Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 570
Filtrer
1.
Philos Trans R Soc Lond B Biol Sci ; 378(1883): 20220309, 2023 08 14.
Article de Anglais | MEDLINE | ID: mdl-37381858

RÉSUMÉ

Research in medicine and evolutionary biology suggests that the sequencing of parental investment has a crucial impact on offspring life history and health. Here, we take advantage of the synchronous birth system of wild banded mongooses to test experimentally the lifetime consequences to offspring of receiving extra investment prenatally versus postnatally. We provided extra food to half of the breeding females in each group during pregnancy, leaving the other half as matched controls. This manipulation resulted in two categories of experimental offspring in synchronously born litters: (i) 'prenatal boost' offspring whose mothers had been fed during pregnancy, and (ii) 'postnatal boost' offspring whose mothers were not fed during pregnancy but who received extra alloparental care in the postnatal period. Prenatal boost offspring lived substantially longer as adults, but postnatal boost offspring had higher lifetime reproductive success (LRS) and higher glucocorticoid levels across the lifespan. Both types of experimental offspring had higher LRS than offspring from unmanipulated litters. We found no difference between the two experimental categories of offspring in adult weight, age at first reproduction, oxidative stress or telomere lengths. These findings are rare experimental evidence that prenatal and postnatal investments have distinct effects in moulding individual life history and fitness in wild mammals. This article is part of the theme issue 'Evolutionary ecology of inequality'.


Sujet(s)
Herpestidae , Prise en charge postnatale , Adulte , Femelle , Animaux , Grossesse , Humains , Stress oxydatif , Évolution biologique , Écologie
2.
Reprod Biomed Online ; 45(1): 19-25, 2022 07.
Article de Anglais | MEDLINE | ID: mdl-35523707

RÉSUMÉ

Chromosome testing strategies, such as preimplantation genetic testing for aneuploidy (PGT-A), improve initial IVF outcomes by avoiding unwitting transfer of aneuploid embryos in morphology-based selection practices. Newer technologies have revealed that some embryos may appear to have intermediate whole chromosome (or parts of a chromosome termed segmental) copy number results suggesting trophectoderm mosaicism. An embryo with a trophectoderm mosaic-range result may be the only option for transfer for some patients. Recent data suggest that such mosaic embryos can be transferred without added risk of abnormal birth outcomes but may be associated with increased implantation failure and miscarriage rates, with higher values of mosaicism appearing to be less favourable for producing good outcomes. In this Position Statement, we provide guidance to laboratories, clinics, clinicians and counsellors to assist in discussions on the utility and transfer of mosaic embryos.


Sujet(s)
Diagnostic préimplantatoire , Aneuploïdie , Blastocyste , Transfert d'embryon , Femelle , Dépistage génétique/méthodes , Séquençage nucléotidique à haut débit/méthodes , Humains , Mosaïcisme , Grossesse , Diagnostic préimplantatoire/méthodes
3.
Hum Reprod ; 37(2): 284-296, 2022 Jan 28.
Article de Anglais | MEDLINE | ID: mdl-34875061

RÉSUMÉ

STUDY QUESTION: What are the key considerations for developing an enhanced transcriptomic method for secretory endometrial tissue dating? SUMMARY ANSWER: Multiple gene expression signature combinations can serve as biomarkers for endometrial dating, but their predictive performance is variable and depends on the number and identity of the genes included in the prediction model, the dataset characteristics and the technology employed for measuring gene expression. WHAT IS KNOWN ALREADY: Among the new generation of transcriptomic endometrial dating (TED) tools developed in the last decade, there exists variation in the technology used for measuring gene expression, the gene makeup and the prediction model design. A detailed study, comparing prediction performance across signatures for understanding signature behaviour and discrepancies in gene content between them, is lacking. STUDY DESIGN, SIZE, DURATION: A multicentre prospective study was performed between July 2018 and October 2020 at five different centres from the same group of clinics (Spain). This study recruited 281 patients and finally included in the gene expression analysis 225 Caucasian patients who underwent IVF treatment. After preprocessing and batch effect filtering, gene expression measurements from 217 patients were combined with artificial intelligence algorithms (support vector machine, random forest and k-nearest neighbours) allowing evaluation of different prediction models. In addition, secretory-phase endometrial transcriptomes from gene expression omnibus (GEO) datasets were analysed for 137 women, to study the endometrial dating capacity of genes independently and grouped by signatures. This provided data on the consistency of prediction across different gene expression technologies and datasets. PARTICIPANTS/MATERIALS, SETTING, METHODS: Endometrial biopsies were analysed using a targeted TruSeq (Illumina) custom RNA expression panel called the endometrial dating panel (ED panel). This panel included 301 genes previously considered relevant for endometrial dating as well as new genes selected for their anticipated value in detecting the secretory phase. Final samples (n = 217) were divided into a training set for signature discovery and an independent testing set for evaluation of predictive performance of the new signature. In addition, secretory-phase endometrial transcriptomes from GEO were analysed for 137 women to study endometrial dating capacity of genes independently and grouped by signatures. Predictive performance among these signatures was compared according to signature gene set size. MAIN RESULTS AND THE ROLE OF CHANCE: Testing of the ED panel allowed development of a model based on a new signature of 73 genes, which we termed 'TED' and delivers an enhanced tool for the consistent dating of the secretory phase progression, especially during the mid-secretory endometrium (3-8 days after progesterone (P) administration (P + 3-P + 8) in a hormone replacement therapy cycle). This new model showed the best predictive capacity in an independent test set for staging the endometrial tissue in the secretory phase, especially in the expected window of implantation (average of 114.5 ± 7.2 h of progesterone administered; range in our patient population of 82-172 h). Published sets of genes, in current use for endometrial dating and the new TED genes, were evaluated in parallel in whole-transcriptome datasets and in the ED panel dataset. TED signature performance was consistently excellent for all datasets assessed, frequently outperforming previously published sets of genes with a smaller number of genes for dating the endometrium in the secretory phase. Thus, this optimized set exhibited prediction consistency across datasets. LARGE SCALE DATA: The data used in this study is partially available at GEO database. GEO identifiers GSE4888, GSE29981, GSE58144, GSE98386. LIMITATIONS, REASONS FOR CAUTION: Although dating the endometrial biopsy is crucial for investigating endometrial progression and the receptivity process, further studies are needed to confirm whether or not endometrial dating methods in general are clinically useful and to guide the specific use of TED in the clinical setting. WIDER IMPLICATIONS OF THE FINDINGS: Multiple gene signature combinations provide adequate endometrial dating, but their predictive performance depends on the identity of the genes included, the gene expression platform, the algorithms used and dataset characteristics. TED is a next-generation endometrial assessment tool based on gene expression for accurate endometrial progression dating especially during the mid-secretory. STUDY FUNDING/COMPETING INTEREST(S): Research funded by IVI Foundation (1810-FIVI-066-PD). P.D.-G. visiting scientist fellowship at Oxford University (BEFPI/2010/032) and Josefa Maria Sanchez-Reyes' predoctoral fellowship (ACIF/2018/072) were supported by a program from the Generalitat Valenciana funded by the Spanish government. A.D.-P. is supported by the FPU/15/01398 predoctoral fellowship from the Ministry of Science, Innovation and Universities (Spanish Government). D.W. received support from the NIHR Oxford Biomedical Research Centre. The authors do not have any competing interests to declare.


Sujet(s)
Progestérone , Transcriptome , Intelligence artificielle , Endomètre/métabolisme , Femelle , Humains , Mâle , Progestérone/métabolisme , Études prospectives
4.
BMC Genomics ; 22(1): 856, 2021 Nov 26.
Article de Anglais | MEDLINE | ID: mdl-34836496

RÉSUMÉ

BACKGROUND: High-producing Holstein Friesian dairy cattle have a characteristic black and white coat, often with large proportions of black. Compared to a light coat color, black absorbs more solar radiation which is a contributing factor to heat stress in cattle. To better adapt dairy cattle to rapidly warming climates, we aimed to lighten their coat color by genome editing. RESULTS: Using gRNA/Cas9-mediated editing, we introduced a three bp deletion in the pre-melanosomal protein 17 gene (PMEL) proposed as causative variant for the semi-dominant color dilution phenotype observed in Galloway and Highland cattle. Calves generated from cells with homozygous edits revealed a strong color dilution effect. Instead of the characteristic black and white markings of control calves generated from unedited cells, the edited calves displayed a novel grey and white coat pattern. CONCLUSION: This, for the first time, verified the causative nature of the PMEL mutation for diluting the black coat color in cattle. Although only one of the calves was healthy at birth and later succumbed to a naval infection, the study showed the feasibility of generating such edited animals with the possibility to dissect the effects of the introgressed edit and other interfering allelic variants that might exist in individual cattle and accurately determine the impact of only the three bp change.


Sujet(s)
Changement climatique , Troubles dus à la chaleur , Animaux , Bovins , Édition de gène , Réaction de choc thermique , Phénotype
5.
Nat Commun ; 12(1): 3717, 2021 06 23.
Article de Anglais | MEDLINE | ID: mdl-34162841

RÉSUMÉ

Rawls argued that fairness in human societies can be achieved if decisions about the distribution of societal rewards are made from behind a veil of ignorance, which obscures the personal gains that result. Whether ignorance promotes fairness in animal societies, that is, the distribution of resources to reduce inequality, is unknown. Here we show experimentally that cooperatively breeding banded mongooses, acting from behind a veil of ignorance over kinship, allocate postnatal care in a way that reduces inequality among offspring, in the manner predicted by a Rawlsian model of cooperation. In this society synchronized reproduction leaves adults in a group ignorant of the individual parentage of their communal young. We provisioned half of the mothers in each mongoose group during pregnancy, leaving the other half as matched controls, thus increasing inequality among mothers and increasing the amount of variation in offspring birth weight in communal litters. After birth, fed mothers provided extra care to the offspring of unfed mothers, not their own young, which levelled up initial size inequalities among the offspring and equalized their survival to adulthood. Our findings suggest that a classic idea of moral philosophy also applies to the evolution of cooperation in biological systems.


Sujet(s)
Comportement animal/physiologie , Herpestidae/physiologie , Reproduction/physiologie , Comportement social , Animaux , Animaux nouveau-nés , Poids/physiologie , Sélection , Femelle , Mâle , Modèles théoriques , Grossesse , Dominance sociale
6.
R Soc Open Sci ; 7(7): 200419, 2020 Jul.
Article de Anglais | MEDLINE | ID: mdl-32874636

RÉSUMÉ

Ectomycorrhizal fungi are key players in terrestrial ecosystems yet their mating systems and population dynamics remain poorly understood. We investigated the fine-scale relatedness structure and genetic diversity of Boletus edulis, one of the world's most commercially important wild mushrooms. Microsatellite genotyping of fruiting bodies from 14 different sites around Bielefeld in Germany revealed little in the way of population structure over a geographic scale of several kilometres. However, on a more local scale we found evidence for elevated relatedness as well as inbreeding. We also observed a significant negative association between the genetic diversity of fruit and the age of the trees under which they were sampled. Taken together, our results suggest that as genets mature, they compete and potentially create conditions under which further spores struggle to become established. By implication, even though this species is widely picked, propagules remain common enough to create strong competition when new habitats become available.

7.
Sci Rep ; 9(1): 14827, 2019 Oct 10.
Article de Anglais | MEDLINE | ID: mdl-31597936

RÉSUMÉ

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

8.
Sci Rep ; 9(1): 5584, 2019 04 03.
Article de Anglais | MEDLINE | ID: mdl-30944383

RÉSUMÉ

Stomata are adjustable pores in the aerial epidermis of plants. The role of stomata is usually described in terms of the trade-off between CO2 uptake and water loss. Little consideration has been given to their interaction with below-ground development or diffusion of other gases. We overexpressed the rice EPIDERMAL PATTERNING FACTOR1 (OsEPF1) to produce rice plants with reduced stomatal densities, resulting in lowered leaf stomatal conductance and enhanced water use efficiency. Surprisingly, we found that root cortical aerenchyma (RCA) is formed constitutively in OsEPF1OE lines regardless of tissue age and position. Aerenchyma is tissue containing air-spaces that can develop in the plant root during stressful conditions, e.g. oxygen deficiency when it functions to increase O2 diffusion from shoot to root. The relationship with stomata is unknown. We conclude that RCA development and stomatal development are linked by two possible mechanisms: first that reduced stomatal conductance inhibits the diffusion of oxygen to the root, creating an oxygen deficit and stimulating the formation of RCA, second that an unknown EPF signalling pathway may be involved. Our observations have fundamental implications for the understanding of whole plant gas diffusion and root-to-shoot signalling events.

10.
J Biomech ; 87: 202-205, 2019 04 18.
Article de Anglais | MEDLINE | ID: mdl-30910361

RÉSUMÉ

Public engagement is an important role for the university academic, but is often neglected due to perceived lack of time and prioritized commitments in research and teaching. Yet, public engagement events offer an untapped opportunity for researchers to collect data from members of the general public who arrive on site at university labs. These engagement events could allow for data collection as part of didactic and demonstrative outreach events to be used in research and science. In this proof of concept study, a collaborative group of international researchers investigated the feasibility of embedding research quality assessment into events surrounding National Biomechanics Day. The Big Experiment collected data on 501 secondary school students (age range: 13 to 18 years) across 9 university sites within a 24-hour period. Data included maximal vertical jump height and self-reported physical activity levels. Vertical jump height was positively correlated to participant height, but not age or body mass. Very physically active students had significantly higher vertical jump heights than individuals who reported being somewhat or not physically active. This feasibility project demonstrates that with substantial preparation and a simple research design, focused research questions can be incorporated into educational outreach initiatives and ultimately provide a rich data source.


Sujet(s)
Biophysique/enseignement et éducation , Biophysique/méthodes , Plan de recherche/normes , Adolescent , Biophysique/normes , Biophysique/tendances , Exercice physique , Femelle , Humains , Mâle , Plan de recherche/tendances , Étudiants
11.
Hum Reprod ; 32(12): 2549-2560, 2017 Dec 01.
Article de Anglais | MEDLINE | ID: mdl-29126206

RÉSUMÉ

STUDY QUESTION: What is the incidence, origin and clinical significance of segmental aneuploidy in human oocytes and preimplantation embryos? SUMMARY ANSWER: Segmental aneuploidy occurs at a considerable frequency in preimplantation embryos with a majority being mitotic in origin. WHAT IS KNOWN ALREADY: In recent years, accurate techniques for the detection of aneuploidy in single cells have been developed. Research using such methods has confirmed that aneuploidy is a common feature of human oocytes and preimplantation embryos. However, thus far research has mainly focused on loss or gain of whole chromosomes. We utilized sensitive molecular methods to study another important form of cytogenetic abnormality at the earliest stages of human development, namely segmental aneuploidy. STUDY DESIGN, SIZE, DURATION: Chromosomal copy number data was obtained from oocytes and embryos of 635 IVF patients, who requested chromosome screening for various reasons, most commonly for advanced maternal age or previously unsuccessful IVF treatments. A total of 3541 samples comprising of 452 human oocytes, 1762 cleavage stage and 1327 blastocyst stage embryos were investigated in the present study. PARTICIPANTS/MATERIALS, SETTING, METHODS: Whole genome amplification (Sureplex, Illumina) was performed on cells biopsied from oocytes and embryos of IVF patients who requested chromosome screening. The samples were subsequently processed and analyzed for their chromosome complement using microarray comparative genomic hybridization (aCGH), (Illumina, Cambridge, UK). MAIN RESULTS AND THE ROLE OF CHANCE: Segmental abnormalities, involving loss or gain of chromosomal fragments in excess of 15 Mb, were found to occur at a high frequency. The incidence of such abnormalities was 10.4% in oocytes, but this increased dramatically during the first 3 days of embryonic development (24.3%), before starting to decline as embryos reached the final (blastocyst) stage of preimplantation development (15.6%). While some segmental errors were clearly of meiotic origin, most appear to arise during the first few mitoses following fertilization. The reduction in frequency at the blastocyst stage suggests that many cells/embryos affected by segmental abnormalities are eliminated (e.g. via arrest of the affected embryos or apoptosis of abnormal cells). Interestingly, sites of chromosome breakage associated with segmental aneuploidy were not entirely random but tended to occur within distinct chromosomal regions. Some of the identified hotspots correspond to known fragile sites while others may be considered novel and may be specific to gametogenesis and/or embryogenesis. LIMITATIONS REASONS FOR CAUTION: The cytogenetic analysis was performed on biopsies of embryos, which might not be representative of the true incidence of mosaic segmental aneuploidy of the entire embryo. WIDER IMPLICATIONS OF THE FINDINGS: The findings of this study are valuable for understanding the origin of subchromosomal duplications and deletions, a clinically important class of abnormalities that are a common cause of congenital abnormalities and miscarriage. Furthermore, the results provide additional evidence that control of the cell cycle is more relaxed during the first few mitotic divisions following fertilization, permitting DNA double-strand breaks to occur and persist through cell division. The data are also of great relevance for preimplantation genetic testing, where the detection of segmental aneuploidy is currently considered problematic for embryo diagnosis and patient counseling. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by institutional funding (Reprogenetics UK). Additionally, DW is supported by the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre Programme. DB was supported by the University of Oxford's Clarendon funding. No conflict of interests to declare.


Sujet(s)
Aneuploïdie , Blastocyste/cytologie , Développement embryonnaire/génétique , Ovocytes/cytologie , Diagnostic préimplantatoire/méthodes , Adulte , Biopsie , Maladies chromosomiques/génétique , Chromosomes , Hybridation génomique comparative , Femelle , Fécondation in vitro , Humains , Incidence , Caryotypage , Mâle , Âge maternel , Adulte d'âge moyen , Mitose , Grossesse , Reproductibilité des résultats
12.
Hum Reprod ; 32(6): 1282-1292, 2017 06 01.
Article de Anglais | MEDLINE | ID: mdl-28387858

RÉSUMÉ

STUDY QUESTION: Does the amount of mitochondrial DNA (mtDNA) in blastocyst biopsy specimens have the potential to serve as a biomarker of euploid embryo implantation ability, independent of morphology? SUMMARY ANSWER: The results of this study strongly suggest that elevated mtDNA levels, above a previously defined threshold, are strongly associated with blastocyst implantation failure and represent an independent biomarker of embryo viability. WHAT IS KNOWN ALREADY: Improved methods of embryo selection are highly desirable in order to increase the efficiency of IVF treatment. At present, even the transfer of chromosomally normal embryos of high morphological grade cannot guarantee that a pregnancy will follow. Recently, it has been proposed that the quantity of mtDNA in embryonic cells may be an indicator of developmental potential, with higher levels of mtDNA associated with reduced implantation. However, thus far reported data sets have been relatively small and in some cases have lacked appropriate validation. STUDY DESIGN, SIZE, DURATION: This large, blinded, retrospective study involved the analysis of relative mtDNA levels in 1505 euploid blastocysts obtained from 490 couples undergoing preimplantation genetic testing for aneuploidy. Implantation outcomes were compared to mtDNA levels in order to determine the capacity of the method to predict viability and to assess the validity of previously established thresholds. PARTICIPANTS/MATERIALS, SETTING, METHODS: DNA from blastocyst biopsy samples was amplified and then subjected to aneuploidy analysis using next generation sequencing or array comparative genomic hybridization. Only those embryos classified as chromosomally normal had their mtDNA levels assessed. This analysis was undertaken retrospectively using quantitative real-time PCR, without knowledge of the outcome of embryo transfer. Predictions of implantation failure, based upon mtDNA levels were subsequently compared to the observed clinical results. All cycles involved the transfer of a single embryo. MAIN RESULTS AND THE ROLE OF CHANCE: Of all blastocysts analyzed, 9.2% (139/1505) contained mtDNA levels above a previously established viability threshold and were therefore predicted to have reduced chances of implantation. To the date of analysis, 282 euploid blastocysts had been transferred with an overall implantation rate of 65.6% (185/282). Of the transferred embryos, 249 contained levels of mtDNA in the normal range, 185 of which produced a pregnancy, giving an implantation rate of 74.3% for euploid embryos with 'normal' quantities of mtDNA. However, 33 of the transferred embryos were determined to have elevated mtDNA quantities. None of these led to a pregnancy. Therefore, the negative predictive value of mtDNA assessment in this cohort was 100% (33/33). The difference between the implantation rates for embryos with normal and elevated mtDNA levels was highly significant (P < 0.0001). The mtDNA thresholds, used for classification of embryos, were unaffected by female age or the clinic in which the IVF was undertaken. The probability of an embryo having elevated levels of mtDNA was not influenced by variation in embryo morphology. LIMITATIONS, REASONS FOR CAUTION: This study provides strong evidence that mtDNA quantification can serve as a valuable tool to assist the evaluation of blastocyst viability. However, to determine the true extent of any clinical benefits, other types of investigations, such as non-selection studies and randomized controlled trials, will also be necessary. WIDER IMPLICATIONS OF THE FINDINGS: The results of this study suggest that mtDNA quantity can serve as an independent biomarker for the prediction of euploid blastocyst implantation potential. Prospective studies should now be undertaken to confirm these results. Additionally, investigations into the underlying biological cause(s) of elevated mtDNA levels and an enhanced understanding of how they relate to diminished implantation potential would be invaluable. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by funding provided by Reprogenetics. None of the authors have any competing interests.


Sujet(s)
Blastocyste/métabolisme , ADN mitochondrial/métabolisme , Régulation négative , Ectogenèse , Développement foetal , Infertilité féminine/thérapie , Transfert d'embryon unique , Adulte , Marqueurs biologiques/métabolisme , Études de cohortes , Caractéristiques familiales , Femelle , Fécondation in vitro , Séquençage nucléotidique à haut débit , Humains , Infertilité féminine/métabolisme , Infertilité masculine , Mâle , Séquençage par oligonucléotides en batterie , Grossesse , Taux de grossesse , Reproductibilité des résultats , États-Unis/épidémiologie
13.
Reprod Biomed Online ; 34(2): 137-146, 2017 Feb.
Article de Anglais | MEDLINE | ID: mdl-27938863

RÉSUMÉ

Irregular cleavage divisions are expected to produce chromosomally deviant embryos. We investigated whether embryos from irregular cleavages could develop into euploid blastocysts, and, if so, whether any evidence existed of a self-correction mechanism of the embryo. We also investigated the role of different dynamic aspects of morula compaction in this process. A total of 791 embryos from 141 patients undergoing pre-implantation genetic screening were retrospectively analysed using a time-lapse imaging system, and multiple cell divisions were evaluated. A total of 276 embryos developed into blastocysts suitable for biopsy and chromosome screening through array-comparative genomic hybridization. As well as testing trophectoderm biopsy specimens for aneuploidy, excluded cells of 18 blastocysts, which developed from partially compacted morulas, were also analysed. Unique data on the developmental fate of embryos with cleavage abnormalities are presented, and a potential mechanism of 'aneuploidy rescue' is postulated through which mosaic embryos may form partially compacted morulas to exclude aneuploid cells. In addition, this process seems to be less efficient in older women. The data obtained also provide further evidence that excluded cells should not be used to infer the cytogenetic status of the embryo.


Sujet(s)
Blastocyste/cytologie , Stade de la segmentation de l'oeuf , Diagnostic préimplantatoire/méthodes , Adulte , Aneuploïdie , Biopsie , Hybridation génomique comparative , Cytogénétique , Implantation embryonnaire , Développement embryonnaire , Femelle , Humains , Adulte d'âge moyen , Morula/métabolisme , Ploïdies , Grossesse , Études rétrospectives
14.
J Biomech ; 51: 111-117, 2017 01 25.
Article de Anglais | MEDLINE | ID: mdl-27939351

RÉSUMÉ

To appropriately use inverse kinematic (IK) modelling for the assessment of human motion, a musculoskeletal model must be prepared 1) to match participant segment lengths (scaling) and 2) to align the model׳s virtual markers positions with known, experimentally derived kinematic marker positions (marker registration). The purpose of this study was to investigate whether prescribing joint co-ordinates during the marker registration process (within the modelling framework OpenSim) will improve IK derived elbow kinematics during an overhead sporting task. To test this, the upper limb kinematics of eight cricket bowlers were recorded during two testing sessions, with a different tester each session. The bowling trials were IK modelled twice: once with an upper limb musculoskeletal model prepared with prescribed participant specific co-ordinates during marker registration - MRPC - and once with the same model prepared without prescribed co-ordinates - MR; and by an established direct kinematic (DK) upper limb model. Whilst both skeletal model preparations had strong inter-tester repeatability (MR: Statistical Parametric Mapping (SPM1D)=0% different; MRPC: SPM1D=0% different), when compared with DK model elbow FE waveform estimates, IK estimates using the MRPC model (RMSD=5.2±2.0°, SPM1D=68% different) were in closer agreement than the estimates from the MR model (RMSD=44.5±18.5°, SPM1D=100% different). Results show that prescribing participant specific joint co-ordinates during the marker registration phase of model preparation increases the accuracy and repeatability of IK solutions when modelling overhead sporting tasks in OpenSim.


Sujet(s)
Articulation du coude/physiologie , Sports/physiologie , Membre supérieur/physiologie , Adulte , Phénomènes biomécaniques , Femelle , Humains , Mâle , Amplitude articulaire , Jeune adulte
16.
Phys Rev Lett ; 117(5): 053001, 2016 Jul 29.
Article de Anglais | MEDLINE | ID: mdl-27517769

RÉSUMÉ

Ionization of atoms and molecules in strong laser fields is a fundamental process in many fields of research, especially in the emerging field of attosecond science. So far, demonstrably accurate data have only been acquired for atomic hydrogen (H), a species that is accessible to few investigators. Here, we present measurements of the ionization yield for argon, krypton, and xenon with percent-level accuracy, calibrated using H, in a laser regime widely used in attosecond science. We derive a transferable calibration standard for laser peak intensity, accurate to 1.3%, that is based on a simple reference curve. In addition, our measurements provide a much needed benchmark for testing models of ionization in noble-gas atoms, such as the widely employed single-active electron approximation.

17.
PLoS One ; 11(7): e0159853, 2016.
Article de Anglais | MEDLINE | ID: mdl-27467128

RÉSUMÉ

LARGE is a glycosyltransferase involved in glycosylation of α-dystroglycan (α-DG). Absence of this protein in the LARGEmyd mouse results in α-DG hypoglycosylation, and is associated with central nervous system abnormalities and progressive muscular dystrophy. Up-regulation of LARGE has previously been proposed as a therapy for the secondary dystroglycanopathies: overexpression in cells compensates for defects in multiple dystroglycanopathy genes. Counterintuitively, LARGE overexpression in an FKRP-deficient mouse exacerbates pathology, suggesting that modulation of α-DG glycosylation requires further investigation. Here we demonstrate that transgenic expression of human LARGE (LARGE-LV5) in the LARGEmyd mouse restores α-DG glycosylation (with marked hyperglycosylation in muscle) and that this corrects both the muscle pathology and brain architecture. By quantitative analyses of LARGE transcripts we also here show that levels of transgenic and endogenous LARGE in the brains of transgenic animals are comparable, but that the transgene is markedly overexpressed in heart and particularly skeletal muscle (20-100 fold over endogenous). Our data suggest LARGE overexpression may only be deleterious under a forced regenerative context, such as that resulting from a reduction in FKRP: in the absence of such a defect we show that systemic expression of LARGE can indeed act therapeutically, and that even dramatic LARGE overexpression is well-tolerated in heart and skeletal muscle. Moreover, correction of LARGEmyd brain pathology with only moderate, near-physiological LARGE expression suggests a generous therapeutic window.


Sujet(s)
N-acetylglucosaminyltransferase/génétique , Animaux , Encéphale/métabolisme , Lignée cellulaire , Dystroglycanes/métabolisme , Glycosylation , Humains , Souris , Souris de lignée C57BL , Souris transgéniques , Muscles squelettiques/métabolisme , N-acetylglucosaminyltransferase/métabolisme
19.
J Phys Condens Matter ; 26(41): 413101, 2014 Oct 15.
Article de Anglais | MEDLINE | ID: mdl-25238560

RÉSUMÉ

Over the past ten years, the all-atom molecular dynamics method has grown in the scale of both systems and processes amenable to it and in its ability to make quantitative predictions about the behavior of experimental systems. The field of computational DNA research is no exception, witnessing a dramatic increase in the size of systems simulated with atomic resolution, the duration of individual simulations and the realism of the simulation outcomes. In this topical review, we describe the hallmark physical properties of DNA from the perspective of all-atom simulations. We demonstrate the amazing ability of such simulations to reveal the microscopic physical origins of experimentally observed phenomena. We also discuss the frustrating limitations associated with imperfections of present atomic force fields and inadequate sampling. The review is focused on the following four physical properties of DNA: effective electric charge, response to an external mechanical force, interaction with other DNA molecules and behavior in an external electric field.


Sujet(s)
ADN/composition chimique , ADN/métabolisme , Simulation numérique , Modèles moléculaires , Simulation de dynamique moléculaire , Électricité statique
20.
Bone Marrow Transplant ; 49(9): 1184-6, 2014 Sep.
Article de Anglais | MEDLINE | ID: mdl-25000459

RÉSUMÉ

The feasibility of selecting cord blood (CB) units at high-resolution HLA match has not been investigated. We analyzed the high-resolution donor-recipient HLA match of 100 double-unit 4-6/6 HLA-A,-B antigen, -DRB1 allele-matched CB grafts (units 1a and 1b) and their back-up units (n=377 units in total). The median cryopreserved graft dose was 2.9 × 10(7)/kg/unit, and at high resolution these units had a median donor-recipient HLA-allele match of 5/8 (range 2-8/8) and 6/10 (range 2-9/10), respectively. We then evaluated how often use of high-resolution HLA-match criteria would change the original graft selection to substitute one or both of the back-up units for units 1a and/or 1b. On using a model in which both a higher eight-allele HLA match and a cell dose ⩾ 2.0 × 10(7)/kg/unit were required, graft selection changed in 33% of transplants with minimal effect on cell dose (8.3% reduction). In summary, while units chosen based on HLA-A,-B antigen and -DRB1 allele match have substantial mismatch at higher resolution, CB selection based on high-resolution HLA match is possible in a significant proportion of patients without compromise in cell dose.


Sujet(s)
Transplantation de cellules souches de sang du cordon/méthodes , Sang foetal/immunologie , Antigènes HLA-B/génétique , Antigènes HLA-B/immunologie , Adolescent , Adulte , Sujet âgé , Allèles , Enfant , Enfant d'âge préscolaire , Femelle , Test d'histocompatibilité , Humains , Nourrisson , Mâle , Adulte d'âge moyen , Donneurs de tissus , Jeune adulte
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...