Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 29
Filtrer
1.
PLoS One ; 19(7): e0290142, 2024.
Article de Anglais | MEDLINE | ID: mdl-38959207

RÉSUMÉ

AIM: This preliminary study investigated the differences in event-related potential and reaction time under two groups (athletes vs. non-athletes). MATERIAL AND METHODS: The P300 was analyzed for Fz, Cz, and Pz electrodes in thirty-one healthy volunteers divided into two groups (volleyball athletes and non-athletes). In addition, the participants performed a saccadic eye movement task to measure reaction time. RESULTS: The EEG analysis showed that the athletes, in comparison to the no-athletes, have differences in the P300 in the frontal area (p = 0.021). In relation to reaction time, the results show lower reaction time for athletes (p = 0.001). CONCLUSIONS: The volleyball athletes may present a greater allocation of attention during the execution of the inhibition task, since they have a lower reaction time for responses when compared to non-athletes.


Sujet(s)
Athlètes , Électroencéphalographie , Temps de réaction , Saccades , Volleyball , Humains , Temps de réaction/physiologie , Saccades/physiologie , Volleyball/physiologie , Mâle , Femelle , Jeune adulte , Adulte , Potentiels évoqués/physiologie , Potentiels évoqués cognitifs P300/physiologie , Attention/physiologie
2.
BMC Pediatr ; 24(1): 174, 2024 Mar 09.
Article de Anglais | MEDLINE | ID: mdl-38461348

RÉSUMÉ

BACKGROUND: Previous research has suggested that school-based physical activity (PA) interventions may have a positive impact on academic performance. However, existing literature on school-based interventions encompasses various forms of PA, spanning from vigorous intensity PA outside the academic classes to light intensity PA and movement integrated into academic learning tasks, and results on academic performance are inconclusive. ACTIVE SCHOOL will implement two different PA interventions for one school year and assess the effects on the pupils' academic performance, with math performance as the primary outcome. METHODS/DESIGN: The ACTIVE SCHOOL project consists of two phases: 1) Development phase and 2) Randomized Controlled Trial (RCT). In phase one, two interventions were developed in collaboration with school staff. The two interventions were tested in an 8-weeks feasibility study. In phase two, a RCT-study with three arms will be conducted in 9-10-year-old children for one school year. The RCT-study will be carried out in two intervention rounds during the school years 2023/2024 and 2024/2025. Schools will be randomized to one of two interventions or control;1) Run, Jump & Fun intervention (4 × 30 min/week of moderate-to-vigorous physical activity; 2) Move & Learn intervention (4 × 30 min/week focusing on embodied learning in math and Danish lessons); or 3) a control condition, consisting of normal teaching practices. Outcome measures include academic performance, PA level, cognitive functions, cardiorespiratory fitness, anthropometry, well-being and school motivation (collected before, during and after the intervention period). A process evaluation will be conducted to assess implementation. DISCUSSION: The ACTIVE SCHOOL study will expand knowledge regarding the impact of PA on academic performance. The study will have the potential to significantly contribute to future research, as well as the scientific and educational debate on the best way to implement PA to support education and learning. TRIAL REGISTRATION: The study was registered on the 25th of October 2022 in ClinicalTrials.gov, NCT05602948.


Sujet(s)
Performance scolaire , Exercice physique , Enfant , Humains , Exercice physique/psychologie , Établissements scolaires , Apprentissage , Cognition , Promotion de la santé/méthodes , Services de santé scolaire , Essais contrôlés randomisés comme sujet
3.
Res Dev Disabil ; 138: 104535, 2023 Jul.
Article de Anglais | MEDLINE | ID: mdl-37210919

RÉSUMÉ

BACKGROUND: Individuals with Down syndrome (DS) have impaired general motor skills compared to typically developed (TD) individuals. AIMS: To gain knowledge on how young adults with DS learn and retain new motor skills. METHODS AND PROCEDURES: A DS-group (mean age = 23.9 ± 3 years, N = 11), and an age-matched TD-group (mean age 22.8 ± 1.8, N = 14) were recruited. The participants practiced a visuomotor accuracy tracking task (VATT) in seven blocks (10.6 min). Online and offline effects of practice were assessed based on tests of motor performance at baseline immediate and 7-day retention. OUTCOMES AND RESULTS: The TD-group performed better than the DS-group on all blocks (all P < 0.001). Both groups improved VATT-performance online from baseline to immediate retention, (all P < 0.001) with no difference in online effect between groups. A significant between-group difference was observed in the offline effect (∆TD - ∆DS, P = 0.04), as the DS-group's performance at 7-day retention was equal to their performance at immediate retention (∆DS, P > 0.05), whereas an offline decrease in performance was found in the TD-group (∆TD, P < 0.001). CONCLUSIONS AND IMPLICATIONS: Visuomotor pinch force accuracy is lower for adults with DS compared to TD. However, adults with DS display significant online improvements in performance with motor practice similar to changes observed for TD. Additionally, adults with DS demonstrate offline consolidation following motor learning leading to significant retention effects.


Sujet(s)
Syndrome de Down , Humains , Jeune adulte , Adulte , Apprentissage , Aptitudes motrices , Analyse et exécution des tâches
4.
Educ Psychol Rev ; 34(3): 1709-1737, 2022.
Article de Anglais | MEDLINE | ID: mdl-35437341

RÉSUMÉ

The aim of this study was to investigate the effects of embodied learning on children's pre-reading and word reading skills. We conducted a three-armed randomized controlled trial including two intervention groups and one control group. One hundred forty-nine children from grade 0 (5-6 years old) who had just started school were recruited from 10 different classes from four elementary schools. Within each class, children were randomly assigned to receive teaching of letter-sound couplings and word decoding either with whole-body movements (WM), hand movements (HM), or no movements (CON) over an 8-week period. Children were evaluated on pre-reading, word reading, and motor skills before (T1), immediately after (T2), and after 17-22 weeks of retention period (T3) following the intervention. Between-group analysis showed a significant improvement in children's ability to name letter-sounds correctly from T1 to T2 (p < 0.001) and from T1 to T3 (p < 0.05) for WM compared to CON. HM and WM improved significantly in naming conditional letter-sounds from T1 to T2 (p < 0.01, p < 0.01) compared to CON and from T1 to T3 for the HM group compared to CON (p < 0.05). We did not find an effect on word reading or a correlation between motor skill performance and reading. Results from the present study suggest that there are beneficial effects of using whole-body movements for children. Hand motor movements indeed also had a performance effect on letter-sound knowledge; however, the whole-body movements had longer-lasting effects. We do not see an effect on whole word reading.

5.
Transl Sports Med ; 2022: 6817318, 2022.
Article de Anglais | MEDLINE | ID: mdl-38655171

RÉSUMÉ

Background: The life expectancy of individuals with intellectual disabilities (ID) is reduced compared to the general population, and one of the main contributors to earlier death is inactivity. Aim: To investigate how 14 weeks of physical activity (PA) in a real-life setting affects cardiovascular fitness, body composition and bone health of adults with ID. Methods: Adults with ID were recruited into a PA-group (N = 52) or a control group (CON, N = 14). The PA-group participated in 14 weeks of PA, and body composition, cardiovascular fitness and bone health were assessed before and after the intervention. Outcomes and Results. Cardiovascular fitness and body composition improved from pre to post within the PA-group: Heart rates (HR) during the last 30 seconds of two increments of a treadmill test, were reduced (3.2 km/h: -4.4 bpm, p < 0.05; 4.8 km/h: -7.5 bpm, p < 0.001) and fat mass was reduced (-1.02 kg, p < 0.05). A between-group difference in favour of the PA-group, were observed in whole body bone mineral density (BMD) (0.024 g/cm2, p < 0.05). Conclusions and Implications. Fourteen weeks of PA performed in a real-life setting increased cardiovascular fitness, reduced fat mass and improved BMD in the weight-bearing skeleton in the PA-group. Increased and regular PA seems to be a promising tool to promote physical health in adults with ID.

6.
Physiol Rep ; 9(20): e15076, 2021 10.
Article de Anglais | MEDLINE | ID: mdl-34694064

RÉSUMÉ

Running economy (RE) at a given submaximal running velocity is defined as oxygen consumption per minute per kg body mass. We investigated RE in a group of 12 male elite runners of national class. In addition to RE at 14 and 18 km h-1 we measured the maximal oxygen consumption (VO2max ) and anthropometric measures including the moment arm of the Achilles tendon (LAch ), shank and foot volumes, and muscular fascicle lengths. A 3-D biomechanical movement analysis of treadmill running was also conducted. RE was on average 47.8 and 62.3 ml O2  min-1  kg-1 at 14 and 18 km h-1 . Maximal difference between the individual athletes was 21% at 18 km h-1 . Mechanical work rate was significantly correlated with VO2 measured in L min-1 at both running velocities. However, RE and relative work rate were not significantly correlated. LAch was significantly correlated with RE at 18 km h-1 implying that a short moment arm is advantageous regarding RE. Neither foot volume nor shank volume were significantly correlated to RE. Relative muscle fascicle length of m. soleus was significantly correlated with RE at 18 km h-1 . Whole body stiffness and leg stiffness were significantly correlated with LAch indicating that a short moment arm coincided with high stiffness. It is concluded that a short LAch is correlated with RE. Probably, a short LAch allows for storage of a larger amount of elastic energy in the tendon and influences the force-velocity relation toward a lower contraction velocity.


Sujet(s)
Tendon calcanéen/physiologie , Métabolisme énergétique , Jambe/vascularisation , Muscles squelettiques/physiologie , Consommation d'oxygène , Course à pied , Analyse et exécution des tâches , Adulte , Phénomènes biomécaniques , Épreuve d'effort , Humains , Mâle , Jeune adulte
7.
Front Psychol ; 12: 636578, 2021.
Article de Anglais | MEDLINE | ID: mdl-33841270

RÉSUMÉ

This study investigated whether 6 weeks of basketball combined with mathematics once a week in physical education lessons could improve children's motivation for mathematics. Seven hundred fifty-seven children (mean age = 10.4 years, age range: 7-12 years) were randomly selected to have either basketball combined with mathematics once a week (BM) or to have basketball sessions without mathematics (CON). Children in BM and CON motivation for classroom-based mathematics were measured using the Academic Self-Regulation Questionnaire (SRQ-A) before (T0) and after the intervention (T1). Among the BM, levels of intrinsic motivation, feelings of competence, and autonomy were measured using the Post-Experimental Intrinsic Motivation Inventory (IMI) questionnaire acutely after a basketball session combined with mathematics and immediately after a session of classroom-based mathematics. BM had significantly higher acute levels of perceived autonomy (+14.24%, p < 0.0001), competencies (+6.33%, p < 0.0001), and intrinsic motivation (+16.09%, p < 0.0001) during basketball sessions combined with mathematics compared to when having classroom-based mathematics. A significant decrease in the mean for intrinsic motivation was observed from T0 to T1 for CON (-9.38%, p < 0.001), but not for BM (-0.39%, p = 0.98). BM had a more positive development in intrinsic motivation compared to CON from T0 to T1 (p = 0.006), meaning that BM had a positive influence on children's intrinsic motivation for classroom-based mathematics. This study indicates that basketball combined with mathematics is an intrinsically motivating way to practice mathematics, which also has a positive influence on children's general intrinsic motivation for mathematics in the classroom.

8.
BMC Pediatr ; 21(1): 2, 2021 01 04.
Article de Anglais | MEDLINE | ID: mdl-33397297

RÉSUMÉ

BACKGROUND: Results from previous studies suggest that bodily movements, spanning from gestures to whole-body movements, integrated into academic lessons may benefit academic learning. However, only few studies have investigated the effects of movement integrated into reading practice. The PLAYMORE study aims to investigate the effects of two interventions focusing on a close and meaningful coupling between bodily movement and academic content on early pre-reading and word recognition skills in children. Further, the study aims to compare two interventions involving either hand movements (i.e. using arms and hands) or whole-body movements (i.e. using the whole body). Potential mediating factors underlying the link between bodily movement on early pre-reading and word recognition skills will be explored. METHODS/DESIGN: The PLAYMORE study will be conducted as a three-armed randomized controlled trial including children aged five to six years recruited from four schools in the Copenhagen area, Denmark. Stratified by class, children will be randomly allocated to one of three 8-week intervention/control periods: 1) teaching involving whole-body movements, 2) teaching involving hand movements (i.e. arms and hands) or 3) teaching involving minimal motor movements (i.e. seated on a chair using paper and pencil). Outcome measurements, including pre-reading and word recognition skills, will be collected before and after the intervention period to assess the intervention effects. This study protocol follows the SPIRIT guidelines. DISCUSSION: The PLAYMORE study will add to the current knowledge concerning the link between bodily movement and academic performance with important details about pre-reading and word recognition skills in preschool children. If effective, evaluation of the implementation of the PLAYMORE program should be conducted in order to investigate whether the effects can be transferred into standard school settings. The PLAYMORE study will lay the foundation for future research that have the potential to inform the political and scientific debate and importantly, to provide teachers with detailed information of how to implement movements effectively during teaching in order to support and motivate children in the process of learning to read. TRIAL REGISTRATION: The study was retrospectively registered in ClinicalTrials.gov ( NCT04618822 ) the 5th of November 2020.


Sujet(s)
Lecture , Établissements scolaires , Enfant , Enfant d'âge préscolaire , Humains , Apprentissage , Essais contrôlés randomisés comme sujet
9.
J Neurophysiol ; 124(3): 985-993, 2020 09 01.
Article de Anglais | MEDLINE | ID: mdl-32783594

RÉSUMÉ

Plastic adaptations are known to take place in muscles, tendons, joints, and the nervous system in response to changes in muscle activity. However, few studies have addressed how these plastic adaptations are related. Thus this study focuses on changes in the mechanical properties of the ankle plantarflexor muscle-tendon unit, stretch reflex activity, and spinal neuronal pathways in relation to cast immobilization. The left rat hindlimb from toes to hip was immobilized with a plaster cast for 1, 2, 4, or 8 wk followed by acute electrophysiological recordings to investigate muscle stiffness and stretch reflex torque. Moreover, additional acute experiments were performed after 4 wk of immobilization to investigate changes in the central gain of the stretch reflex. Monosynaptic reflexes (MSR) were recorded from the L4 and L5 ventral roots following stimulation of the corresponding dorsal roots. Rats developed reduced range of movement in the ankle joint 2 wk after immobilization. This was accompanied by significant increases in the stiffness of the muscle-tendon complex as well as an arthrosis at the ankle joint at 4 and 8 wk following immobilization. Stretch reflexes were significantly reduced at 4-8 wk following immobilization. This was associated with increased central gain of the stretch reflex. These data show that numerous interrelated plastic changes occur in muscles, connective tissue, and the central nervous system in response to changes in muscle use. The findings provide an understanding of coordinated adaptations in multiple tissues and have important implications for prevention and treatment of the negative consequences of immobilization following injuries of the nervous and musculoskeletal systems.NEW & NOTEWORTHY Immobilization leads to multiple simultaneous adaptive changes in muscle, connective tissue, and central nervous system.


Sujet(s)
Adaptation physiologique/physiologie , Articulation talocrurale/physiologie , Immobilisation , Muscles squelettiques/physiologie , Amplitude articulaire/physiologie , Réflexe monosynaptique/physiologie , Réflexe d'étirement/physiologie , Racines des nerfs spinaux/physiologie , Animaux , Atrophie , Mâle , Rats , Rat Sprague-Dawley
10.
Front Psychol ; 11: 1207, 2020.
Article de Anglais | MEDLINE | ID: mdl-32676043

RÉSUMÉ

It is not known how effective specific types of motor-enriched activities are at improving academic learning and early reading skills in children. The aim of this study was to investigate whether fine or gross motor enrichment during a single session of recognizing letters "b"/"d" can improve within-session performance or delayed retention the following day in comparison to letter recognition practice without movement. Furthermore, the aim was to investigate children's motivation to perform the specific tasks. We used a randomized controlled intervention study-design to investigate the effect of 10-min motor-enriched "b"/"d" letter training on children's ability to recognize the letters "b" and "d" (n = 127, mean age = 7.61 ± SD = 0.44 years) acutely, and in a delayed retention test. Three groups were included: a fine motor-enriched group (FME), a gross motor-enriched group (GME), that received 10 min of "b" and "d" training with enriched gestures (fine or gross motor movements, respectively), and a control group (CON), which received non motor-enriched "b"/"d" training. The children's ability to recognize "b" and "d" were tested before (T0), immediately after (T1), and one day after the intervention (T2) using a "b"/"d" Recognition Test. Based on a generalized linear mixed model a significant group-time interaction was found for accuracy in the "b"/"d" Recognition Test. Specifically, FME improved their ability to recognize "b"/"d" at post intervention (T0→T1, p = 0.008) and one-day retention test (T0→T2, p < 0.001) more than CON. There was no significant difference in change between GME and CON. For reaction time there were no significant global interaction effects observed. However, planned post hoc comparisons revealed a significant difference between GME and CON immediately after the intervention (T0→T1, p = 0.03). The children's motivation-score was higher for FME and GME compared to CON (FME-CON: p = 0.01; GME-CON: p = 0.01). The study demonstrated that fine motor-enriched training improved children's letter recognition more than non motor activities. Both types of motor training were accompanied by higher intrinsic motivation for the children compared to the non motor training group. The study suggests a new method for motor-enriched letter learning and future research should investigate the underlying mechanisms.

11.
J Clin Med ; 8(6)2019 Jun 12.
Article de Anglais | MEDLINE | ID: mdl-31212854

RÉSUMÉ

Attention Deficit Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder with a complex symptomatology, and core symptoms as well as functional impairment often persist into adulthood. Recent investigations estimate the worldwide prevalence of ADHD in children and adolescents to be ~7%, which is a substantial increase compared to a decade ago. Conventional treatment most often includes pharmacotherapy with central nervous stimulants, but the number of non-responders and adverse effects call for treatment alternatives. Exercise has been suggested as a safe and low-cost adjunctive therapy for ADHD and is reported to be accompanied by positive effects on several aspects of cognitive functions in the general child population. Here we review existing evidence that exercise affects cognitive functions in children with and without ADHD and present likely neurophysiological mechanisms of action. We find well-described associations between physical activity and ADHD, as well as causal evidence in the form of small to moderate beneficial effects following acute aerobic exercise on executive functions in children with ADHD. Despite large heterogeneity, meta-analyses find small positive effects of exercise in population-based control (PBC) children, and our extracted effect sizes from long-term interventions suggest consistent positive effects in children and adolescents with ADHD. Paucity of studies probing the effect of different exercise parameters impedes finite conclusions in this regard. Large-scale clinical trials with appropriately timed exercise are needed. In summary, the existing preliminary evidence suggests that exercise can improve cognitive performance intimately linked to ADHD presentations in children with and without an ADHD diagnosis. Based on the findings from both PBC and ADHD children, we cautiously provide recommendations for parameters of exercise.

12.
Cell Signal ; 53: 224-233, 2019 01.
Article de Anglais | MEDLINE | ID: mdl-30352253

RÉSUMÉ

Botulinum toxin A (botox) is a toxin used for spasticity treatment and cosmetic purposes. Botox blocks the excitation of skeletal muscle fibers by preventing the release of acetylcholine from motor nerves, a process termed chemical denervation. Surgical denervation is associated with increased expression of the canonical insulin-activated kinase Akt, lower expression of glucose handling proteins GLUT4 and hexokinase II (HKII) and insulin resistant glucose uptake, but it is not known if botox has a similar effect. To test this, we performed a time-course study using supra-maximal insulin-stimulation in mouse soleus ex vivo. No effect was observed in the glucose transport responsiveness at day 1, 7 and 21 after intramuscular botox injection, despite lower expression of GLUT4, HKII and expression and phosphorylation of TBC1D4. Akt protein expression and phosphorylation of the upstream kinase Akt were increased by botox treatment at day 21. In a follow-up study, botox decreased submaximal insulin-stimulated glucose transport. The marked alterations of insulin signaling, GLUT4 and HKII and submaximal insulin-stimulated glucose transport are a potential concern with botox treatment which merit further investigation in human muscle. Furthermore, the botox-induced chemical denervation model may be a less invasive alternative to surgical denervation.


Sujet(s)
Toxines botuliniques/pharmacologie , Transporteur de glucose de type 4/métabolisme , Glucose/métabolisme , Hexokinase/métabolisme , Insuline/métabolisme , Protéines proto-oncogènes c-akt/métabolisme , Animaux , Toxines botuliniques/administration et posologie , Dénervation/méthodes , Régulation négative/effets des médicaments et des substances chimiques , Femelle , Transporteur de glucose de type 4/génétique , Hexokinase/génétique , Souris de lignée C57BL , Fibres musculaires squelettiques , Muscles squelettiques/effets des médicaments et des substances chimiques , Muscles squelettiques/innervation , Muscles squelettiques/métabolisme , Protéines proto-oncogènes c-akt/génétique , Régulation positive/effets des médicaments et des substances chimiques
13.
J Neurosci ; 38(45): 9741-9753, 2018 11 07.
Article de Anglais | MEDLINE | ID: mdl-30249797

RÉSUMÉ

In the motor system, force gradation is achieved by recruitment of motoneurons and rate modulation of their firing frequency. Classical experiments investigating the relationship between injected current to the soma during intracellular recording and the firing frequency (the I-f relation) in cat spinal motoneurons identified two clear ranges: a primary range and a secondary range. Recent work in mice, however, has identified an additional range proposed to be exclusive to rodents, the subprimary range (SPR), due to the presence of mixed mode oscillations of the membrane potential. Surprisingly, fully summated tetanic contractions occurred in mice during SPR frequencies. With the mouse now one of the most popular models to investigate motor control, it is crucial that such discrepancies between observations in mice and basic principles that have been widely accepted in larger animals are resolved. To do this, we have reinvestigated the I-f relation using ramp current injections in spinal motoneurons in both barbiturate-anesthetized and decerebrate (nonanesthetized) cats and mice. We demonstrate the presence of the SPR and mixed mode oscillations in both species and show that the SPR is enhanced by barbiturate anesthetics. Our measurements of the I-f relation in both cats and mice support the classical opinion that firing frequencies in the higher end of the primary range are necessary to obtain a full summation. By systematically varying the leg oil pool temperature (from 37°C to room temperature), we found that only at lower temperatures can maximal summation occur at SPR frequencies due to prolongation of individual muscle twitches.SIGNIFICANCE STATEMENT This work investigates recent revelations that mouse motoneurons behave in a fundamentally different way from motoneurons of larger animals with respect to the importance of rate modulation of motoneuron firing for force gradation. The current study systematically addresses the proposed discrepancies between mice and larger species (cats) and demonstrates that mouse motoneurons, in fact, use rate modulation as a mechanism of force modulation in a similar manner to the classical descriptions in larger animals.


Sujet(s)
Motoneurones/physiologie , Contraction musculaire/physiologie , Muscles squelettiques/physiologie , Moelle spinale/physiologie , Animaux , Chats , Stimulation électrique/méthodes , Femelle , Mâle , Souris , Souris de lignée C57BL , Muscles squelettiques/innervation , Spécificité d'espèce , Moelle spinale/cytologie
14.
J Biomech ; 73: 168-176, 2018 05 17.
Article de Anglais | MEDLINE | ID: mdl-29650410

RÉSUMÉ

The present study investigated the feasibility and reliability of continuous relative phase (CRP) and deviation phase (DP) to assess intersegmental hind limb coordination pattern and coordination variability in rats during walking. Twenty-six adult rats walked at 8 m/min, 12 m/min and 16 m/min while two-dimensional kinematics were recorded. Segment angles and segment angular velocities of the paw, shank and thigh on the left hind-limb were extracted from 15 strides and CRP was calculated for the paw-shank and shank-thigh coupling. The effect of walking speed on the time point average curve of the CRP (ACRP) and DP and on the mean ACRP and mean DP was established by statistical parametric mapping (SPM) and a one-way ANOVA for repeated measures. Absolute and relative reliability were assessed by measurement error and intra-class correlation coefficient. The SPM analysis revealed time dependent differences in the effect of speed. Thus, the CRP of the paw-shank coupling decreased with increasing speed during most of the gait cycle while the CRP of the shank-thigh coupling was decreased during the swing phase. The session-to-session reliability was fair to good for the coordination measure and poor for the variability measure.


Sujet(s)
Marche à pied/physiologie , Animaux , Phénomènes biomécaniques , Membres/physiologie , Rat Sprague-Dawley , Reproductibilité des résultats
15.
J Biomech ; 72: 247-251, 2018 04 27.
Article de Anglais | MEDLINE | ID: mdl-29530501

RÉSUMÉ

The purpose of the present study was to determine the day-to-day reliability in stride characteristics in rats during treadmill walking obtained with two-dimensional (2D) motion capture. Kinematics were recorded from 26 adult rats during walking at 8 m/min, 12 m/min and 16 m/min on two separate days. Stride length, stride time, contact time, swing time and hip, knee and ankle joint range of motion were extracted from 15 strides. The relative reliability was assessed using intra-class correlation coefficients (ICC(1,1)) and (ICC(3,1)). The absolute reliability was determined using measurement error (ME). Across walking speeds, the relative reliability ranged from fair to good (ICCs between 0.4 and 0.75). The ME was below 91 mm for strides lengths, below 55 ms for the temporal stride variables and below 6.4° for the joint angle range of motion. In general, the results indicated an acceptable day-to-day reliability of the gait pattern parameters observed in rats during treadmill walking. The results of the present study may serve as a reference material that can help future intervention studies on rat gait characteristics both with respect to the selection of outcome measures and in the interpretation of the results.


Sujet(s)
Démarche/physiologie , Animaux , Articulation talocrurale/physiologie , Phénomènes biomécaniques , Articulation de la hanche/physiologie , Articulation du genou/physiologie , Amplitude articulaire , Rat Sprague-Dawley , Reproductibilité des résultats
16.
J Neurophysiol ; 118(4): 1962-1969, 2017 10 01.
Article de Anglais | MEDLINE | ID: mdl-28724781

RÉSUMÉ

Botulinum toxin (Btx) is used in children with cerebral palsy and in other neurological patients to diminish spasticity and reduce the risk of development of contractures. We investigated changes in the central gain of the stretch reflex circuitry in response to Btx injection in the triceps surae muscle in rats. Experiments were performed in 21 rats. Eight rats were a control group, and 13 rats were injected with 6 IU of Btx in the left triceps surae muscle. Two weeks after Btx injection, larger monosynaptic reflexes (MSR) were recorded from the left (injected) than the right (noninjected) L4 + L5 ventral roots following stimulation of the corresponding dorsal roots. A similar increase on the left side was observed in response to stimulation of descending motor tracts, suggesting that increased excitability of spinal motor neurons may at least partly explain the increased reflexes. However, significant changes were also observed in postactivation depression of the MSR, suggesting that plastic changes in transmission from Ia afferent to the motor neurons also may be involved. The data demonstrate that muscle paralysis induced by Btx injection is accompanied by plastic adaptations in the central stretch reflex circuitry, which counteract the antispastic effect of Btx.NEW & NOTEWORTHY Injection of botulinum toxin into ankle muscles causes increased gain of stretch reflex. This is caused by adaptive changes in regulation of transmitter release from Ia afferents and increased excitability of spinal motor neurons.


Sujet(s)
Toxines botuliniques/pharmacologie , Ganglions sensitifs des nerfs spinaux/physiologie , Muscles squelettiques/physiologie , Réflexe d'étirement , Adaptation physiologique , Animaux , Mâle , Motoneurones/physiologie , Contraction musculaire , Muscles squelettiques/effets des médicaments et des substances chimiques , Muscles squelettiques/innervation , Rats , Rat Sprague-Dawley
17.
J Neurophysiol ; 116(6): 2615-2623, 2016 12 01.
Article de Anglais | MEDLINE | ID: mdl-27628204

RÉSUMÉ

Botulinum toxin is used with the intention of diminishing spasticity and reducing the risk of development of contractures. Here, we investigated changes in muscle stiffness caused by reflex activity or elastic muscle properties following botulinum toxin injection in the triceps surae muscle in rats. Forty-four rats received injection of botulinum toxin in the left triceps surae muscle. Control measurements were performed on the noninjected contralateral side in all rats. Acute experiments were performed, 1, 2, 4, and 8 wk following injection. The triceps surae muscle was dissected free, and the Achilles tendon was cut and attached to a muscle puller. The resistance of the muscle to stretches of different amplitudes and velocities was systematically investigated. Reflex-mediated torque was normalized to the maximal muscle force evoked by supramaximal stimulation of the tibial nerve. Botulinum toxin injection caused severe atrophy of the triceps surae muscle at all time points. The force generated by stretch reflex activity was also strongly diminished but not to the same extent as the maximal muscle force at 2 and 4 wk, signifying a relative reflex hyperexcitability. Passive muscle stiffness was unaltered at 1 wk but increased at 2, 4, and 8 wk (P < 0.01). These data demonstrate that botulinum toxin causes a relative increase in reflex stiffness, which is likely caused by compensatory neuroplastic changes. The stiffness of elastic elements in the muscles also increased. The data are not consistent with the ideas that botulinum toxin is an efficient antispastic medication or that it may prevent development of contractures.


Sujet(s)
Toxines botuliniques de type A/toxicité , Muscles squelettiques/effets des médicaments et des substances chimiques , Agents neuromusculaires/toxicité , Réflexes anormaux/effets des médicaments et des substances chimiques , Spasme/induit chimiquement , Analyse de variance , Animaux , Électromyographie , Potentiels évoqués moteurs/effets des médicaments et des substances chimiques , Membre pelvien/innervation , Mâle , Rats , Rat Sprague-Dawley , Facteurs temps
18.
PLoS One ; 11(8): e0161960, 2016.
Article de Anglais | MEDLINE | ID: mdl-27560512

RÉSUMÉ

OBJECTIVE: To investigate associations between motor skills, exercise capacity and cognitive functions, and evaluate how they correlate to academic performance in mathematics and reading comprehension using standardised, objective tests. METHODS: This cross-sectional study included 423 Danish children (age: 9.29±0.35 years, 209 girls). Fine and gross motor skills were evaluated in a visuomotor accuracy-tracking task, and a whole-body coordination task, respectively. Exercise capacity was estimated from the Yo-Yo intermittent recovery level 1 children's test (YYIR1C). Selected tests from the Cambridge Neuropsychological Test Automated Battery (CANTAB) were used to assess different domains of cognitive functions, including sustained attention, spatial working memory, episodic and semantic memory, and processing speed. Linear mixed-effects models were used to investigate associations between these measures and the relationship with standard tests of academic performance in mathematics and reading comprehension. RESULTS: Both fine and gross motor skills were associated with better performance in all five tested cognitive domains (all P<0.001), whereas exercise capacity was only associated with better sustained attention (P<0.046) and spatial working memory (P<0.038). Fine and gross motor skills (all P<0.001), exercise capacity and cognitive functions such as working memory, episodic memory, sustained attention and processing speed were all associated with better performance in mathematics and reading comprehension. CONCLUSIONS: The data demonstrate that fine and gross motor skills are positively correlated with several aspects of cognitive functions and with academic performance in both mathematics and reading comprehension. Moreover, exercise capacity was associated with academic performance and performance in some cognitive domains. Future interventions should investigate associations between changes in motor skills, exercise capacity, cognitive functions, and academic performance to elucidate the causality of these associations.


Sujet(s)
Cognition/physiologie , Exercice physique/physiologie , Mathématiques , Mémoire à court terme/physiologie , Aptitudes motrices/physiologie , Enfant , Enfant d'âge préscolaire , Compréhension/physiologie , Études transversales , Danemark , Évaluation des acquis scolaires/méthodes , Femelle , Humains , Mâle , Tests neuropsychologiques , Lecture
19.
J Neurochem ; 138(6): 806-20, 2016 09.
Article de Anglais | MEDLINE | ID: mdl-27344019

RÉSUMÉ

Nicotinic acetylcholine receptors (nAChRs) affect multiple physiological functions in the brain and their functions are modulated by regulatory proteins of the Lynx family. Here, we report for the first time a direct interaction of the Lynx protein LY6/PLAUR domain-containing 6 (Lypd6) with nAChRs in human brain extracts, identifying Lypd6 as a novel regulator of nAChR function. Using protein cross-linking and affinity purification from human temporal cortical extracts, we demonstrate that Lypd6 is a synaptically enriched membrane-bound protein that binds to multiple nAChR subtypes in the human brain. Additionally, soluble recombinant Lypd6 protein attenuates nicotine-induced hippocampal inward currents in rat brain slices and decreases nicotine-induced extracellular signal-regulated kinase phosphorylation in PC12 cells, suggesting that binding of Lypd6 is sufficient to inhibit nAChR-mediated intracellular signaling. We further show that perinatal nicotine exposure in rats (4 mg/kg/day through minipumps to dams from embryonic day 7 to post-natal day 21) significantly increases Lypd6 protein levels in the hippocampus in adulthood, which did not occur after exposure to nicotine in adulthood only. Our findings suggest that Lypd6 is a versatile inhibitor of cholinergic signaling in the brain, and that Lypd6 is dysregulated by nicotine exposure during early development. Regulatory proteins of the Lynx family modulate the function of nicotinic receptors (nAChRs). We report for the first time that the Lynx protein Lypd6 binds to nAChRs in human brain extracts, and that recombinant Lypd6 decreases nicotine-induced ERK phosphorylation and attenuates nicotine-induced hippocampal inward currents. Our findings suggest that Lypd6 is a versatile inhibitor of cholinergic signaling in the brain.


Sujet(s)
Antigènes Ly/métabolisme , Récepteurs nicotiniques/métabolisme , Protéines adaptatrices de la transduction du signal , Animaux , Animaux nouveau-nés , Antigènes Ly/génétique , Chimie du cerveau/génétique , Protéines liées au GPI , Humains , Techniques in vitro , Système de signalisation des MAP kinases/effets des médicaments et des substances chimiques , Mâle , Souris , Souris de lignée C57BL , Souris knockout , Nicotine/pharmacologie , Agonistes nicotiniques/pharmacologie , Cellules PC12 , Rats , Rat Sprague-Dawley , Récepteurs nicotiniques/génétique , Lobe temporal/composition chimique , Distribution tissulaire
20.
J Neurotrauma ; 33(12): 1150-60, 2016 06 15.
Article de Anglais | MEDLINE | ID: mdl-26830512

RÉSUMÉ

Aromatic l-amino acid decarboxylase (AADC) cells are widely distributed in the spinal cord, and their functions are largely unknown. We have previously found that AADC cells in the spinal cord could increase their ability to produce serotonin (5-hydroxytryptamine) from 5-hydroxytryptophan after spinal cord injury (SCI). Because AADC is a common enzyme catalyzing 5-hydroxytryptophan to serotonin and l-3,4-dihydroxyphenylalanine (l-dopa) to dopamine (DA), it seems likely that the ability of AADC cells using l-dopa to synthesize DA is also increased. To prove whether or not this is the case, a similar rat sacral SCI model and a similar experimental paradigm were adopted as that which we had used previously. In the chronic SCI rats (> 45 days), no AADC cells expressed DA if there was no exogenous l-dopa application. However, following administration of a peripheral AADC inhibitor (carbidopa) with or without a monoamine oxidase inhibitor (pargyline) co-application, systemic administration of l-dopa resulted in ∼94% of AADC cells becoming DA-immunopositive in the spinal cord below the lesion, whereas in normal or sham-operated rats none or very few of AADC cells became DA-immunopositive with the same treatment. Using tail electromyography, spontaneous tail muscle activity was increased nearly fivefold over the baseline level. When pretreated with a central AADC inhibitor (NSD-1015), further application of l-dopa failed to increase the motoneuron activity although the expression of DA in the AADC cells was not completely inhibited. These findings demonstrate that AADC cells in the spinal cord below the lesion gain the ability to produce DA from its precursor in response to SCI. This ability also enables the AADC cells to produce 5-HT and trace amines, and likely contributes to the development of hyperexcitability. These results might also be implicated for revealing the pathological mechanisms underlying l-dopa-induced dyskinesia in Parkinson's disease.


Sujet(s)
Antiparkinsoniens/pharmacologie , Inhibiteurs de la décarboxylase des acides aminés aromatiques/pharmacologie , Aromatic-L-amino-acide decarboxylases/métabolisme , Dopamine/métabolisme , Lévodopa/pharmacologie , Motoneurones/métabolisme , Traumatismes de la moelle épinière/métabolisme , Animaux , Modèles animaux de maladie humaine , Mâle , Motoneurones/effets des médicaments et des substances chimiques , Rats , Rat Wistar
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE