Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 10 de 10
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
J Pers Med ; 12(6)2022 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-35743705

RÉSUMÉ

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder, with mutations in hundreds of genes contributing to its risk. Herein, we studied lymphoblastoid cell lines (LCLs) from children diagnosed with autistic disorder (n = 10) and controls (n = 7) using RNA and miRNA sequencing profiles. The sequencing analysis identified 1700 genes and 102 miRNAs differentially expressed between the ASD and control LCLs (p ≤ 0.05). The top upregulated genes were GABRA4, AUTS2, and IL27, and the top upregulated miRNAs were hsa-miR-6813-3p, hsa-miR-221-5p, and hsa-miR-21-5p. The RT-qPCR analysis confirmed the sequencing results for randomly selected candidates: AUTS2, FMR1, PTEN, hsa-miR-15a-5p, hsa-miR-92a-3p, and hsa-miR-125b-5p. The functional enrichment analysis showed pathways involved in ASD control proliferation of neuronal cells, cell death of immune cells, epilepsy or neurodevelopmental disorders, WNT and PTEN signaling, apoptosis, and cancer. The integration of mRNA and miRNA sequencing profiles by miRWalk2.0 identified correlated changes in miRNAs and their targets' expression. The integration analysis found significantly dysregulated miRNA-gene pairs in ASD. Overall, these findings suggest that mRNA and miRNA expression profiles in ASD are greatly altered in LCLs and reveal numerous miRNA-gene interactions that regulate critical pathways involved in the proliferation of neuronal cells, cell death of immune cells, and neuronal development.

2.
J Virol ; 95(13): e0008821, 2021 06 10.
Article de Anglais | MEDLINE | ID: mdl-33883224

RÉSUMÉ

Epstein-Barr virus (EBV) is a human gammaherpesvirus that is causally associated with various lymphomas and carcinomas. Although EBV is not typically associated with multiple myeloma (MM), it can be found in some B-cell lines derived from MM patients. Here, we analyzed two EBV-positive MM-patient-derived cell lines, IM9 and ARH77, and found defective viral genomes and atypical viral gene expression patterns. We performed transcriptome sequencing to characterize the viral and cellular properties of the two EBV-positive cell lines, compared to the canonical MM cell line 8226. Principal-component analyses indicated that IM9 and ARH77 clustered together and distinct from 8226. Immunological Genome Project analysis designated these cells as stem cell and bone marrow derived. IM9 and ARH77 displayed atypical viral gene expression, including leaky lytic cycle gene expression with an absence of lytic DNA amplification. Genome sequencing revealed that the EBV genomes in ARH77 contain large deletions, while IM9 has copy number losses in multiple EBV loci. Both IM9 and ARH77 showed EBV genome heterogeneity, suggesting cells harboring multiple and variant viral genomes. We identified atypical high-level expression of lytic genes BLRF1 and BLRF2. We demonstrated that short hairpin RNA (shRNA) depletion of BLRF2 altered viral and host gene expression, including a reduction in lytic gene activation and DNA amplification. These findings demonstrate that aberrant viral genomes and lytic gene expression persist in rare B cells derived from MM tumors, and they suggest that EBV may contribute to the etiology of MM. IMPORTANCE EBV is an oncogenic herpesvirus, but its mechanisms of oncogenesis are not fully understood. A role for EBV in MM has not yet been established. We analyzed EBV-positive B-cell lines derived from MM patients and found that the cells harbored defective viral genomes with aberrant viral gene expression patterns and cell gene signatures for bone marrow-derived lymphoid stem cells. These findings suggest that aberrant EBV latent infection may contribute to the etiology of MM.


Sujet(s)
Lymphocytes B/virologie , Virus défectifs/génétique , Régulation de l'expression des gènes viraux/génétique , Herpèsvirus humain de type 4/génétique , Herpèsvirus humain de type 4/isolement et purification , Myélome multiple/virologie , Animaux , Cellules cultivées , Variations de nombre de copies de segment d'ADN/génétique , Modèles animaux de maladie humaine , Délétion de gène , Génome viral/génétique , Humains , Souris , Souris SCID , Stress oxydatif/physiologie , Interférence par ARN , Petit ARN interférent/génétique , Transcriptome/génétique , Activation virale/génétique
3.
J Virol ; 91(20)2017 Oct 15.
Article de Anglais | MEDLINE | ID: mdl-28794029

RÉSUMÉ

Epstein-Barr virus (EBV) latency and its associated carcinogenesis are regulated by dynamic changes in DNA methylation of both virus and host genomes. We show here that the ten-eleven translocation 2 (TET2) gene, implicated in hydroxymethylation and active DNA demethylation, is a key regulator of EBV latency type DNA methylation patterning. EBV latency types are defined by DNA methylation patterns that restrict expression of viral latency genes. We show that TET2 mRNA and protein expression correlate with the highly demethylated EBV type III latency program permissive for expression of EBNA2, EBNA3s, and LMP transcripts. We show that short hairpin RNA (shRNA) depletion of TET2 results in a decrease in latency gene expression but can also trigger a switch to lytic gene expression. TET2 depletion results in the loss of hydroxymethylated cytosine and a corresponding increase in cytosine methylation at key regulatory regions on the viral and host genomes. This also corresponded to a loss of RBP-jκ binding and decreased histone H3K4 trimethylation at these sites. Furthermore, we show that the TET2 gene itself is regulated in a fashion similar to that of the EBV genome. Chromatin immunoprecipitation high-throughput sequencing (ChIP-seq) revealed that the TET2 gene contains EBNA2-dependent RBP-jκ and EBF1 binding sites and is subject to DNA methylation-associated transcriptional silencing similar to what is seen in EBV latency type III genomes. Finally, we provide evidence that TET2 colocalizes with EBNA2-EBF1-RBP-jκ binding sites and can interact with EBNA2 by coimmunoprecipitation. Taken together, these findings indicate that TET2 gene transcripts are regulated similarly to EBV type III latency genes and that TET2 protein is a cofactor of EBNA2 and coregulator of the EBV type III latency program and DNA methylation state.IMPORTANCE Epstein-Barr virus (EBV) latency and carcinogenesis involve the selective epigenetic modification of viral and cellular genes. Here, we show that TET2, a cellular tumor suppressor involved in active DNA demethylation, plays a central role in regulating the DNA methylation state during EBV latency. TET2 is coordinately regulated and functionally interacts with the viral oncogene EBNA2. TET2 and EBNA2 function cooperatively to demethylate genes important for EBV-driven B-cell growth transformation.

4.
PLoS One ; 8(2): e57603, 2013.
Article de Anglais | MEDLINE | ID: mdl-23451251

RÉSUMÉ

Exposure to ionizing radiation through environmental, occupational or a nuclear reactor accident such as the recent Fukushima Daiichi incident often results in major consequences to human health. The injury caused by radiation can manifest as acute radiation syndromes within weeks in organs with proliferating cells such as hematopoietic and gastrointestinal systems. Cancers, fibrosis and degenerative diseases are also reported in organs with differentiated cells, months or years later. Studies conducted on atom bomb survivors, nuclear reactor workers and animal models have shown a direct correlation of these effects with the absorbed dose. Physical dosimeters and the available radio-responsive biologics in body fluids, whose responses are rather indirect, have limitations to accurately evaluate the extent of post exposure damage. We have used an amplification-free, hybridization based quantitative assay utilizing the nCounter multiplex platform developed by nanoString Technologies to compare the levels of over 600 miRNAs in serum from mice irradiated at a range of 1 to 12 Gy at 24 and 48 hr time points. Development of a novel normalization strategy using multiple spike-in oligonucleotides allowed accurate measurement of radiation dose and time dependent changes in serum miRNAs. The response of several evolutionarily conserved miRNAs abundant in serum, were found to be robust and sensitive in the dose range relevant for medical triage and in patients who receive total body radiation as preparative regimen for bone marrow transplantation. Notably, miRNA-150, abundant in lymphocytes, exhibited a dose and time dependent decrease in serum, which we propose as a sensitive marker indicative of lymphocyte depletion and bone marrow damage. Our study has identified several markers useful for evaluation of an individual's response by minimally invasive methods, relevant to triage in case of a radiation accident and evaluation of toxicity and response during and after therapeutic radiation.


Sujet(s)
Dosage biologique/méthodes , microARN/sang , Radiométrie/méthodes , Sérum/métabolisme , Animaux , Marqueurs biologiques/sang , Exposition environnementale/effets indésirables , Exposition environnementale/analyse , Humains , Lymphocytes/métabolisme , Mâle , Souris , Souris de lignée C57BL , Souris de lignée CBA , Dose de rayonnement , Rayonnement ionisant , Émission de source de risque radioactif
5.
Genome Res ; 21(8): 1260-72, 2011 Aug.
Article de Anglais | MEDLINE | ID: mdl-21712398

RÉSUMÉ

Despite our growing knowledge that many mammalian genes generate multiple transcript variants that may encode functionally distinct protein isoforms, the transcriptomes of various tissues and their developmental stages are poorly defined. Identifying the transcriptome and its regulation in a cell/tissue is the key to deciphering the cell/tissue-specific functions of a gene. We built a genome-wide inventory of noncoding and protein-coding transcripts (transcriptomes), their promoters (promoteromes) and histone modification states (epigenomes) for developing, and adult cerebella using integrative massive-parallel sequencing and bioinformatics approach. The data consists of 61,525 (12,796 novel) distinct mRNAs transcribed by 29,589 (4792 novel) promoters corresponding to 15,669 protein-coding and 7624 noncoding genes. Importantly, our results show that the transcript variants from a gene are predominantly generated using alternative transcriptional rather than splicing mechanisms, highlighting alternative promoters and transcriptional terminations as major sources of transcriptome diversity. Moreover, H3K4me3, and not H3K27me3, defined the use of alternative promoters, and we identified a combinatorial role of H3K4me3 and H3K27me3 in regulating the expression of transcripts, including transcript variants of a gene during development. We observed a strong bias of both H3K4me3 and H3K27me3 for CpG-rich promoters and an exponential relationship between their enrichment and corresponding transcript expression. Furthermore, the majority of genes associated with neurological diseases expressed multiple transcripts through alternative promoters, and we demonstrated aberrant use of alternative promoters in medulloblastoma, cancer arising in the cerebellum. The transcriptomes of developing and adult cerebella presented in this study emphasize the importance of analyzing gene regulation and function at the isoform level.


Sujet(s)
Épissage alternatif , Cervelet/croissance et développement , Transcription génétique , Transcriptome , Animaux , Tumeurs du cervelet/génétique , Tumeurs du cervelet/métabolisme , Cervelet/métabolisme , Biologie informatique , Épigenèse génétique , Régulation de l'expression des gènes au cours du développement , Génome , Médulloblastome/génétique , Médulloblastome/métabolisme , Souris , Lignées consanguines de souris , Régions promotrices (génétique) , ARN messager/métabolisme
6.
Nucleic Acids Res ; 39(1): 190-201, 2011 Jan.
Article de Anglais | MEDLINE | ID: mdl-20843783

RÉSUMÉ

Alternative promoters that are differentially used in various cellular contexts and tissue types add to the transcriptional complexity in mammalian genome. Identification of alternative promoters and the annotation of their activity in different tissues is one of the major challenges in understanding the transcriptional regulation of the mammalian genes and their isoforms. To determine the use of alternative promoters in different tissues, we performed ChIP-seq experiments using antibody against RNA Pol-II, in five adult mouse tissues (brain, liver, lung, spleen and kidney). Our analysis identified 38 639 Pol-II promoters, including 12 270 novel promoters, for both protein coding and non-coding mouse genes. Of these, 6384 promoters are tissue specific which are CpG poor and we find that only 34% of the novel promoters are located in CpG-rich regions, suggesting that novel promoters are mostly tissue specific. By identifying the Pol-II bound promoter(s) of each annotated gene in a given tissue, we found that 37% of the protein coding genes use alternative promoters in the five mouse tissues. The promoter annotations and ChIP-seq data presented here will aid ongoing efforts of characterizing gene regulatory regions in mammalian genomes.


Sujet(s)
Régions promotrices (génétique) , RNA polymerase II/métabolisme , Animaux , Immunoprécipitation de la chromatine , Cartographie chromosomique , Génome , Souris , Analyse de séquence d'ADN/normes , Transcription génétique
7.
Nucleic Acids Res ; 39(Database issue): D92-7, 2011 Jan.
Article de Anglais | MEDLINE | ID: mdl-21097880

RÉSUMÉ

MPromDb (Mammalian Promoter Database) is a curated database that strives to annotate gene promoters identified from ChIP-seq results with the goal of providing an integrated resource for mammalian transcriptional regulation and epigenetics. We analyzed 507 million uniquely aligned RNAP-II ChIP-seq reads from 26 different data sets that include six human cell-types and 10 distinct mouse cell/tissues. The updated MPromDb version consists of computationally predicted (novel) and known active RNAP-II promoters (42,893 human and 48,366 mouse promoters) from various data sets freely available at NCBI GEO database. We found that 36% and 40% of protein-coding genes have alternative promoters in human and mouse genomes and ∼40% of promoters are tissue/cell specific. The identified RNAP-II promoters were annotated using various known and novel gene models. Additionally, for novel promoters we looked into other evidences-GenBank mRNAs, spliced ESTs, CAGE promoter tags and mRNA-seq reads. Users can search the database based on gene id/symbol, or by specific tissue/cell type and filter results based on any combination of tissue/cell specificity, Known/Novel, CpG/NonCpG, and protein-coding/non-coding gene promoters. We have also integrated GBrowse genome browser with MPromDb for visualization of ChIP-seq profiles and to display the annotations. The current release of MPromDb can be accessed at http://bioinformatics.wistar.upenn.edu/MPromDb/.


Sujet(s)
Immunoprécipitation de la chromatine , Bases de données d'acides nucléiques , Régions promotrices (génétique) , Animaux , Infographie , Humains , Souris , RNA polymerase II/métabolisme , Analyse de séquence d'ADN , Intégration de systèmes
8.
Nucleic Acids Res ; 38(22): 8164-77, 2010 Dec.
Article de Anglais | MEDLINE | ID: mdl-21030438

RÉSUMÉ

We have comprehensively mapped long-range associations between chromosomal regions throughout the fission yeast genome using the latest genomics approach that combines next generation sequencing and chromosome conformation capture (3C). Our relatively simple approach, referred to as enrichment of ligation products (ELP), involves digestion of the 3C sample with a 4 bp cutter and self-ligation, achieving a resolution of 20 kb. It recaptures previously characterized genome organizations and also identifies new and important interactions. We have modeled the 3D structure of the entire fission yeast genome and have explored the functional relationships between the global genome organization and transcriptional regulation. We find significant associations among highly transcribed genes. Moreover, we demonstrate that genes co-regulated during the cell cycle tend to associate with one another when activated. Remarkably, functionally defined genes derived from particular gene ontology groups tend to associate in a statistically significant manner. Those significantly associating genes frequently contain the same DNA motifs at their promoter regions, suggesting that potential transcription factors binding to these motifs are involved in defining the associations among those genes. Our study suggests the presence of a global genome organization in fission yeast that is functionally similar to the recently proposed mammalian transcription factory.


Sujet(s)
Régulation de l'expression des gènes fongiques , Génome fongique , Schizosaccharomyces/génétique , Transcription génétique , Cycle cellulaire/génétique , ADN fongique/composition chimique , Locus génétiques , Génomique/méthodes , Hybridation fluorescente in situ , Modèles moléculaires , Cartographie physique de chromosome , Rétroéléments , Schizosaccharomyces/métabolisme , Séquences répétées terminales
9.
Cancer Res ; 70(7): 2789-98, 2010 Apr 01.
Article de Anglais | MEDLINE | ID: mdl-20332227

RÉSUMÉ

Single-nucleotide polymorphisms (SNP) associated with polygenetic disorders, such as breast cancer (BC), can create, destroy, or modify microRNA (miRNA) binding sites; however, the extent to which SNPs interfere with miRNA gene regulation and affect cancer susceptibility remains largely unknown. We hypothesize that disruption of miRNA target binding by SNPs is a widespread mechanism relevant to cancer susceptibility. To test this, we analyzed SNPs known to be associated with BC risk, in silico and in vitro, for their ability to modify miRNA binding sites and miRNA gene regulation and referred to these as target SNPs. We identified rs1982073-TGFB1 and rs1799782-XRCC1 as target SNPs, whose alleles could modulate gene expression by differential interaction with miR-187 and miR-138, respectively. Genome-wide bioinformatics analysis predicted approximately 64% of transcribed SNPs as target SNPs that can modify (increase/decrease) the binding energy of putative miRNA::mRNA duplexes by >90%. To assess whether target SNPs are implicated in BC susceptibility, we conducted a case-control population study and observed that germline occurrence of rs799917-BRCA1 and rs334348-TGFR1 significantly varies among populations with different risks of developing BC. Luciferase activity of target SNPs, allelic variants, and protein levels in cancer cell lines with different genotypes showed differential regulation of target genes following overexpression of the two interacting miRNAs (miR-638 and miR-628-5p). Therefore, we propose that transcribed target SNPs alter miRNA gene regulation and, consequently, protein expression, contributing to the likelihood of cancer susceptibility, by a novel mechanism of subtle gene regulation.


Sujet(s)
Tumeurs du sein/génétique , microARN/génétique , Polymorphisme de nucléotide simple , Régions 3' non traduites , Régions 5' non traduites , Allèles , Sites de fixation , Tumeurs du sein/métabolisme , Études cas-témoins , Lignée cellulaire tumorale , Femelle , Régulation de l'expression des gènes tumoraux , Prédisposition génétique à une maladie , Génome humain , Humains , microARN/métabolisme , ARN messager/génétique , ARN messager/métabolisme
10.
Dev Biol ; 328(2): 518-28, 2009 Apr 15.
Article de Anglais | MEDLINE | ID: mdl-19210964

RÉSUMÉ

Insulators or chromatin boundary elements are defined by their ability to block transcriptional activation by an enhancer and to prevent the spread of active or silenced chromatin. Recent studies have increasingly suggested that insulator proteins play a role in large-scale genome organization. To better understand insulator function on the global scale, we conducted a genome-wide analysis of the binding sites for the insulator protein CTCF in Drosophila by Chromatin Immunoprecipitation (ChIP) followed by a tiling-array analysis. The analysis revealed CTCF binding to many known domain boundaries within the Abd-B gene of the BX-C including previously characterized Fab-8 and MCP insulators, and the Fab-6 region. Based on this finding, we characterized the Fab-6 insulator element. In genome-wide analysis, we found that dCTCF-binding sites are often situated between closely positioned gene promoters, consistent with the role of CTCF as an insulator protein. Importantly, CTCF tends to bind gene promoters just upstream of transcription start sites, in contrast to the predicted binding sites of the insulator protein Su(Hw). These findings suggest that CTCF plays more active roles in regulating gene activity and it functions differently from other insulator proteins in organizing the Drosophila genome.


Sujet(s)
Protéines de liaison à l'ADN/génétique , Protéines de Drosophila/génétique , Drosophila/génétique , Génome d'insecte , Protéines de répression/génétique , Animaux , Facteur de liaison à la séquence CCCTC , Immunoprécipitation de la chromatine , Protéines de liaison à l'ADN/physiologie , Drosophila/embryologie , Drosophila/physiologie , Protéines de Drosophila/physiologie , Étude d'association pangénomique , Régions promotrices (génétique) , Protéines de répression/physiologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...