Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 307
Filtrer
1.
Environ Health Perspect ; 132(6): 67007, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38889167

RÉSUMÉ

BACKGROUND: Overweight and obesity impose a considerable individual and social burden, and the urban environments might encompass factors that contribute to obesity. Nevertheless, there is a scarcity of research that takes into account the simultaneous interaction of multiple environmental factors. OBJECTIVES: Our objective was to perform an exposome-wide association study of body mass index (BMI) in a multicohort setting of 15 studies. METHODS: Studies were affiliated with the Dutch Geoscience and Health Cohort Consortium (GECCO), had different population sizes (688-141,825), and covered the entire Netherlands. Ten studies contained general population samples, others focused on specific populations including people with diabetes or impaired hearing. BMI was calculated from self-reported or measured height and weight. Associations with 69 residential neighborhood environmental factors (air pollution, noise, temperature, neighborhood socioeconomic and demographic factors, food environment, drivability, and walkability) were explored. Random forest (RF) regression addressed potential nonlinear and nonadditive associations. In the absence of formal methods for multimodel inference for RF, a rank aggregation-based meta-analytic strategy was used to summarize the results across the studies. RESULTS: Six exposures were associated with BMI: five indicating neighborhood economic or social environments (average home values, percentage of high-income residents, average income, livability score, share of single residents) and one indicating the physical activity environment (walkability in 5-km buffer area). Living in high-income neighborhoods and neighborhoods with higher livability scores was associated with lower BMI. Nonlinear associations were observed with neighborhood home values in all studies. Lower neighborhood home values were associated with higher BMI scores but only for values up to €300,000. The directions of associations were less consistent for walkability and share of single residents. DISCUSSION: Rank aggregation made it possible to flexibly combine the results from various studies, although between-study heterogeneity could not be estimated quantitatively based on RF models. Neighborhood social, economic, and physical environments had the strongest associations with BMI. https://doi.org/10.1289/EHP13393.


Sujet(s)
Indice de masse corporelle , Exposition environnementale , Exposome , Humains , Pays-Bas , Exposition environnementale/statistiques et données numériques , Caractéristiques de l'habitat/statistiques et données numériques , Mâle , Femelle , Obésité/épidémiologie , Études de cohortes , Forêts aléatoires
2.
EBioMedicine ; 103: 105096, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38574408

RÉSUMÉ

BACKGROUND: Type 2 diabetes (T2D) susceptibility is influenced by genetic and environmental factors. Previous findings suggest DNA methylation as a potential mechanism in T2D pathogenesis and progression. METHODS: We profiled DNA methylation in 248 blood samples from participants of European ancestry from 7 twin cohorts using a methylation sequencing platform targeting regulatory genomic regions encompassing 2,048,698 CpG sites. FINDINGS: We find and replicate 3 previously unreported T2D differentially methylated CpG positions (T2D-DMPs) at FDR 5% in RGL3, NGB and OTX2, and 20 signals at FDR 25%, of which 14 replicated. Integrating genetic variation and T2D-discordant monozygotic twin analyses, we identify both genetic-based and genetic-independent T2D-DMPs. The signals annotate to genes with established GWAS and EWAS links to T2D and its complications, including blood pressure (RGL3) and eye disease (OTX2). INTERPRETATION: The results help to improve our understanding of T2D disease pathogenesis and progression and may provide biomarkers for its complications. FUNDING: Funding acknowledgements for each cohort can be found in the Supplementary Note.


Sujet(s)
Ilots CpG , Méthylation de l'ADN , Diabète de type 2 , Humains , Diabète de type 2/génétique , Femelle , Mâle , Étude d'association pangénomique , Prédisposition génétique à une maladie , Adulte d'âge moyen , Épigenèse génétique , Facteurs de transcription Otx/génétique , Facteurs de transcription Otx/métabolisme , Complications du diabète/génétique , Analyse de profil d'expression de gènes
3.
Hum Reprod ; 39(1): 240-257, 2024 Jan 05.
Article de Anglais | MEDLINE | ID: mdl-38052102

RÉSUMÉ

STUDY QUESTION: Which genetic factors regulate female propensity for giving birth to spontaneous dizygotic (DZ) twins? SUMMARY ANSWER: We identified four new loci, GNRH1, FSHR, ZFPM1, and IPO8, in addition to previously identified loci, FSHB and SMAD3. WHAT IS KNOWN ALREADY: The propensity to give birth to DZ twins runs in families. Earlier, we reported that FSHB and SMAD3 as associated with DZ twinning and female fertility measures. STUDY DESIGN, SIZE, DURATION: We conducted a genome-wide association meta-analysis (GWAMA) of mothers of spontaneous dizygotic (DZ) twins (8265 cases, 264 567 controls) and of independent DZ twin offspring (26 252 cases, 417 433 controls). PARTICIPANTS/MATERIALS, SETTING, METHODS: Over 700 000 mothers of DZ twins, twin individuals and singletons from large cohorts in Australia/New Zealand, Europe, and the USA were carefully screened to exclude twins born after use of ARTs. Genetic association analyses by cohort were followed by meta-analysis, phenome wide association studies (PheWAS), in silico and in vivo annotations, and Zebrafish functional validation. MAIN RESULTS AND THE ROLE OF CHANCE: This study enlarges the sample size considerably from previous efforts, finding four genome-wide significant loci, including two novel signals and a further two novel genes that are implicated by gene level enrichment analyses. The novel loci, GNRH1 and FSHR, have well-established roles in female reproduction whereas ZFPM1 and IPO8 have not previously been implicated in female fertility. We found significant genetic correlations with multiple aspects of female reproduction and body size as well as evidence for significant selection against DZ twinning during human evolution. The 26 top single nucleotide polymorphisms (SNPs) from our GWAMA in European-origin participants weakly predicted the crude twinning rates in 47 non-European populations (r = 0.23 between risk score and population prevalence, s.e. 0.11, 1-tail P = 0.058) indicating that genome-wide association studies (GWAS) are needed in African and Asian populations to explore the causes of their respectively high and low DZ twinning rates. In vivo functional tests in zebrafish for IPO8 validated its essential role in female, but not male, fertility. In most regions, risk SNPs linked to known expression quantitative trait loci (eQTLs). Top SNPs were associated with in vivo reproductive hormone levels with the top pathways including hormone ligand binding receptors and the ovulation cycle. LARGE SCALE DATA: The full DZT GWAS summary statistics will made available after publication through the GWAS catalog (https://www.ebi.ac.uk/gwas/). LIMITATIONS, REASONS FOR CAUTION: Our study only included European ancestry cohorts. Inclusion of data from Africa (with the highest twining rate) and Asia (with the lowest rate) would illuminate further the biology of twinning and female fertility. WIDER IMPLICATIONS OF THE FINDINGS: About one in 40 babies born in the world is a twin and there is much speculation on why twinning runs in families. We hope our results will inform investigations of ovarian response in new and existing ARTs and the causes of female infertility. STUDY FUNDING/COMPETING INTEREST(S): Support for the Netherlands Twin Register came from the Netherlands Organization for Scientific Research (NWO) and The Netherlands Organization for Health Research and Development (ZonMW) grants, 904-61-193, 480-04-004, 400-05-717, Addiction-31160008, 911-09-032, Biobanking and Biomolecular Resources Research Infrastructure (BBMRI.NL, 184.021.007), Royal Netherlands Academy of Science Professor Award (PAH/6635) to DIB, European Research Council (ERC-230374), Rutgers University Cell and DNA Repository (NIMH U24 MH068457-06), the Avera Institute, Sioux Falls, South Dakota (USA) and the National Institutes of Health (NIH R01 HD042157-01A1) and the Genetic Association Information Network (GAIN) of the Foundation for the National Institutes of Health and Grand Opportunity grants 1RC2 MH089951. The QIMR Berghofer Medical Research Institute (QIMR) study was supported by grants from the National Health and Medical Research Council (NHMRC) of Australia (241944, 339462, 389927, 389875, 389891, 389892, 389938, 443036, 442915, 442981, 496610, 496739, 552485, 552498, 1050208, 1075175). L.Y. is funded by Australian Research Council (Grant number DE200100425). The Minnesota Center for Twin and Family Research (MCTFR) was supported in part by USPHS Grants from the National Institute on Alcohol Abuse and Alcoholism (AA09367 and AA11886) and the National Institute on Drug Abuse (DA05147, DA13240, and DA024417). The Women's Genome Health Study (WGHS) was funded by the National Heart, Lung, and Blood Institute (HL043851 and HL080467) and the National Cancer Institute (CA047988 and UM1CA182913), with support for genotyping provided by Amgen. Data collection in the Finnish Twin Registry has been supported by the Wellcome Trust Sanger Institute, the Broad Institute, ENGAGE-European Network for Genetic and Genomic Epidemiology, FP7-HEALTH-F4-2007, grant agreement number 201413, National Institute of Alcohol Abuse and Alcoholism (grants AA-12502, AA-00145, AA-09203, AA15416, and K02AA018755) and the Academy of Finland (grants 100499, 205585, 118555, 141054, 264146, 308248, 312073 and 336823 to J. Kaprio). TwinsUK is funded by the Wellcome Trust, Medical Research Council, Versus Arthritis, European Union Horizon 2020, Chronic Disease Research Foundation (CDRF), Zoe Ltd and the National Institute for Health Research (NIHR) Clinical Research Network (CRN) and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London. For NESDA, funding was obtained from the Netherlands Organization for Scientific Research (Geestkracht program grant 10000-1002), the Center for Medical Systems Biology (CSMB, NVVO Genomics), Biobanking and Biomolecular Resources Research Infrastructure (BBMRI-NL), VU University's Institutes for Health and Care Research (EMGO+) and Neuroscience Campus Amsterdam, University Medical Center Groningen, Leiden University Medical Center, National Institutes of Health (NIH, ROI D0042157-01A, MH081802, Grand Opportunity grants 1 RC2 Ml-1089951 and IRC2 MH089995). Part of the genotyping and analyses were funded by the Genetic Association Information Network (GAIN) of the Foundation for the National Institutes of Health. Computing was supported by BiG Grid, the Dutch e-Science Grid, which is financially supported by NWO. Work in the Del Bene lab was supported by the Programme Investissements d'Avenir IHU FOReSIGHT (ANR-18-IAHU-01). C.R. was supported by an EU Horizon 2020 Marie Sklodowska-Curie Action fellowship (H2020-MSCA-IF-2014 #661527). H.S. and K.S. are employees of deCODE Genetics/Amgen. The other authors declare no competing financial interests. TRIAL REGISTRATION NUMBER: N/A.


Sujet(s)
Fécondité , Étude d'association pangénomique , Gémellité dizygote , Animaux , Femelle , Humains , Grossesse , Protéines de transport/génétique , Fécondité/génétique , Hormones , Protéines/génétique , États-Unis , Danio zébré/génétique
4.
BMC Med ; 21(1): 508, 2023 12 21.
Article de Anglais | MEDLINE | ID: mdl-38129841

RÉSUMÉ

BACKGROUND: The influence of genetics and environment on the association of the plasma proteome with body mass index (BMI) and changes in BMI remains underexplored, and the links to other omics in these associations remain to be investigated. We characterized protein-BMI trajectory associations in adolescents and adults and how these connect to other omics layers. METHODS: Our study included two cohorts of longitudinally followed twins: FinnTwin12 (N = 651) and the Netherlands Twin Register (NTR) (N = 665). Follow-up comprised 4 BMI measurements over approximately 6 (NTR: 23-27 years old) to 10 years (FinnTwin12: 12-22 years old), with omics data collected at the last BMI measurement. BMI changes were calculated in latent growth curve models. Mixed-effects models were used to quantify the associations between the abundance of 439 plasma proteins with BMI at blood sampling and changes in BMI. In FinnTwin12, the sources of genetic and environmental variation underlying the protein abundances were quantified by twin models, as were the associations of proteins with BMI and BMI changes. In NTR, we investigated the association of gene expression of genes encoding proteins identified in FinnTwin12 with BMI and changes in BMI. We linked identified proteins and their coding genes to plasma metabolites and polygenic risk scores (PRS) applying mixed-effects models and correlation networks. RESULTS: We identified 66 and 14 proteins associated with BMI at blood sampling and changes in BMI, respectively. The average heritability of these proteins was 35%. Of the 66 BMI-protein associations, 43 and 12 showed genetic and environmental correlations, respectively, including 8 proteins showing both. Similarly, we observed 7 and 3 genetic and environmental correlations between changes in BMI and protein abundance, respectively. S100A8 gene expression was associated with BMI at blood sampling, and the PRG4 and CFI genes were associated with BMI changes. Proteins showed strong connections with metabolites and PRSs, but we observed no multi-omics connections among gene expression and other omics layers. CONCLUSIONS: Associations between the proteome and BMI trajectories are characterized by shared genetic, environmental, and metabolic etiologies. We observed few gene-protein pairs associated with BMI or changes in BMI at the proteome and transcriptome levels.


Sujet(s)
Multi-omique , Protéome , Humains , Adolescent , Jeune adulte , Adulte , Enfant , Indice de masse corporelle , Protéome/génétique , Jumeaux monozygotes/génétique , Études longitudinales
5.
Biol Psychiatry Glob Open Sci ; 3(4): 958-968, 2023 Oct.
Article de Anglais | MEDLINE | ID: mdl-37881547

RÉSUMÉ

Background: Family members resemble each other in their propensity for aggression. In twin studies, approximately 50% of the variance in aggression can be explained by genetic influences. However, if there are genotype-environment correlation mechanisms, such as environmental manifestations of parental and sibling genotypes, genetic influences may partly reflect environmental influences. In this study, we investigated the importance of indirect polygenic score (PGS) effects on aggression. Methods: We modeled the effect of PGSs based on 3 genome-wide association studies: early-life aggression, educational attainment, and attention-deficit/hyperactivity disorder (ADHD). The associations with aggression were tested in a within- and between-family design (37,796 measures from 7740 individuals, ages 3-86 years [mean = 14.20 years, SE = 12.03], from 3107 families, 55% female) and in a transmitted/nontransmitted PGS design (42,649 measures from 6653 individuals, ages 3-61 years [mean = 11.81 years, SE = 8.68], from 3024 families, 55% female). All participants are enrolled in the Netherlands Twin Register. Results: We found no evidence for contributions of indirect PGS effects on aggression in either a within- and between-family design or a transmitted/nontransmitted PGS design. Results indicate significant direct effects on aggression for the PGSs based on early-life aggression, educational attainment, and ADHD, although explained variance was low (within- and between-family: early-life aggression R2 = 0.3%, early-life ADHD R2 = 0.6%, educational attainment R2 = 0.7%; transmitted/nontransmitted PGSs: early-life aggression R2 = 0.2%, early-life ADHD R2 = 0.9%, educational attainment R2 = 0.5%). Conclusions: PGSs included in the current study had a direct (but no indirect) effect on aggression, consistent with results of previous twin and family studies. Further research involving other PGSs for aggression and related phenotypes is needed to determine whether this conclusion generalizes to overall genetic influences on aggression.

6.
S D Med ; 76(6): 248-256, 2023 Jun.
Article de Anglais | MEDLINE | ID: mdl-37732913

RÉSUMÉ

INTRODUCTION: During the coronavirus disease 2019 (COVID-19) pandemic, real-time reverse transcription polymerase chain reaction (RT-PCR) became an essential tool for laboratories to provide high-sensitivity qualitative diagnostic testing for patients and real-time data to public health officials. Here we explore the predictive value of quantitative data from RT-PCR cycle threshold (Ct) values in epidemiological measures, symptom presentation, and variant transition. METHODS: To examine the association with hospitalizations and deaths, data from 74,479 patients referred to the Avera Institute for Human Genetics (AIHG) for COVID-19 testing in 2020 were matched by calendar week to epidemiological data reported by the South Dakota Department of Health. We explored the association between symptom data, patient age, and Ct values for 101 patients. We also explored changes in Ct values during variant transition detected by genomic surveillance sequencing of the AIHG testing population during 2021. RESULTS: Measures from AIHG diagnostic testing strongly explain variance in the South Dakota state positivity percentage (R2 = 0.758), a two-week delay in hospitalizations (R2 = 0.856), and a four-week delay in deaths (R2 = 0.854). Based on factor analysis of patient symptoms, three groups could be distinguished which had different presentations of age, Ct value, and time from collection. Additionally, conflicting Ct value results among SARSCoV- 2 variants during variant transition may reflect the community transmission dynamics. CONCLUSIONS: Measures of Ct value in RT-PCR diagnostic assays combined with routine screening have valuable applications in monitoring the dynamics of SARS-CoV-2 within communities.


Sujet(s)
COVID-19 , SARS-CoV-2 , Humains , SARS-CoV-2/génétique , COVID-19/diagnostic , COVID-19/épidémiologie , Dépistage de la COVID-19 , Hospitalisation , Pandémies
7.
Elife ; 122023 08 10.
Article de Anglais | MEDLINE | ID: mdl-37643467

RÉSUMÉ

Background: Smoking-associated DNA methylation levels identified through epigenome-wide association studies (EWASs) are generally ascribed to smoking-reactive mechanisms, but the contribution of a shared genetic predisposition to smoking and DNA methylation levels is typically not accounted for. Methods: We exploited a strong within-family design, that is, the discordant monozygotic twin design, to study reactiveness of DNA methylation in blood cells to smoking and reversibility of methylation patterns upon quitting smoking. Illumina HumanMethylation450 BeadChip data were available for 769 monozygotic twin pairs (mean age = 36 years, range = 18-78, 70% female), including pairs discordant or concordant for current or former smoking. Results: In pairs discordant for current smoking, 13 differentially methylated CpGs were found between current smoking twins and their genetically identical co-twin who never smoked. Top sites include multiple CpGs in CACNA1D and GNG12, which encode subunits of a calcium voltage-gated channel and G protein, respectively. These proteins interact with the nicotinic acetylcholine receptor, suggesting that methylation levels at these CpGs might be reactive to nicotine exposure. All 13 CpGs have been previously associated with smoking in unrelated individuals and data from monozygotic pairs discordant for former smoking indicated that methylation patterns are to a large extent reversible upon smoking cessation. We further showed that differences in smoking level exposure for monozygotic twins who are both current smokers but differ in the number of cigarettes they smoke are reflected in their DNA methylation profiles. Conclusions: In conclusion, by analysing data from monozygotic twins, we robustly demonstrate that DNA methylation level in human blood cells is reactive to cigarette smoking. Funding: We acknowledge funding from the National Institute on Drug Abuse grant DA049867, the Netherlands Organization for Scientific Research (NWO): Biobanking and Biomolecular Research Infrastructure (BBMRI-NL, NWO 184.033.111) and the BBRMI-NL-financed BIOS Consortium (NWO 184.021.007), NWO Large Scale infrastructures X-Omics (184.034.019), Genotype/phenotype database for behaviour genetic and genetic epidemiological studies (ZonMw Middelgroot 911-09-032); Netherlands Twin Registry Repository: researching the interplay between genome and environment (NWO-Groot 480-15-001/674); the Avera Institute, Sioux Falls (USA), and the National Institutes of Health (NIH R01 HD042157-01A1, MH081802, Grand Opportunity grants 1RC2 MH089951 and 1RC2 MH089995); epigenetic data were generated at the Human Genomics Facility (HuGe-F) at ErasmusMC Rotterdam. Cotinine assaying was sponsored by the Neuroscience Campus Amsterdam. DIB acknowledges the Royal Netherlands Academy of Science Professor Award (PAH/6635).


The genetic information of people who smoke present distinctive characteristics. In particular, previous research has revealed differences in patterns of DNA methylation, a type of chemical modification that helps cells switch certain genes on or off. However, most of these studies could not establish for sure whether these changes were caused by smoking, predisposed individuals to smoke, or were driven by underlying genetic variation in the DNA sequence itself. To investigate this question, van Dongen et al. examined DNA methylation data from the blood cells of over 700 pairs of identical twins. These individuals share the exact same genetic information, making it possible to better evaluate the impact of lifestyle on DNA modifications. The analyses identified differences in methylation at 13 DNA locations in pairs of twins where one was a current smoker and their sibling had never smoked. Two of the genes code for proteins involved in the response to nicotine, the primary addictive chemical in cigarette smoke. The differences were smaller if one of the twins had stopped smoking, suggesting that quitting can help to reverse some of these changes. These findings confirm that DNA methylation in blood cells is influenced by cigarette smoke, which could help to better understand smoking-associated diseases. They also demonstrate how useful identical twins studies can be to identify methylation changes that are markers of lifestyle.


Sujet(s)
Méthylation de l'ADN , Jumeaux monozygotes , États-Unis , Femelle , Humains , Adolescent , Jeune adulte , Adulte , Adulte d'âge moyen , Sujet âgé , Mâle , Jumeaux monozygotes/génétique , Biobanques , Fumer/génétique , Épigénome
8.
medRxiv ; 2023 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-37425750

RÉSUMÉ

Background: The influence of genetics and environment on the association of the plasma proteome with body mass index (BMI) and changes in BMI remain underexplored, and the links to other omics in these associations remain to be investigated. We characterized protein-BMI trajectory associations in adolescents and adults and how these connect to other omics layers. Methods: Our study included two cohorts of longitudinally followed twins: FinnTwin12 (N=651) and the Netherlands Twin Register (NTR) (N=665). Follow-up comprised four BMI measurements over approximately 6 (NTR: 23-27 years old) to 10 years (FinnTwin12: 12-22 years old), with omics data collected at the last BMI measurement. BMI changes were calculated using latent growth curve models. Mixed-effects models were used to quantify the associations between the abundance of 439 plasma proteins with BMI at blood sampling and changes in BMI. The sources of genetic and environmental variation underlying the protein abundances were quantified using twin models, as were the associations of proteins with BMI and BMI changes. In NTR, we investigated the association of gene expression of genes encoding proteins identified in FinnTwin12 with BMI and changes in BMI. We linked identified proteins and their coding genes to plasma metabolites and polygenic risk scores (PRS) using mixed-effect models and correlation networks. Results: We identified 66 and 14 proteins associated with BMI at blood sampling and changes in BMI, respectively. The average heritability of these proteins was 35%. Of the 66 BMI-protein associations, 43 and 12 showed genetic and environmental correlations, respectively, including 8 proteins showing both. Similarly, we observed 6 and 4 genetic and environmental correlations between changes in BMI and protein abundance, respectively. S100A8 gene expression was associated with BMI at blood sampling, and the PRG4 and CFI genes were associated with BMI changes. Proteins showed strong connections with many metabolites and PRSs, but we observed no multi-omics connections among gene expression and other omics layers. Conclusions: Associations between the proteome and BMI trajectories are characterized by shared genetic, environmental, and metabolic etiologies. We observed few gene-protein pairs associated with BMI or changes in BMI at the proteome and transcriptome levels.

9.
Front Genet ; 14: 1150697, 2023.
Article de Anglais | MEDLINE | ID: mdl-37396041

RÉSUMÉ

Introduction: Assortative mating refers describes a phenomenon in which individuals with similar phenotypic traits are more likely to mate and reproduce with each other; i.e. assortative mating occurs when individuals choose partners based on their similarity or dissimilarity in certain traits.to patterns of non-random mating of spouses leading to phenotypic resemblance. There are various theories about the its underlying mechanisms, which have different genetic consequences. Methods: We analyzed examined two possible mechanisms underlying assortative mating - phenotypic assortment and social homogamy - for educational attainment in two countries utilizing data of mono- and dizygotic twins and their spouses (1,451 Finnish and 1,616 Dutch twin-spouse pairs). Results: The spousal correlations were 0.51 in Finland and 0.45 in the Netherlands, to which phenotypic assortment contributed 0.35 and 0.30, and social homogamy 0.16 and 0.15, respectively. Conclusion: Both social homogamy and phenotypic assortment are important processes in spouse selection in Finland and the Netherlands. In both countries, phenotypic assortment contributes to a greater degree to the similarity of spouses than social homogamy.

10.
Twin Res Hum Genet ; 26(3): 199-208, 2023 06.
Article de Anglais | MEDLINE | ID: mdl-37448258

RÉSUMÉ

In studies of singletons, a range of early-life characteristics have been reported to be associated with handedness, but some of these associations have failed to replicate. We examined associations between 23 early life characteristics with handedness in a large sample of 37,495 5-year-old twins. We considered three definitions of handedness: left-handedness (LH), mixed-handedness (MH), and non-right-handedness (NRH). Our main aim was to test whether the associations with sex, birth weight, gestational age, and season of birth - as reported in singletons - replicate in twins, and to examine twin-specific variables, including zygosity, chorionicity, birth order, and intertwin delivery time. Compared to previously published data from adults born as singletons (7.23%), the prevalence of NRH was higher in both twins (16.19%) and their parents (15.09%). In the twins, LH and NRH were associated with parents' LH. Male sex and lower gestational age were associated with NRH, and LH was associated with not being breastfed. MH was related to neurodevelopmental delays and higher externalizing problems later in childhood. Other previously reported associations were not replicated, and no twin-specific characteristics were related to handedness. These results emphasize the importance of considering multiple definitions of handedness and indicate a small number of replicated associations across studies.


Sujet(s)
Latéralité fonctionnelle , Jumeaux , Adulte , Femelle , Humains , Mâle , Latéralité fonctionnelle/génétique , Jumeaux/génétique , Poids de naissance , Âge gestationnel , Parents
11.
Brain Commun ; 5(1): fcad024, 2023.
Article de Anglais | MEDLINE | ID: mdl-36824390

RÉSUMÉ

Blood-based biomarkers could prove useful to predict Alzheimer's disease core pathologies in advance of clinical symptoms. Implementation of such biomarkers requires a solid understanding of their long-term dynamics and the contribution of confounding to their association with Alzheimer's disease pathology. Here we assess the value of plasma amyloid-ß1-42/1-40, phosphorylated-tau181 and glial fibrillary acidic protein to detect early Alzheimer's disease pathology, accounting for confounding by genetic and early environmental factors. Participants were 200 monozygotic twins, aged ≥60 years with normal cognition from the european medical information framework for Alzheimer's disease study. All twins had amyloid-ß status and plasma samples available at study enrolment. For 80 twins, additional plasma samples were available that had been collected approximately 10 years prior to amyloid-ß status assessment. Single-molecule array assays were applied to measure amyloid-ß1-42/1-40, phosphorylated-tau181 and glial fibrillary acidic protein. Predictive value of and longitudinal change in these biomarkers were assessed using receiver operating characteristic curve analysis and linear mixed models. Amyloid pathology could be predicted using blood-based biomarkers obtained at the time of amyloid status assessment (amyloid-ß1-42/1-40: area under the curve = 0.65, P = 0.01; phosphorylated-tau181: area under the curve = 0.84, P < 0.001; glial fibrillary acidic protein: area under the curve = 0.74, P < 0.001), as well as using those obtained 10 years prior to amyloid status assessment (amyloid-ß1-42/1-40: area under the curve = 0.69, P = 0.03; phosphorylated-tau181: area under the curve = 0.92, P < 0.001; glial fibrillary acidic protein: area under the curve = 0.84, P < 0.001). Longitudinally, amyloid-ß1-42/1-40 levels decreased [ß (SE) = -0.12 (0.01), P < 0.001] and phosphorylated-tau181 levels increased [ß (SE) = 0.02 (0.01), P = 0.004]. Amyloid-ß-positive individuals showed a steeper increase in phosphorylated-tau181 compared with amyloid-ß-negative individuals [ß (SE) = 0.06 (0.02), P = 0.004]. Also amyloid-ß-positive individuals tended to show a steeper increase in glial fibrillary acidic protein [ß (SE) = 0.04 (0.02), P = 0.07]. Within monozygotic twin pairs, those with higher plasma phosphorylated-tau181 and lower amyloid-ß1-42/1-40 levels were more likely to be amyloid-ß positive [ß (SE) = 0.95 (0.26), P < 0.001; ß (SE) = -0.28 (0.14), P < 0.05] indicating minimal contribution of confounding by genetic and early environmental factors. Our data support the use of amyloid-ß1-42/1-40, phosphorylated-tau181 and glial fibrillary acidic protein as screening tools for Alzheimer's disease pathology in the normal aging population, which is of importance for enrolment of high-risk subjects in secondary, or even primary, prevention trials. Furthermore, these markers show potential as low-invasive monitoring tool of disease progression and possibly treatment effects in clinical trials.

12.
J Thromb Haemost ; 21(5): 1135-1147, 2023 05.
Article de Anglais | MEDLINE | ID: mdl-36716967

RÉSUMÉ

BACKGROUND: Fibrinogen plays an essential role in blood coagulation and inflammation. Circulating fibrinogen levels may be determined based on interindividual differences in DNA methylation at cytosine-phosphate-guanine (CpG) sites and vice versa. OBJECTIVES: To perform an EWAS to examine an association between blood DNA methylation levels and circulating fibrinogen levels to better understand its biological and pathophysiological actions. METHODS: We performed an epigenome-wide association study of circulating fibrinogen levels in 18 037 White, Black, American Indian, and Hispanic participants, representing 14 studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium. Circulating leukocyte DNA methylation was measured using the Illumina 450K array in 12 904 participants and using the EPIC array in 5133 participants. In each study, an epigenome-wide association study of fibrinogen was performed using linear mixed models adjusted for potential confounders. Study-specific results were combined using array-specific meta-analysis, followed by cross-replication of epigenome-wide significant associations. We compared models with and without CRP adjustment to examine the role of inflammation. RESULTS: We identified 208 and 87 significant CpG sites associated with fibrinogen levels from the 450K (p < 1.03 × 10-7) and EPIC arrays (p < 5.78 × 10-8), respectively. There were 78 associations from the 450K array that replicated in the EPIC array and 26 vice versa. After accounting for overlapping sites, there were 83 replicated CpG sites located in 61 loci, of which only 4 have been previously reported for fibrinogen. The examples of genes located near these CpG sites were SOCS3 and AIM2, which are involved in inflammatory pathways. The associations of all 83 replicated CpG sites were attenuated after CRP adjustment, although many remained significant. CONCLUSION: We identified 83 CpG sites associated with circulating fibrinogen levels. These associations are partially driven by inflammatory pathways shared by both fibrinogen and CRP.


Sujet(s)
Méthylation de l'ADN , Épigenèse génétique , Humains , Étude d'association pangénomique/méthodes , Locus génétiques , Inflammation/génétique , Fibrinogène/génétique , Ilots CpG
13.
J Affect Disord ; 323: 1-9, 2023 02 15.
Article de Anglais | MEDLINE | ID: mdl-36372132

RÉSUMÉ

BACKGROUND: In a substantial subgroup of depressed patients, atypical, energy-related depression symptoms (e.g. increased appetite/weight, hypersomnia, loss of energy) tend to cluster with immuno-metabolic dysregulations (e.g. increased BMI and inflammatory markers). This clustering is proposed to reflect a more homogeneous depression pathology. This study examines to what extent energy-related symptoms are associated and share sociodemographic, lifestyle and clinical characteristics. METHODS: Data were available from 13,965 participants from eight Dutch cohorts with DSM-5 lifetime major depression assessed by the Lifetime Depression Assessment Self-report (LIDAS) questionnaire. Information on four energy-related depression symptoms were extracted: energy loss, increased appetite, increased weight, and hypersomnia. Tetrachoric correlations between these symptoms, and associations of these symptoms with sociodemographic (sex, age, education), lifestyle (physical activity, BMI, smoking) and clinical characteristics (age of onset, episode duration, history, treatment and recency, and self-reported comorbidity) were computed. RESULTS: Correlations between energy-related symptoms were overall higher than those with other depression symptoms and varied from 0.90 (increased appetite vs increased weight) to 0.11 (increased appetite vs energy loss). All energy-related symptoms were strongly associated with higher BMI and a more severe clinical profile. Patients with increased appetite were more often smokers, and only patients with increased appetite or weight more often had a self-reported diagnosis of PTSD (OR = 1.17, p = 2.91E-08) and eating disorder (OR = 1.40, p = 4.08E-17). CONCLUSIONS: The symptom-specific associations may have consequences for a profile integrating these symptoms, which can be used to reflect immuno-metabolic depression. They indicate the need to study immuno-metabolic depression at individual symptom resolution as a starting point.


Sujet(s)
Trouble dépressif majeur , Troubles du sommeil par somnolence excessive , Humains , Dépression/épidémiologie , Dépression/diagnostic , Trouble dépressif majeur/diagnostic , Trouble dépressif majeur/épidémiologie , Comorbidité , Prise de poids , Fatigue
14.
Environ Int ; 168: 107491, 2022 10.
Article de Anglais | MEDLINE | ID: mdl-36081220

RÉSUMÉ

BACKGROUND: Exposure to ambient air pollution, even at low levels, is a major environmental health risk. The peripheral blood transcriptome provides a potential avenue for the elucidation of ambient air pollution related biological perturbations. We assessed the association between long-term estimates for seven priority air pollutants and perturbations in peripheral blood transcriptomics data collected in the Dutch National Twin Register (NTR) and Netherlands Study of Depression and Anxiety (NESDA) cohorts. METHODS: In both the discovery (n = 2438) and replication (n = 1567) cohort, outdoor concentration of 7 air pollutants (NO2, NOx, particulate matter (PM2.5, PM2.5abs, PM10, PMcoarse), and ultrafine particles) was predicted with land use regression models. Gene expression was assessed by Affymetrix U219 arrays. Multi-variable univariate mixed-effect models were applied to test for an association between the air pollutants and the transcriptome. Functional analysis was conducted in DAVID. RESULTS: In the discovery cohort, we observed for 335 genes (374 probes with FDR < 5 %) a perturbation in peripheral blood gene expression that was associated with long-term average levels of PM2.5. For 69 genes pooled effect estimates from the NTR and NESDA cohorts were significant. Identified genes play a role in biological pathways related to cell signaling and immune response. Sixty-two out of 69 genes had a similar direction of effect in an analysis in which we regressed the probes on differential PM2.5 exposure within monozygotic twin pairs, indicating that the observed differences in gene expression were likely driven by differences in air pollution, rather than by confounding by genetic factors. CONCLUSION: Our results indicate that PM2.5 can elicit a response in cell signaling and the immune system, both hallmarks of environmental diseases. The differential effect that we observed between air pollutants may aid in the understanding of differential health effects that have been observed with these exposures.


Sujet(s)
Polluants atmosphériques , Pollution de l'air , Polluants atmosphériques/analyse , Polluants atmosphériques/toxicité , Pollution de l'air/analyse , Exposition environnementale/effets indésirables , Exposition environnementale/analyse , Expression des gènes , Humains , Immunité , Matière particulaire/analyse , Matière particulaire/toxicité , Transduction du signal
16.
Int J Obes (Lond) ; 46(10): 1901-1909, 2022 10.
Article de Anglais | MEDLINE | ID: mdl-35945263

RÉSUMÉ

BACKGROUND: Body mass index (BMI) shows strong continuity over childhood and adolescence and high childhood BMI is the strongest predictor of adult obesity. Genetic factors strongly contribute to this continuity, but it is still poorly known how their contribution changes over childhood and adolescence. Thus, we used the genetic twin design to estimate the genetic correlations of BMI from infancy to adulthood and compared them to the genetic correlations of height. METHODS: We pooled individual level data from 25 longitudinal twin cohorts including 38,530 complete twin pairs and having 283,766 longitudinal height and weight measures. The data were analyzed using Cholesky decomposition offering genetic and environmental correlations of BMI and height between all age combinations from 1 to 19 years of age. RESULTS: The genetic correlations of BMI and height were stronger than the trait correlations. For BMI, we found that genetic correlations decreased as the age between the assessments increased, a trend that was especially visible from early to middle childhood. In contrast, for height, the genetic correlations were strong between all ages. Age-to-age correlations between environmental factors shared by co-twins were found for BMI in early childhood but disappeared altogether by middle childhood. For height, shared environmental correlations persisted from infancy to adulthood. CONCLUSIONS: Our results suggest that the genes affecting BMI change over childhood and adolescence leading to decreasing age-to-age genetic correlations. This change is especially visible from early to middle childhood indicating that new genetic factors start to affect BMI in middle childhood. Identifying mediating pathways of these genetic factors can open possibilities for interventions, especially for those children with high genetic predisposition to adult obesity.


Sujet(s)
Jumeaux dizygotes , Jumeaux monozygotes , Adolescent , Adulte , Taille/génétique , Indice de masse corporelle , Enfant , Enfant d'âge préscolaire , Humains , Nourrisson , Obésité/épidémiologie , Obésité/génétique , Jumeaux dizygotes/génétique , Jumeaux monozygotes/génétique , Jeune adulte
17.
Soc Sci Med ; 306: 115156, 2022 08.
Article de Anglais | MEDLINE | ID: mdl-35728461

RÉSUMÉ

RATIONALE: The coronavirus disease 2019 (COVID-19) pandemic and consequent lockdown measures have had a large impact on people's lives. Recent evidence suggests that self-rated health (SRH) scores remained relatively stable or increased during the pandemic. OBJECTIVE: For the current project, we examine potential changes in the variance decomposition of SRH before and during the COVID-19 pandemic in the Netherlands. METHODS: We analyse data from the Netherlands Twin Register to examine pre-pandemic SRH scores (N = 16,127), pandemic SRH scores (N = 17,451), and SRH difference scores (N = 7464). Additionally, we perform bivariate genetic analyses to estimate genetic and environmental variance components in pre-pandemic and pandemic SRH, and estimate the genetic correlation to assess potential gene-environment interaction. RESULTS: The majority of the sample (66.7%) reported the same SRH before and during the pandemic, while 10.8% reported a decrease, and 22.5% an increase. Individuals who reported good/excellent SRH before the pandemic were most likely to report unchanged SRH during the pandemic, and individuals with bad/mediocre/reasonable SRH more often reported increased SRH. The bivariate longitudinal genetic model reveals no significant change in variance decomposition of SRH from before to during the pandemic, with a heritability estimate of 45% (CI 36%-52%). We found that the genetic correlation could be constrained to 1, and a moderate unique environmental correlation (rE = 0.49, CI = 0.37 to 0.60). CONCLUSIONS: We theorize that the increases in SRH are explained by uninfected individuals evaluating their health more positively than under normal circumstances (partly through social comparison with infected individuals), rather than actual improvements. As the same genes are expressed under different environmental exposures, these results imply no evidence for gene-environment interaction. While different environmental factors might influence SRH at the two time-points, the influence of environmental factors does not become relatively more important during the pandemic.


Sujet(s)
COVID-19 , Santé de la population , COVID-19/épidémiologie , Contrôle des maladies transmissibles , État de santé , Humains , Études longitudinales , Pandémies
18.
Sci Rep ; 12(1): 5606, 2022 04 04.
Article de Anglais | MEDLINE | ID: mdl-35379837

RÉSUMÉ

Handedness has low heritability and epigenetic mechanisms have been proposed as an etiological mechanism. To examine this hypothesis, we performed an epigenome-wide association study of left-handedness. In a meta-analysis of 3914 adults of whole-blood DNA methylation, we observed that CpG sites located in proximity of handedness-associated genetic variants were more strongly associated with left-handedness than other CpG sites (P = 0.04), but did not identify any differentially methylated positions. In longitudinal analyses of DNA methylation in peripheral blood and buccal cells from children (N = 1737), we observed moderately stable associations across age (correlation range [0.355-0.578]), but inconsistent across tissues (correlation range [- 0.384 to 0.318]). We conclude that DNA methylation in peripheral tissues captures little of the variance in handedness. Future investigations should consider other more targeted sources of tissue, such as the brain.


Sujet(s)
Méthylation de l'ADN , Muqueuse de la bouche , Adulte , Enfant , Ilots CpG , Latéralité fonctionnelle/génétique , Étude d'association pangénomique , Humains
19.
Genes Brain Behav ; 21(8): e12796, 2022 11.
Article de Anglais | MEDLINE | ID: mdl-35289084

RÉSUMÉ

By treating the coronavirus disease 2019 (COVID-19) pandemic as a natural experiment, we examine the influence of substantial environmental change (i.e., lockdown measures) on individual differences in quality of life (QoL) in the Netherlands. We compare QoL scores before the pandemic (N = 25,772) to QoL scores during the pandemic (N = 17,222) in a sample of twins and their family members. On a 10-point scale, we find a significant decrease in mean QoL from 7.73 (SD = 1.06) before the pandemic to 7.02 (SD = 1.36) during the pandemic (Cohen's d = 0.49). Additionally, variance decomposition shows an increase in unique environmental variance during the pandemic (0.30-1.08), and a decrease in the heritability estimate from 30.9% to 15.5%. We hypothesize that the increased environmental variance is the result of lockdown measures not impacting everybody equally. Whether these effects persist over longer periods and how they impact health inequalities remain topics for future investigation.


Sujet(s)
COVID-19 , Pandémies , Humains , Qualité de vie , Contrôle des maladies transmissibles , Famille
20.
Behav Genet ; 52(1): 13-25, 2022 01.
Article de Anglais | MEDLINE | ID: mdl-34518922

RÉSUMÉ

The corona virus disease 2019 (COVID-19) pandemic and the restrictions to reduce the spread of the virus has had a large impact on daily life. We investigated the individual differences in the effect of the COVID-19 pandemic and first lockdown on optimism and meaning in life in a sample from the Netherlands Twin Register. Participants completed surveys before (N = 9964, Mean age: 48.2, SD = 14.4) and during the first months of the pandemic (i.e. April-May 2020, N = 17,464, Mean age: 44.6 SD = 14.8), with a subsample completing both surveys (N = 6461, Mean age T1: 48.8, SD = 14.5). We applied genetic covariance structure models to twin data to investigate changes in the genetic architecture of the outcome traits due to the pandemic and the interaction of genes with the environmental exposure. Although 56% and 35% of the sample was negatively affected by the pandemic in their optimism and meaning in life, many participants were stable (32% and 43%) or even showed increased optimism and meaning in life (11% and 22%). Subgroups, specifically women, higher educated people, and people with poorer health, experienced larger negative effects. During the first months of the pandemic, slightly lower heritability estimates for optimism and meaning in life (respectively 20% and 25%) were obtained compared to pre-pandemic (respectively 26% and 32%), although confidence intervals overlap. The lower than unity genetic correlations across time (.75 and .63) suggest gene-environment interactions, where the expression of genes that influence optimism and meaning in life differs before and during the pandemic. The COVID-19 pandemic is a strong exposure that leads to imbalanced effects on the well-being of individuals. Some people decrease in well-being, while others get more optimistic and consider their lives as more meaningful during the pandemic. These differences are partly explained by individual differences in genetic sensitivity to extreme environmental change. More knowledge on the person-specific response to specific environmental variables underlying these individual differences is urgently needed to prevent further inequality.


Sujet(s)
COVID-19 , Interaction entre gènes et environnement , Pandémies , Adulte , Contrôle des maladies transmissibles , Femelle , Humains , Mâle , Adulte d'âge moyen , Pays-Bas/épidémiologie , Optimisme , Enregistrements , Jumeaux
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE