Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 40
Filtrer
1.
Catal Letters ; 153(11): 3405-3422, 2023.
Article de Anglais | MEDLINE | ID: mdl-37799191

RÉSUMÉ

In this article we shed light on newly emerging perspectives to characterize and understand the interplay of diffusive mass transport and surface catalytic processes in pores of gas phase metal catalysts. As a case study, nanoporous gold, as an interesting example exhibiting a well-defined pore structure and a high activity for total and partial oxidation reactions is considered. PFG NMR (pulsed field gradient nuclear magnetic resonance) measurements allowed here for a quantitative evaluation of gas diffusivities within the material. STEM (scanning transmission electron microscopy) tomography furthermore provided additional insight into the structural details of the pore system, helping to judge which of its features are most decisive for slowing down mass transport. Based on the quantitative knowledge about the diffusion coefficients inside a porous catalyst, it becomes possible to disentangle mass transport contributions form the measured reaction kinetics and to determine the kinetic rate constant of the underlying catalytic surface reaction. In addition, predictions can be made for an improved effectiveness of the catalyst, i.e., optimized conversion rates. This approach will be discussed at the example of low-temperature CO oxidation, efficiently catalysed by npAu at 30 °C. The case study shall reveal that novel porous materials exhibiting well-defined micro- and mesoscopic features and sufficient catalytic activity, in combination with modern techniques to evaluate diffusive transport, offer interesting new opportunities for an integral understanding of catalytic processes.

2.
CRISPR J ; 6(1): 5-16, 2023 02.
Article de Anglais | MEDLINE | ID: mdl-36662546

RÉSUMÉ

Cellular therapies hold enormous potential for the cure of severe hematological and oncological disorders. The forefront of innovative gene therapy approaches including therapeutic gene editing and hematopoietic stem cell transplantation needs to be processed by good manufacturing practice to ensure safe application in patients. In the present study, an effective transfection protocol for automated clinical-scale production of genetically modified hematopoietic stem and progenitor cells (HSPCs) using the CliniMACS Prodigy® system including the CliniMACS Electroporator (Miltenyi Biotec) was established. As a proof-of-concept, the enhancer of the BCL11A gene, clustered regularly interspaced short palindromic repeat (CRISPR) target in ongoing clinical trials for ß-thalassemia and sickle-cell disease treatment, was disrupted by the CRISPR-Cas9 system simulating a large-scale clinical scenario, yielding 100 million HSPCs with high editing efficiency. In vitro erythroid differentiation and high-performance liquid chromatography analyses corroborated fetal hemoglobin resurgence in edited samples, supporting the feasibility of running the complete process of HSPC gene editing in an automated closed system.


Sujet(s)
Transplantation de cellules souches hématopoïétiques , Hémoglobinopathies , Humains , Édition de gène/méthodes , Systèmes CRISPR-Cas/génétique , Hémoglobinopathies/génétique , Hémoglobinopathies/thérapie , Cellules souches hématopoïétiques
3.
ACS Cent Sci ; 7(8): 1271-1287, 2021 Aug 25.
Article de Anglais | MEDLINE | ID: mdl-34471670

RÉSUMÉ

A roadmap is developed that integrates simulation methodology and data science methods to target new theories that traverse the multiple length- and time-scale features of many-body phenomena.

4.
Gene Ther ; 28(9): 572-587, 2021 09.
Article de Anglais | MEDLINE | ID: mdl-33867524

RÉSUMÉ

Ex-vivo gene editing in T lymphocytes paves the way for novel concepts of immunotherapy. One of those strategies is directed at the protection of CD4+-T helper cells from HIV infection in HIV-positive individuals. To this end, we have developed and optimised a CCR5-targeting TALE nuclease, CCR5-Uco-hetTALEN, mediating high-efficiency knockout of C-C motif chemokine receptor 5 (CCR5), the HIV co-receptor essential during initial infection. Clinical translation of the knockout approach requires up-scaling of the manufacturing process to clinically relevant cell numbers in accordance with good manufacturing practice (GMP). Here we present a GMP-compatible mRNA electroporation protocol for the automated production of CCR5-edited CD4+-T cells in the closed CliniMACS Prodigy system. The automated process reliably produced high amounts of CCR5-edited CD4+-T cells (>1.5 × 109 cells with >60% CCR5 editing) within 12 days. Of note, about 40% of total large-scale produced cells showed a biallelic CCR5 editing, and between 25 and 42% of produced cells had a central memory T-cell phenotype. In conclusion, transfection of primary T cells with CCR5-Uco-hetTALEN mRNA is readily scalable for GMP-compatible production and hence suitable for application in HIV gene therapy.


Sujet(s)
Infections à VIH , Lymphocytes T CD4+ , Édition de gène , Infections à VIH/thérapie , Humains , Récepteurs CCR5/génétique , Lymphocytes T
5.
Mol Ther Methods Clin Dev ; 20: 379-388, 2021 Mar 12.
Article de Anglais | MEDLINE | ID: mdl-33575430

RÉSUMÉ

The potential of adoptive cell therapy can be extended when combined with genome editing. However, variation in the quality of the starting material and the different manufacturing steps are associated with production failure and product contamination. Here, we present an automated T cell engineering process to produce off-the-shelf chimeric antigen receptor (CAR) T cells on an extended CliniMACS Prodigy platform containing an in-line electroporation unit. This setup was used to combine lentiviral delivery of a CD19-targeting CAR with transfer of mRNA encoding a TRAC locus-targeting transcription activator-like effector nuclease (TALEN). In three runs at clinical scale, the T cell receptor (TCR) alpha chain encoding TRAC locus was disrupted in >35% of cells with high cell viability (>90%) and no detectable off-target activity. A final negative selection step allowed the generation of TCRα/ß-free CAR T cells with >99.5% purity. These CAR T cells proliferated well, maintained a T cell memory phenotype, eliminated CD19-positive tumor cells, and released the expected cytokines when exposed to B cell leukemia cells. In conclusion, we established an automated, good manufacturing practice (GMP)-compliant process that integrates lentiviral transduction with electroporation of TALEN mRNA to produce functional TCRα/ß-free CAR19 T cells at clinical scale.

6.
RSC Adv ; 11(40): 24556-24569, 2021 Jul 13.
Article de Anglais | MEDLINE | ID: mdl-35481015

RÉSUMÉ

The one-step synthesis of dimethyl ether over mechanical mixtures of Cu/ZnO/Al2O3 (CZA) and γ-Al2O3 was studied in a wide range of process conditions. Experiments were performed at an industrially relevant pressure of 50 bar varying the carbon oxide ratio in the feed (CO2 in CO x from 20 to 80%), temperature (503-533 K), space-time (240-400 kgcat s mgas -3), and the CZA-to-γ-Al2O3 weight ratio (from 1 to 5). Factors favoring the DME production in the investigated range of conditions are an elevated temperature, a low CO2 content in the feed, and a CZA-to-γ-Al2O3 weight ratio of 2. A lumped kinetic model was parameterized to fit the experimental data, resulting in one of the predictive models with the broadest range of validity in the open literature for the CZA/γ-Al2O3 system.

7.
RSC Adv ; 11(5): 2556-2564, 2021 Jan 11.
Article de Anglais | MEDLINE | ID: mdl-35424220

RÉSUMÉ

Catalyst systems for the conversion of synthesis gas, which are tolerant to fluctuating CO/CO2 gas compositions, have great potential for process-technical applications, related to the expected changes in the supply of synthesis gas. Copper-based catalysts usually used in the synthesis of methanol play an important role in this context. We investigated the productivity characteristics for their application in direct dimethyl ether (DME) synthesis as a function of the CO2/CO x ratio over the complete range from 0 to 1. For this purpose, we compared an industrial Cu/ZnO/Al2O3 methanol catalyst with a self-developed Cu/ZnO/ZrO2 catalyst prepared by a continuous coprecipitation approach. For DME synthesis, catalysts were combined with two commercial dehydration catalysts, H-FER 20 and γ-Al2O3, respectively. Using a standard testing procedure, we determined the productivity characteristics in a temperature range between 483 K and 523 K in a fixed bed reactor. The combination of Cu/ZnO/ZrO2 and H-FER 20 provided the highest DME productivity with up to 1017 gDME (kgCu h)-1 at 523 K, 50 bar and 36 000 mlN (g h)-1 and achieved DME productivities higher than 689 gDME (kgCu h)-1 at all investigated CO2/CO x ratios under the mentioned conditions. With the use of Cu/ZnO/ZrO2//H-FER 20 a promising operating range between CO2/CO x 0.47 and 0.8 was found where CO as well as CO2 can be converted with high DME selectivity. First results on the long-term stability of the system Cu/ZnO/ZrO2//H-FER 20 showed an overall reduction of 27.0% over 545 h time on stream and 14.6% between 200 h and 545 h under variable feed conditions with a consistently high DME selectivity.

8.
Chemistry ; 27(10): 3361-3366, 2021 Feb 15.
Article de Anglais | MEDLINE | ID: mdl-33047818

RÉSUMÉ

Two-dimensional (2D) black phosphorus (BP) represents one of the most appealing 2D materials due to its electronic, optical, and chemical properties. Many strategies have been pursued to face its environmental instability, covalent functionalization being one of the most promising. However, the extremely low functionalization degrees and the limitations in proving the nature of the covalent functionalization still represent challenges in many of these sheet architectures reported to date. Here we shine light on the structural evolution of 2D-BP upon the addition of electrophilic diazonium salts. We demonstrated the absence of covalent functionalization in both the neutral and the reductive routes, observing in the latter case an unexpected interface conversion of BP to red phosphorus (RP), as characterized by Raman, 31 P-MAS NMR, and X-ray photoelectron spectroscopies (XPS). Furthermore, thermogravimetric analysis coupled to gas chromatography and mass spectrometry (TG-GC-MS), as well as electron paramagnetic resonance (EPR) gave insights into the potential underlying radical mechanism, suggesting a Sandmeyer-like reaction.

9.
Int J Mol Sci ; 21(19)2020 Sep 29.
Article de Anglais | MEDLINE | ID: mdl-33003586

RÉSUMÉ

Glioblastoma is a devastating disease, for which biomarkers allowing a prediction of prognosis are urgently needed. microRNAs have been described as potentially valuable biomarkers in cancer. Here, we studied a panel of microRNAs in extracellular vesicles (EVs) from the serum of glioblastoma patients and evaluated their correlation with the prognosis of these patients. The levels of 15 microRNAs in EVs that were separated by size-exclusion chromatography were studied by quantitative real-time PCR, followed by CD44 immunoprecipitation (SEC + CD44), and compared with those from the total serum of glioblastoma patients (n = 55) and healthy volunteers (n = 10). Compared to total serum, we found evidence for the enrichment of miR-21-3p and miR-106a-5p and, conversely, lower levels of miR-15b-3p, in SEC + CD44 EVs. miR-15b-3p and miR-21-3p were upregulated in glioblastoma patients compared to healthy subjects. A significant correlation with survival of the patients was found for levels of miR-15b-3p in total serum and miR-15b-3p, miR-21-3p, miR-106a-5p, and miR-328-3p in SEC + CD44 EVs. Combining miR-15b-3p in serum or miR-106a-5p in SEC + CD44 EVs with any one of the other three microRNAs in SEC + CD44 EVs allowed for a prognostic stratification of glioblastoma patients. We have thus identified four microRNAs in glioblastoma patients whose levels, in combination, can predict the prognosis for these patients.


Sujet(s)
Marqueurs biologiques tumoraux/sang , Glioblastome/sang , Antigènes CD44/sang , microARN/sang , Adulte , Sujet âgé , Survie sans rechute , Vésicules extracellulaires/génétique , Femelle , Analyse de profil d'expression de gènes , Régulation de l'expression des gènes tumoraux/génétique , Glioblastome/génétique , Glioblastome/anatomopathologie , Humains , Mâle , microARN/génétique , Adulte d'âge moyen , Pronostic , Jeune adulte
10.
Angew Chem Int Ed Engl ; 59(45): 20230-20234, 2020 Nov 02.
Article de Anglais | MEDLINE | ID: mdl-32735070

RÉSUMÉ

A straightforward quantification method to consistently determine the overall functionalization degree of covalently modified two-dimensional (2D) black phosphorus (BP) by Raman spectroscopy has been carried out. Indeed, the successful reductive methylation of the BP lattice using sodium intercalation compounds and exhibiting different functionalization degrees has been demonstrated by 31 P-magic angle spinning (MAS) NMR spectroscopy. Furthermore, the correlation of 31 P-MAS NMR spectroscopy and statistical Raman spectroscopy (SRS) revealed the first method to determine the functionalization degree of BP solely by evaluating the intensities of distinct peaks in the Raman spectra of the covalently modified material, in a similar way to the widely employed ID /IG ratio of graphene research.

11.
Opt Lett ; 44(17): 4331-4334, 2019 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-31465395

RÉSUMÉ

As x-ray microscopy is pushed into the nanoscale with the advent of more bright and coherent x-ray sources, associated improvement in spatial resolution becomes highly vulnerable to geometrical errors and uncertainties during data collection. We address a form of error in tomography experiments, namely, the drift between projections during the tomographic scan. Our proposed method can simultaneously recover the drift, while tomographically reconstructing the specimen based on a joint iterative optimization scheme. This approach utilizes the correlation provided from different view angles and different signals. While generally applicable, we demonstrate our method on x-ray fluorescence tomography from a tissue specimen and compare the reconstruction quality with conventional methods.

12.
Front Oncol ; 9: 716, 2019.
Article de Anglais | MEDLINE | ID: mdl-31428583

RÉSUMÉ

Fibroblasts are thought to be key players in the tumor microenvironment. Means to identify and isolate fibroblasts as well as an understanding of their cancer-specific features are essential to dissect their role in tumor biology. To date, the identification of cancer-associated fibroblasts is widely based on generic markers for activated fibroblasts in combination with their origin in tumor tissue. This study was focused on a deep characterization of the cell surface marker profile of cancer-associated fibroblasts in widely used mouse tumor models and defining aberrant expression profiles by comparing them to their healthy counterparts. We established a generic workflow to isolate healthy and cancer-associated fibroblasts from solid tissues, thereby reducing bias, and background noise introduced by non-target cells. We identified CD87, CD44, CD49b, CD95, and Ly-6C as cancer-associated fibroblast cell surface markers, while CD39 was identified to mark normal fibroblasts from healthy tissues. In addition, we found a functional association of most cancer-related fibroblast markers to proliferation and a systemic upregulation of CD87, and CD49b in tumor-bearing mice, even in non-affected tissues. These novel markers will facilitate the characterization of fibroblasts and shed further light in their functions and implication in cancer progression.

13.
RSC Adv ; 9(7): 3570-3576, 2019 Jan 25.
Article de Anglais | MEDLINE | ID: mdl-30854196

RÉSUMÉ

We report a straightforward chemical methodology for controlling the thickness of black phosphorus flakes down to the monolayer limit by layer-by-layer oxidation and thinning, using water as solubilizing agent. Moreover, the oxidation process can be stopped at will by two different passivation procedures, namely the non-covalent functionalization with perylene diimide chromophores, which prevents the photooxidation, or by using a protective ionic liquid layer. The obtained flakes preserve their electronic properties as demonstrated by fabricating a BP field-effect transistor (FET). This work paves the way for the preparation of BP devices with controlled thickness.

14.
Life Sci Alliance ; 2(2)2019 04.
Article de Anglais | MEDLINE | ID: mdl-30846484

RÉSUMÉ

Upon tumor development, new extracellular vesicles appear in circulation. Our knowledge of their relative abundance, function, and overall impact on cancer development is still preliminary. Here, we demonstrate that plasma extracellular vesicles (pEVs) of non-tumor origin are persistently increased in untreated and post-excision melanoma patients, exhibiting strong suppressive effects on the proliferation of tumor cells. Plasma vesicle numbers, miRNAs, and protein levels were elevated two- to tenfold and detected many years after tumor resection. The vesicles revealed individual and clinical stage-specific miRNA profiles as well as active ADAM10. However, whereas pEV from patients preventing tumor relapse down-regulated ß-catenin and blocked tumor cell proliferation in an miR-34a-dependent manner, pEV from metastatic patients lost this ability and stimulated ß-catenin-mediated transcription. Cancer-induced pEV may constitute an innate immune mechanism suppressing tumor cell activity including that of residual cancer cells present after primary surgery.


Sujet(s)
Vésicules extracellulaires/métabolisme , Mélanome/sang , microARN/métabolisme , Tumeurs cutanées/sang , bêta-Caténine/métabolisme , Protéine ADAM10 , Adolescent , Adulte , Sujet âgé , Sujet âgé de 80 ans ou plus , Amyloid precursor protein secretases , Antagomirs/génétique , Lignée cellulaire tumorale , Prolifération cellulaire , Régulation négative , Vésicules extracellulaires/immunologie , Femelle , Humains , Immunité innée/immunologie , Mâle , Mélanome/anatomopathologie , Mélanome/chirurgie , Protéines membranaires , Adulte d'âge moyen , Prévention secondaire , Tumeurs cutanées/anatomopathologie , Tumeurs cutanées/chirurgie , Transfection , Jeune adulte
15.
Nat Commun ; 10(1): 509, 2019 01 31.
Article de Anglais | MEDLINE | ID: mdl-30705264

RÉSUMÉ

Group 15 elements in zero oxidation state (P, As, Sb and Bi), also called pnictogens, are rarely used in catalysis due to the difficulties associated in preparing well-structured and stable materials. Here, we report on the synthesis of highly exfoliated, few layer 2D phosphorene and antimonene in zero oxidation state, suspended in an ionic liquid, with the native atoms ready to interact with external reagents while avoiding aerobic or aqueous decomposition pathways, and on their use as efficient catalysts for the alkylation of nucleophiles with esters. The few layer pnictogen material circumvents the extremely harsh reaction conditions associated to previous superacid-catalyzed alkylations, by enabling an alternative mechanism on surface, protected from the water and air by the ionic liquid. These 2D catalysts allow the alkylation of a variety of acid-sensitive organic molecules and giving synthetic relevancy to the use of simple esters as alkylating agents.

16.
Angew Chem Int Ed Engl ; 58(17): 5763-5768, 2019 Apr 16.
Article de Anglais | MEDLINE | ID: mdl-30675972

RÉSUMÉ

The chemical bulk reductive covalent functionalization of thin-layer black phosphorus (BP) using BP intercalation compounds has been developed. Through effective reductive activation, covalent functionalization of the charged BP by reaction with organic alkyl halides is achieved. Functionalization was extensively demonstrated by means of several spectroscopic techniques and DFT calculations; the products showed higher functionalization degrees than those obtained by neutral routes.

17.
J Neurosci ; 37(44): 10611-10623, 2017 11 01.
Article de Anglais | MEDLINE | ID: mdl-28972122

RÉSUMÉ

In the postnatal forebrain regionalized neural stem cells along the ventricular walls produce olfactory bulb (OB) interneurons with varying neurotransmitter phenotypes and positions. To understand the molecular basis of this region-specific variability we analyzed gene expression in the postnatal dorsal and lateral lineages in mice of both sexes from stem cells to neurons. We show that both lineages maintain transcription factor signatures of their embryonic site of origin, the pallium and subpallium. However, additional factors, including Zic1 and Zic2, are postnatally expressed in the dorsal stem cell compartment and maintained in the lineage that generates calretinin-positive GABAergic neurons for the OB. Functionally, we show that Zic1 and Zic2 induce the generation of calretinin-positive neurons while suppressing dopaminergic fate in the postnatal dorsal lineage. We investigated the evolutionary conservation of the dopaminergic repressor function of Zic proteins and show that it is already present in C. elegansSIGNIFICANCE STATEMENT The vertebrate brain generates thousands of different neuron types. In this work we investigate the molecular mechanisms underlying this variability. Using a genomics approach we identify the transcription factor signatures of defined neural stem cells and neuron populations. Based thereon we show that two related transcription factors, Zic1 and Zic2, are essential to control the balance between two defined neuron types in the postnatal brain. We show that this mechanism is conserved in evolutionary very distant species.


Sujet(s)
Neurones dopaminergiques/métabolisme , Prosencéphale/métabolisme , Facteurs de transcription/biosynthèse , Animaux , Animaux nouveau-nés , Caenorhabditis elegans , Femelle , Mâle , Souris , Prosencéphale/cytologie , Prosencéphale/croissance et développement , Spécificité d'espèce
18.
Angew Chem Int Ed Engl ; 56(48): 15267-15273, 2017 11 27.
Article de Anglais | MEDLINE | ID: mdl-28980764

RÉSUMÉ

Black phosphorus intercalation compounds (BPICs) with alkali metals (namely: K and Na) have been synthesized in bulk by solid-state as well as vapor-phase reactions. By means of a combination of in situ X-ray diffraction, Raman spectroscopy, and DFT calculations the structural behavior of the BPICs at different intercalation stages has been demonstrated for the first time. Our results provide a glimpse into the very first steps of a new family of intercalation compounds, with a distinct behavior as compared to its graphite analogues (GICs), showing a remarkable structural complexity and a dynamic behavior.

19.
Development ; 144(21): 3968-3977, 2017 11 01.
Article de Anglais | MEDLINE | ID: mdl-28982684

RÉSUMÉ

In vivo brain electroporation of DNA expression vectors is a widely used method for lineage and gene function studies in the developing and postnatal brain. However, transfection efficiency of DNA is limited and adult brain tissue is refractory to electroporation. Here, we present a systematic study of mRNA as a vector for acute genetic manipulation in the developing and adult brain. We demonstrate that mRNA electroporation is far more efficient than DNA electroporation, and leads to faster and more homogeneous protein expression in vivo Importantly, mRNA electroporation allows the manipulation of neural stem cells and postmitotic neurons in the adult brain using minimally invasive procedures. Finally, we show that this approach can be efficiently used for functional studies, as exemplified by transient overexpression of the neurogenic factor Myt1l and by stably inactivating Dicer nuclease in vivo in adult born olfactory bulb interneurons and in fully integrated cortical projection neurons.


Sujet(s)
Différenciation cellulaire , Électroporation/méthodes , Cellules souches neurales/métabolisme , Neurones/métabolisme , Transfection/méthodes , Animaux , Animaux nouveau-nés , Compartimentation cellulaire , Différenciation cellulaire/génétique , Femelle , Régulation de l'expression des gènes , Protéines à fluorescence verte/métabolisme , Integrases/métabolisme , Mâle , Souris , Cellules souches neurales/cytologie , Neurones/cytologie , ARN messager/génétique , ARN messager/métabolisme , Recombinaison génétique , Facteurs temps , Transgènes
20.
Angew Chem Int Ed Engl ; 56(46): 14389-14394, 2017 11 13.
Article de Anglais | MEDLINE | ID: mdl-28945952

RÉSUMÉ

Antimonene, a novel group 15 two-dimensional material, is functionalized with a tailormade perylene bisimide through strong van der Waals interactions. The functionalization process leads to a significant quenching of the perylene fluorescence, and surpasses that observed for either graphene or black phosphorus, thus allowing straightforward characterization of the flakes by scanning Raman microscopy. Furthermore, scanning photoelectron microscopy studies and theoretical calculations reveal a remarkable charge-transfer behavior, being twice that of black phosphorus. Moreover, the excellent stability under environmental conditions of pristine antimonene has been tackled, thus pointing towards the spontaneous formation of a sub-nanometric oxide passivation layer. DFT calculations revealed that the noncovalent functionalization of antimonene results in a charge-transfer band gap of 1.1 eV.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...