Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 9 de 9
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Biochim Biophys Acta Gen Subj ; : 130468, 2023 Sep 30.
Article de Anglais | MEDLINE | ID: mdl-37783292

RÉSUMÉ

The Publisher regrets that this article is an accidental duplication of an article that has already been published, https://doi.org/10.1016/j.bbadva.2023.100106. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.

2.
BBA Adv ; 4: 100106, 2023.
Article de Anglais | MEDLINE | ID: mdl-37842183

RÉSUMÉ

Antimicrobial peptide buforin II translocates across the cell membrane and binds to DNA. Its sequence is identical to a portion of core histone protein H2A making it a highly charged peptide. Buforin II has a proline residue in the middle of its sequence that creates a helix-hinge-helix motif which has been found to play a key role in its ability to translocate across the cell membrane. To explore the structure-function relationship of this proline residue this study has replaced P11 with a meta-substituted azobenzene amino acid (Z). The resultant peptide, photobuforin II, retained the secondary structure and membrane activity of the naturally occurring peptide while gaining new spectroscopic properties. Photobuforin II can be isomerized from its trans to cis isomer upon irradiation with ultra-violet (UV) light and from its cis to trans isomer upon irradiation with visible (VL). Photobuforin II is also fluorescent with an emission peak at 390 nm. The intrinsic fluorescence of the peptide was used to determine binding to the membrane and to DNA. VL-treated photobuforin II has a 2-fold lower binding constant compared to UV-treated photobuforin and causes 11-fold more membrane leakage in 3:1 POPC:POPG vesicles. Photobuforin II provides insights into the importance of structure function relationships in membrane active peptides while also demonstrating that azobenzene can be used in certain peptide sequences to produce intrinsic fluorescence.

3.
Pharmaceutics ; 14(8)2022 Aug 12.
Article de Anglais | MEDLINE | ID: mdl-36015305

RÉSUMÉ

The rise of antibiotic resistant bacteria due to overuse and misuse of antibiotics in medicine and dentistry is a growing concern. New approaches are needed to combat antibiotic resistant (AR) bacterial infections. There are a number of methods available and in development to address AR infections. Dentists conventionally use chemicals such as chlorohexidine and calcium hydroxide to kill oral bacteria, with many groups recently developing more biocompatible antimicrobial peptides (AMPs) for use in the oral cavity. AMPs are promising candidates in the treatment of (oral) infections. Also known as host defense peptides, AMPs have been isolated from animals across all kingdoms of life and play an integral role in the innate immunity of both prokaryotic and eukaryotic organisms by responding to pathogens. Despite progress over the last four decades, there are only a few AMPs approved for clinical use. This review summarizes an Introduction to Oral Microbiome and Oral Infections, Traditional Antibiotics and Alternatives & Antimicrobial Peptides. There is a focus on cationic AMP characteristics and mechanisms of actions, and an overview of animal-derived natural and synthetic AMPs, as well as observed microbial resistance.

4.
Microbiol Spectr ; 10(2): e0043922, 2022 04 27.
Article de Anglais | MEDLINE | ID: mdl-35377230

RÉSUMÉ

Cryptococcus neoformans is a major fungal pathogen that often causes life-threatening meningitis in immunocompromised populations. This yeast pathogen is highly resistant to the echinocandin drug caspofungin. Previous studies showed that Cryptococcus lipid translocase (flippase) is required for the caspofungin resistance of that fungus. Mutants with a deleted subunit of lipid flippase, Cdc50, showed increased sensitivity to caspofungin. Here we designed an antifungal peptide targeting the P4-ATPase function. We synthesized stable peptides based on the Cdc50 loop region to identify peptides that can sensitize caspofungin by blocking flippase function and found that myristylated peptides based on the "AS15 sequence" was effective at high concentrations. A modified peptide, "AW9-Ma" showed a MIC of 64 µg/mL against H99 wild type and a fractional inhibitory concentration (FIC) index value of 0.5 when used in combination with caspofungin. Most notably, in the presence of the AW9-Ma peptide, C. neoformans wild type was highly sensitive to caspofungin with a MIC of 4 µg/mL, the same as the cdc50Δ mutant. Further assays with flow cytometry showed inhibition of the lipid flippase enzyme activity and significant accumulation of phosphatidylserine on the cell membrane surface. Using a fluorescently labeled peptide, we confirmed that the peptide co-localized with mCherry-tagged P4-ATPase protein Apt1 in C. neoformans. Structure-activity relationship studies of the AW9 sequence showed that two lysine residues on the peptide are likely responsible for the interaction with the P4-ATPase, hence critical for its antifungal activity. IMPORTANCE The authors have developed a lead compound peptide antifungal drug targeting a protein from the organism Cryptococcus neoformans. Binding of the drug to the target fungal protein causes charged lipid molecules to be retained on the surface. This peptide works in synergy with the existing antifungal drug caspofungin. Echinocandin drugs like caspofungin are one of the few classes of existing antifungals. Due to the high concentrations needed, caspofungin is rarely used to treat C. neoformans infections. The authors believe that their new compound provides a way to lower the concentration of caspofungin needed to treat such infections, thus opening the possibility for greater utility of these antifungal.


Sujet(s)
Cryptococcose , Cryptococcus neoformans , Adenosine triphosphatases/métabolisme , Antifongiques/pharmacologie , Caspofungine/métabolisme , Caspofungine/pharmacologie , Cryptococcose/traitement médicamenteux , Cryptococcus neoformans/génétique , Cryptococcus neoformans/métabolisme , Échinocandines/métabolisme , Échinocandines/pharmacologie , Plomb/métabolisme , Plomb/pharmacologie , Tests de sensibilité microbienne , Peptides/métabolisme , Peptides/pharmacologie
5.
Biochem Pharmacol ; 193: 114769, 2021 11.
Article de Anglais | MEDLINE | ID: mdl-34543656

RÉSUMÉ

Melittin, the main venom component of the European Honeybee, is a cationic linear peptide-amide of 26 amino acid residues with the sequence: GIGAVLKVLTTGLPALISWIKRKRQQ-NH2. Melittin binds to lipid bilayer membranes, folds into amphipathic α-helical secondary structure and disrupts the permeability barrier. Since melittin was first described, a remarkable array of activities and potential applications in biology and medicine have been described. Melittin is also a favorite model system for biophysicists to study the structure, folding and function of peptides and proteins in membranes. Melittin has also been used as a template for the evolution of new activities in membranes. Here we overview the rich history of scientific research into the many activities of melittin and outline exciting future applications.


Sujet(s)
Abeilles/génétique , Abeilles/physiologie , Mélittine/génétique , Mélittine/métabolisme , Animaux , Régulation de l'expression des gènes/physiologie , Mélittine/composition chimique , Phylogenèse , Conformation des protéines
6.
Biochim Biophys Acta Biomembr ; 1863(12): 183759, 2021 12 01.
Article de Anglais | MEDLINE | ID: mdl-34506797

RÉSUMÉ

In this article we present the synthesis and characterization of a new form of the membrane active peptide melittin: photomelittin. This peptide was created by substituting the proline residue in melittin for a synthetic azobenzene amino acid derivative. This azobenzene altered the membrane activity of the peptide while retaining much of the secondary structure. Furthermore, the peptide demonstrates added light-dependent activity in leakage assays. There is a 1.5-fold increase in activity when exposed to UV light as opposed to visible light. The peptides further exhibit light-dependent hemolytic activity against human red blood cells. This will enable future studies optimizing photomelittin and other azobenzene-containing membrane active peptides for uses in medicine, drug delivery, and other biotechnological applications.


Sujet(s)
Mélittine/composition chimique , Membranes/composition chimique , Peptides/génétique , Séquence d'acides aminés/génétique , Composés azoïques/composition chimique , Humains , Lumière , Mélittine/génétique , Mélittine/pharmacologie , Membranes/effets des radiations , Peptides/composition chimique , Peptides/effets des radiations , Proline/composition chimique
7.
Antibiotics (Basel) ; 9(9)2020 Sep 19.
Article de Anglais | MEDLINE | ID: mdl-32961656

RÉSUMÉ

Membrane-active peptides (MAPs) have long been thought of as the key to defeating antimicrobial-resistant microorganisms. Such peptides, however, may not be sufficient alone. In this review, we seek to highlight some of the common pathways for resistance, as well as some avenues for potential synergy. This discussion takes place considering resistance, and/or synergy in the extracellular space, at the membrane, and during interaction, and/or removal. Overall, this review shows that researchers require improved definitions of resistance and a more thorough understanding of MAP-resistance mechanisms. The solution to combating resistance may ultimately come from an understanding of how to harness the power of synergistic drug combinations.

8.
mSphere ; 3(6)2018 12 19.
Article de Anglais | MEDLINE | ID: mdl-30567902

RÉSUMÉ

Clinicians need a better way to accurately monitor the concentration of antimicrobials in patient samples. In this report, we describe a novel, low-sample-volume method to monitor the azole-class antifungal drug posaconazole, as well as certain other long-chain azole-class antifungal drugs in human serum samples. Posaconazole represents an important target for therapeutic drug monitoring (TDM) due to its widespread use in treating invasive fungal infections and well-recognized variability of pharmacokinetics. The current "gold standard" requires trough and peak monitoring through high-pressure liquid chromatography (HPLC) or liquid chromatography-tandem mass spectroscopy (LC-MS/MS). Other methods include bioassays that use highly susceptible strains of fungi in culture plates or 96-well formats to monitor concentrations. Currently, no method exists that is both highly accurate in detecting free drug concentrations and is also rapid. Herein, we describe a new method using reduced graphene oxide (rGO) and a fluorescently labeled aptamer, which can accurately assess clinically relevant concentrations of posaconazole and other long-chain azole-class drugs in little more than 1 h in a total volume of 100 µl.IMPORTANCE This work describes an effective assay for TDM of long-chain azole-class antifungal drugs that can be used in diluted human serum samples. This assay will provide a quick, cost-effective method for monitoring concentrations of drugs such as posaconazole that exhibit well-documented pharmacokinetic variability. Our rGO-aptamer assay has the potential to improve health care for those struggling to treat fungal infections in rural or resource-limited setting.


Sujet(s)
Antifongiques/administration et posologie , Azoles/administration et posologie , Surveillance des médicaments/méthodes , Infections fongiques invasives/traitement médicamenteux , Sérum/composition chimique , Antifongiques/sang , Antifongiques/pharmacocinétique , Aptamères nucléotidiques/métabolisme , Azoles/sang , Azoles/pharmacocinétique , Fluorimétrie , Graphite/métabolisme , Humains , Facteurs temps
9.
mSphere ; 2(4)2017.
Article de Anglais | MEDLINE | ID: mdl-28861519

RÉSUMÉ

This technical report describes the development of an aptamer for sensing azole antifungal drugs during therapeutic drug monitoring. Modified synthetic evolution of ligands through exponential enrichment (SELEX) was used to discover a DNA aptamer recognizing azole class antifungal drugs. This aptamer undergoes a secondary structural change upon binding to its target molecule, as shown through fluorescence anisotropy-based binding measurements. Experiments using circular dichroism spectroscopy revealed a unique G-quadruplex structure that was essential and specific for binding to the azole antifungal target. Aptamer-functionalized graphene field effect transistor (GFET) devices were created and used to measure the strength of binding of azole antifungals to this surface. In total, this aptamer and the supporting sensing platform provide a valuable tool for therapeutic drug monitoring of patients with invasive fungal infections. IMPORTANCE We have developed the first aptamer directed toward the azole class of antifungal drugs and a functional biosensor for these drugs. This aptamer has a unique secondary structure that allows it to bind to highly hydrophobic drugs. The aptamer works as a capture component of a graphene field effect transistor device. These devices can provide a quick and easy assay for determining drug concentrations. These will be useful for therapeutic drug monitoring of azole antifungal drugs, which is necessary to deal with the complex drug dosage profiles.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE