Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
J Occup Environ Hyg ; 14(7): 540-550, 2017 07.
Article de Anglais | MEDLINE | ID: mdl-28440728

RÉSUMÉ

Printing devices are known to emit chemicals into the indoor atmosphere. Understanding factors that influence release of chemical contaminants from printers is necessary to develop effective exposure assessment and control strategies. In this study, a desktop fused deposition modeling (FDM) 3-dimensional (3-D) printer using acrylonitrile butadiene styrene (ABS) or polylactic acid (PLA) filaments and two monochrome laser printers were evaluated in a 0.5 m3 chamber. During printing, chamber air was monitored for vapors using a real-time photoionization detector (results expressed as isobutylene equivalents) to measure total volatile organic compound (TVOC) concentrations, evacuated canisters to identify specific VOCs by off-line gas chromatography-mass spectrometry (GC-MS) analysis, and liquid bubblers to identify carbonyl compounds by GC-MS. Airborne particles were collected on filters for off-line analysis using scanning electron microscopy with an energy dispersive x-ray detector to identify elemental constituents. For 3-D printing, TVOC emission rates were influenced by a printer malfunction, filament type, and to a lesser extent, by filament color; however, rates were not influenced by the number of printer nozzles used or the manufacturer's provided cover. TVOC emission rates were significantly lower for the 3-D printer (49-3552 µg h-1) compared to the laser printers (5782-7735 µg h-1). A total of 14 VOCs were identified during 3-D printing that were not present during laser printing. 3-D printed objects continued to off-gas styrene, indicating potential for continued exposure after the print job is completed. Carbonyl reaction products were likely formed from emissions of the 3-D printer, including 4-oxopentanal. Ultrafine particles generated by the 3-D printer using ABS and a laser printer contained chromium. Consideration of the factors that influenced the release of chemical contaminants (including known and suspected asthmagens such as styrene and 4-oxopentanal) from a FDM 3-D printer should be made when designing exposure assessment and control strategies.


Sujet(s)
Pollution de l'air intérieur/analyse , Matière particulaire/analyse , Impression tridimensionnelle , Composés organiques volatils/analyse , Acrylonitrile/analyse , Aldéhydes/analyse , Butadiènes , Chrome/analyse , Surveillance de l'environnement/méthodes , Cétones/analyse , Polyesters , Styrène/analyse
2.
Atmos Environ (1994) ; 106: 382-391, 2015 Apr.
Article de Anglais | MEDLINE | ID: mdl-26855604

RÉSUMÉ

Indoor chemistry may be initiated by reactions of ozone (O3), the hydroxyl radical (OH), or the nitrate radical (NO3) with volatile organic compounds (VOC). The principal indoor source of O3 is air exchange, while OH and NO3 formation are considered as primarily from O3 reactions with alkenes and nitrogen dioxide (NO2), respectively. Herein, we used time-averaged models for residences to predict O3, OH, and NO3 concentrations and their impacts on conversion of typical residential VOC profiles, within a Monte Carlo framework that varied inputs probabilistically. We accounted for established oxidant sources, as well as explored the importance of two newly realized indoor sources: (i) the photolysis of nitrous acid (HONO) indoors to generate OH and (ii) the reaction of stabilized Criegee intermediates (SCI) with NO2 to generate NO3. We found total VOC conversion to be dominated by reactions both with O3, which almost solely reacted with d-limonene, and also with OH, which reacted with d-limonene, other terpenes, alcohols, aldehydes, and aromatics. VOC oxidation rates increased with air exchange, outdoor O3, NO2 and d-limonene sources, and indoor photolysis rates; and they decreased with O3 deposition and nitric oxide (NO) sources. Photolysis was a strong OH formation mechanism for high NO, NO2, and HONO settings, but SCI/NO2 reactions weakly generated NO3 except for only a few cases.

3.
Chemosphere ; 83(3): 327-33, 2011 Apr.
Article de Anglais | MEDLINE | ID: mdl-21237482

RÉSUMÉ

Indoor environments are dynamic reactors where consumer products (such as cleaning agents, deodorants, and air fresheners) emit volatile organic compounds (VOCs) that can subsequently interact with indoor oxidants such as ozone (O(3)), hydroxyl radicals, and nitrate radicals. Typically, consumer products consist of mixtures of VOCs and semi-VOCs which can react in the gas-phase or on surfaces with these oxidants to generate a variety of oxygenated products. In this study, the reaction of a pine-oil cleaner (POC) with O(3) (100ppb) on a urethane-coated vinyl flooring tile was investigated at 5% and 50% relative humidity. These results were compared to previous α-terpineol+O(3) reactions on glass and vinyl surfaces. Additionally, other terpene and terpene alcohol mixtures were formulated to understand the emission profiles as seen in the POC data. Results showed that the α-terpineol+O(3) reaction products were the prominent species that were also observed in the POC/O(3) surface experiments. Furthermore, α-terpineol+O(3) reactions generate the largest fraction of oxygenated products even in equal mixtures of other terpene alcohols. This finding suggests that the judicial choice of terpene alcohols for inclusion in product formulations may be useful in reducing oxidation product emissions.


Sujet(s)
Détergents/composition chimique , Ozone/composition chimique , Huiles végétales/composition chimique , Terpènes/composition chimique , Uréthane/composition chimique , Composés vinyliques/composition chimique , Pollution de l'air intérieur/analyse , Matériaux de construction , Cyclohexane monoterpenes , Cyclohexènes/analyse , Cyclohexènes/composition chimique , Monoterpènes/analyse , Monoterpènes/composition chimique , Pinus , Propriétés de surface , Terpènes/analyse , Composés organiques volatils/composition chimique
4.
J Environ Monit ; 12(2): 491-9, 2010 Feb.
Article de Anglais | MEDLINE | ID: mdl-20145892

RÉSUMÉ

Phthalates are used as plasticizers in many industrial and consumer products. Urinary biomonitoring has shown widespread human exposure to phthalates, with workers having especially high exposures. Phthalates can be present in workplace air as either aerosols or vapors depending on source materials, vapor pressure, and processing temperatures. We sought to develop a dual-phase air sampling method for 6 phthalates, dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), benzyl butyl phthalate (BzBP), di(2-ethylhexyl) phthalate (DEHP), and di-n-octyl phthalate (DnOP), adaptable to aerosol inlets with known particle collection characteristics. Collection media consisted of a quartz fiber filter and XAD-2 resin. Limit of detection (LOD) and limit of quantification (LOQ) were determined for each phthalate. Phthalate recoveries were evaluated at 3x, 10x and 30x the LOQ, and after storage at -21 degrees C and 21 degrees C. Media were Soxhlet extracted in 10% diethyl ether in hexanes along with an extraction surrogate, di-n-pentyl phthalate-d(4). Gas chromatography/mass spectrometry was performed to quantify the phthalate diesters using di(2-ethylhexyl) phthalate-d(4) as an internal standard. Estimated LODs were 1 microg per sample (BzBP, DEHP, and DnOP), 2 microg per sample (DMP and DBP), and 5 microg per sample (DEP). Mean recoveries under static conditions were 85-104% for DBP, BzBP, DEHP, and DnOP; but <70% for DMP and DEP at 3x and 10x the LOQ. After air was pulled through spiked samples, DMP and DEP recoveries improved to 74-81%. After storage for 62 days, phthalate recovery was better at -21 degrees C than at 21 degrees C. Method accuracy was best for DBP, BzBP, DEHP, and DnOP (range 11-18%), and less so for DMP (28%) and DEP (29%).


Sujet(s)
Polluants atmosphériques d'origine professionnelle/analyse , Médecine de l'environnement/instrumentation , Exposition professionnelle , Acides phtaliques/analyse , Chromatographie gazeuse-spectrométrie de masse , Humains , Limite de détection , Modèles linéaires
5.
Environ Sci Technol ; 43(10): 3561-8, 2009 May 15.
Article de Anglais | MEDLINE | ID: mdl-19544855

RÉSUMÉ

Chamber studies to quantify formation yields of oxygenated organic reaction products were performed for gas-phase reactions of the hydroxyl radical (OH*) and ozone (03) with the common cleaning product terpene compounds limonene, alpha-terpineol, and geraniol. The reaction products observed were identified and quantified using derivatization by O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA) and gas chromatography/mass spectrometry. Limonene rate constants and product mechanisms have been examined previously. Several of these investigations have measured productyields from limonene reactions and those results are compared with the results presented here. Although rate constants and product mechanisms have previously been investigated for alpha-terpineol and geraniol, yields of oxygenated organic reaction products have not been measured. Reactions from the fragrance compounds in this study produced several dicarbonyl reaction products such as glyoxal, methylglyoxal, and 4-oxopentanal which were observed from all three terpenes. Total carbonyl yields ranged from 5.1% for the limonene + O3 reaction to 92% for the geraniol + O3 reaction.


Sujet(s)
Carbone/composition chimique , Gaz/composition chimique , Hydrocarbures aromatiques/composition chimique , Radical hydroxyle/composition chimique , Ozone/composition chimique , Monoterpènes acycliques , Cyclohexane monoterpenes , Cyclohexènes/composition chimique , Limonène , Monoterpènes/composition chimique , Terpènes/composition chimique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...