in WLJ were considerably affected by LAB fermentation. A total of 374 differential metabolites were identified in the juice before and after fermentation, with 193 significantly upregulated metabolites and 181 siginificantly downregulated metabolites. The regulation of metabolites is important for improving the flavor and functions of juices, such as L-eucylproline, Isovitexin, Netivudine, 3-Phenyllactic acid, vanillin, and ethyl maltol, ect. This study provides a theoretical foundation for developing plant-based foods fermented with LAB.


Sujet(s)
Lactobacillales , Lycium , Lactobacillales/métabolisme , Antioxydants/analyse , Fermentation , Jus de fruits et de légumes/analyse
2.
Front Microbiol ; 14: 1274353, 2023.
Article de Anglais | MEDLINE | ID: mdl-38029167

RÉSUMÉ

Introduction: Ganmai Dazao Decoction is a traditional Chinese recipe, and is composed of licorice, floating wheat, and jujube. Methods: Effects of lactic acid bacteria fermentation on the physicochemical properties, antioxidant activity, and γ-aminobutyric acid of Ganmai Dazao Decoction were studied. The changes of small and medium molecules in Ganmai Dazao Decoction before and after fermentation were determined by LC-MS non-targeted metabolomics. Results: The results showed that the contents of lactic acid, citric acid, acetic acid, and total phenol content increased significantly, DPPH free radical clearance and hydroxyl free radical clearance were significantly increased. γ-aminobutyric acid content was 12.06% higher after fermentation than before fermentation. A total of 553 differential metabolites were detected and identified from the Ganmai Dazao Decoction before and after fermentation by partial least squares discrimination and VIP analysis. Discussion: Among the top 30 differential metabolites with VIP values, the content of five functional substances increased significantly. Our results showed that lactic acid bacteria fermentation of Ganmai Dazao Decoction improves its antioxidant effects and that fermentation of Ganmai Dazao Decoction with lactic acid bacteria is an innovative approach that improves the health-promoting ingredients of Ganmai Dazao Decoction.

3.
Front Microbiol ; 14: 1152654, 2023.
Article de Anglais | MEDLINE | ID: mdl-37533834

RÉSUMÉ

The ancient traditional Chinese drink Bian-Que Triple-Bean Soup made by fermentation (FTBS) of Lactococcus lactis subsp. lactis YM313 and Lacticaseibacillus casei YQ336 is a potential functional drink. The effect of fermentation on the flavor and biological activity of FTBS was evaluated by analyzing its chemical composition. Five volatile flavors were detected in modified FTBS. Fermentation decreased the proportion of nonanal (beany flavor substances) but significantly increased the total flavone contents, phenol contents and many bioactive small molecule substances in FTBS. The changes of these substances led to the significant improvement of FTBS sensory evaluation, antioxidant activity and prebiotic potential. This research provides a theoretical basis for the application of Lactic acid bacteria (LAB) in the fermentation of edible plant-based foods and transformation from traditional food to industrial production.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE