Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
bioRxiv ; 2024 Jul 22.
Article de Anglais | MEDLINE | ID: mdl-39091814

RÉSUMÉ

Biallelic pathogenic variants in the essential DNA repair gene BRCA2 causes Fanconi anemia, complementation group FA-D1. Patients in this group are highly prone to develop embryonal tumors, most commonly medulloblastoma arising from the cerebellar granule cell progenitors (GCPs). GCPs undergo high proliferation in the postnatal cerebellum under SHH activation, but the type of DNA lesions that require the function of the BRCA2 to prevent tumorigenesis remains unknown. To identify such lesions, we assessed both GCP neurodevelopment and tumor formation using a mouse model with deletion of exons three and four of Brca2 in the central nervous system, coupled with global Trp53 loss. Brca2 Δex3-4 ;Trp53 -/- animals developed SHH subgroup medulloblastomas with complete penetrance. Whole-genome sequencing of the tumors identified structural variants with breakpoints enriched in areas overlapping G-quadruplexes (G4s). Brca2-deficient GCPs exhibited decreased replication speed in the presence of the G4-stabilizer pyridostatin. Pif1 helicase, which resolves G4s during replication, was highly upregulated in tumors, and Pif1 knockout in primary MB tumor cells resulted in increased genome instability upon pyridostatin treatment. These data suggest that G4s may represent sites prone to replication stalling in highly proliferative GCPs and without BRCA2, G4s become a source of genome instability. Tumor cells upregulate G4-resolving helicases to facilitate rapid proliferation through G4s highlighting PIF1 helicase as a potential therapeutic target for treatment of BRCA2-deficient medulloblastomas.

2.
Nat Commun ; 15(1): 1943, 2024 Mar 02.
Article de Anglais | MEDLINE | ID: mdl-38431617

RÉSUMÉ

DNA replication through a challenging genomic landscape is coordinated by the replisome, which must adjust to local conditions to provide appropriate replication speed and respond to lesions that hinder its progression. We have previously shown that proteasome shuttle proteins, DNA Damage Inducible 1 and 2 (DDI1/2), regulate Replication Termination Factor 2 (RTF2) levels at stalled replisomes, allowing fork stabilization and restart. Here, we show that during unperturbed replication, RTF2 regulates replisome localization of RNase H2, a heterotrimeric enzyme that removes RNA from RNA-DNA heteroduplexes. RTF2, like RNase H2, is essential for mammalian development and maintains normal replication speed. However, persistent RTF2 and RNase H2 at stalled replication forks prevent efficient replication restart, which is dependent on PRIM1, the primase component of DNA polymerase α-primase. Our data show a fundamental need for RTF2-dependent regulation of replication-coupled ribonucleotide removal and reveal the existence of PRIM1-mediated direct replication restart in mammalian cells.


Sujet(s)
Réplication de l'ADN , ADN , Animaux , ADN/génétique , ADN/métabolisme , Altération de l'ADN , Protéines du cycle cellulaire/métabolisme , ARN/génétique , Ribonucléases/métabolisme , Mammifères/génétique
3.
bioRxiv ; 2023 Mar 13.
Article de Anglais | MEDLINE | ID: mdl-36993543

RÉSUMÉ

Genetic information is duplicated via the highly regulated process of DNA replication. The machinery coordinating this process, the replisome, encounters many challenges, including replication fork-stalling lesions that threaten the accurate and timely transmission of genetic information. Cells have multiple mechanisms to repair or bypass lesions that would otherwise compromise DNA replication1,2. We have previously shown that proteasome shuttle proteins, DNA Damage Inducible 1 and 2 (DDI1/2) function to regulate Replication Termination Factor 2 (RTF2) at the stalled replisome, allowing for replication fork stabilization and restart3. Here we show that RTF2 regulates replisome localization of RNase H2, a heterotrimeric enzyme responsible for removing RNA in the context of RNA-DNA heteroduplexes4-6. We show that during unperturbed DNA replication, RTF2, like RNase H2, is required to maintain normal replication fork speeds. However, persistent RTF2 and RNase H2 at stalled replication forks compromises the replication stress response, preventing efficient replication restart. Such restart is dependent on PRIM1, the primase component of DNA polymerase α-primase. Our data show a fundamental need for regulation of replication-coupled ribonucleotide incorporation during normal replication and the replication stress response that is achieved through RTF2. We also provide evidence for PRIM1 function in direct replication restart following replication stress in mammalian cells.

4.
Nature ; 612(7940): 495-502, 2022 12.
Article de Anglais | MEDLINE | ID: mdl-36450981

RÉSUMÉ

Fanconi anaemia (FA), a model syndrome of genome instability, is caused by a deficiency in DNA interstrand crosslink repair resulting in chromosome breakage1-3. The FA repair pathway protects against endogenous and exogenous carcinogenic aldehydes4-7. Individuals with FA are hundreds to thousands fold more likely to develop head and neck (HNSCC), oesophageal and anogenital squamous cell carcinomas8 (SCCs). Molecular studies of SCCs from individuals with FA (FA SCCs) are limited, and it is unclear how FA SCCs relate to sporadic HNSCCs primarily driven by tobacco and alcohol exposure or infection with human papillomavirus9 (HPV). Here, by sequencing genomes and exomes of FA SCCs, we demonstrate that the primary genomic signature of FA repair deficiency is the presence of high numbers of structural variants. Structural variants are enriched for small deletions, unbalanced translocations and fold-back inversions, and are often connected, thereby forming complex rearrangements. They arise in the context of TP53 loss, but not in the context of HPV infection, and lead to somatic copy-number alterations of HNSCC driver genes. We further show that FA pathway deficiency may lead to epithelial-to-mesenchymal transition and enhanced keratinocyte-intrinsic inflammatory signalling, which would contribute to the aggressive nature of FA SCCs. We propose that the genomic instability in sporadic HPV-negative HNSCC may arise as a result of the FA repair pathway being overwhelmed by DNA interstrand crosslink damage caused by alcohol and tobacco-derived aldehydes, making FA SCC a powerful model to study tumorigenesis resulting from DNA-crosslinking damage.


Sujet(s)
Réparation de l'ADN , Anémie de Fanconi , Génomique , Tumeurs de la tête et du cou , Humains , Aldéhydes/effets indésirables , Aldéhydes/métabolisme , Réparation de l'ADN/génétique , Anémie de Fanconi/génétique , Anémie de Fanconi/métabolisme , Anémie de Fanconi/anatomopathologie , Tumeurs de la tête et du cou/induit chimiquement , Tumeurs de la tête et du cou/génétique , Tumeurs de la tête et du cou/métabolisme , Tumeurs de la tête et du cou/anatomopathologie , Infections à papillomavirus , Carcinome épidermoïde de la tête et du cou/induit chimiquement , Carcinome épidermoïde de la tête et du cou/génétique , Carcinome épidermoïde de la tête et du cou/métabolisme , Carcinome épidermoïde de la tête et du cou/anatomopathologie , Altération de l'ADN/effets des médicaments et des substances chimiques
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE