Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 78
Filtrer
1.
Animals (Basel) ; 14(11)2024 May 29.
Article de Anglais | MEDLINE | ID: mdl-38891649

RÉSUMÉ

The University of Florida's Cervidae Health Research Initiative (CHeRI) conducted a post-mortem examination of a two-year-old white-tailed doe deceased at a northern Florida white-tailed deer farm. The carcass of the deer had notable emaciation and bloating. Upon opening of the carcass, there was pneumonia and the rumen was tympanic and enlarged. Additionally, the abomasum was distended and contained approximately 5 kg of sand. It is not uncommon for white-tailed deer to engage in geophagia (eating soil or sand), which typically does not result in diseases or fatalities. However, in this animal, we suspect a chronic process that created a physical barrier, hindering nutrient absorption and resulting in physical irritation of the abomasal mucosa with subsequent inflammation. This may have caused a disturbance in immune system function, allowing opportunistic bacteria to colonize and invade other organs, such as the lungs, contributing to the animal's death.

2.
Animals (Basel) ; 14(10)2024 May 20.
Article de Anglais | MEDLINE | ID: mdl-38791728

RÉSUMÉ

A 7-year-old farmed white-tailed deer doe was transported to a Levy County, Florida property and began to decline in health, exhibiting weight loss and pelvic limb weakness. The doe prematurely delivered live twin fawns, both of which later died. The doe was treated with corticosteroids, antibiotics, gastric cytoprotectants, and B vitamins but showed no improvement. The doe was euthanized, and a post mortem examination was performed under the University of Florida's Cervidae Health Research Initiative. We collected lung tissue after the animal was euthanized and performed histological evaluation, using H&E and Ziehl-Neelsen (ZN) staining, and molecular evaluation, using conventional PCR, followed by Sanger sequencing. The microscopic observations of the H&E-stained lung showed multifocal granuloma, while the ZN-stained tissue revealed low numbers of beaded, magenta-staining rod bacteria inside the granuloma formation. Molecular analysis identified the presence of Mycobacterium kansasii. This isolation of a non-tuberculous Mycobacterium in a white-tailed deer emphasizes the importance of specific pathogen identification in cases of tuberculosis-like disease in farmed and free-ranging cervids. We report the first case of M. kansasii infection in a farmed white-tailed deer (Odocoileus virginianus) in Florida. Although M. kansasii cases are sporadic in white-tailed deer, it is important to maintain farm biosecurity and prevent farmed cervids from contacting wildlife to prevent disease transmission.

3.
Viruses ; 16(5)2024 05 11.
Article de Anglais | MEDLINE | ID: mdl-38793647

RÉSUMÉ

(1) Background: Epizootic hemorrhagic disease virus (EHDV) and bluetongue virus (BTV) are orbiviruses that cause hemorrhagic disease (HD) with significant economic and population health impacts on domestic livestock and wildlife. In the United States, white-tailed deer (Odocoileus virginianus) are particularly susceptible to these viruses and are a frequent blood meal host for various species of Culicoides biting midges (Diptera: Ceratopogonidae) that transmit orbiviruses. The species of Culicoides that transmit EHDV and BTV vary between regions, and larval habitats can differ widely between vector species. Understanding how midges are distributed across landscapes can inform HD virus transmission risk on a local scale, allowing for improved animal management plans to avoid suspected high-risk areas or target these areas for insecticide control. (2) Methods: We used occupancy modeling to estimate the abundance of gravid (egg-laden) and parous (most likely to transmit the virus) females of two putative vector species, C. stellifer and C. venustus, and one species, C. haematopotus, that was not considered a putative vector. We developed a universal model to determine habitat preferences, then mapped a predicted weekly midge abundance during the HD transmission seasons in 2015 (July-October) and 2016 (May-October) in Florida. (3) Results: We found differences in habitat preferences and spatial distribution between the parous and gravid states for C. haematopotus and C. stellifer. Gravid midges preferred areas close to water on the border of well and poorly drained soil. They also preferred mixed bottomland hardwood habitats, whereas parous midges appeared less selective of habitat. (4) Conclusions: If C. stellifer is confirmed as an EHDV vector in this region, the distinct spatial and abundance patterns between species and physiological states suggest that the HD risk is non-random across the study area.


Sujet(s)
Animaux sauvages , Virus de la langue bleue , Ceratopogonidae , Cervidae , Virus de la maladie hémorragique épizootique , Vecteurs insectes , Infections à Reoviridae , Animaux , Ceratopogonidae/virologie , Ceratopogonidae/physiologie , Virus de la maladie hémorragique épizootique/physiologie , Cervidae/virologie , Vecteurs insectes/virologie , Vecteurs insectes/physiologie , Virus de la langue bleue/physiologie , Animaux sauvages/virologie , Infections à Reoviridae/transmission , Infections à Reoviridae/médecine vétérinaire , Infections à Reoviridae/virologie , Écosystème , Saisons , Fermes , Oiseaux/virologie
4.
Virus Genes ; 60(1): 100-104, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38182930

RÉSUMÉ

Bluetongue disease is a reportable animal disease that affects wild and farmed ruminants, including white-tailed deer (WTD). This report documents the clinical findings, ancillary diagnostics, and genomic characterization of a novel reassortant bluetongue virus serotype 2 (BTV-2) strain isolated from a dead Florida farmed WTD in 2022. Our analyses support that this BTV-2 strain likely stemmed from the acquisition of genome segments from co-circulating BTV strains in Florida and Louisiana. In addition, our analyses also indicate that genetically uncharacterized BTV strains may be circulating in the Southeastern USA; however, the identity and reassortant status of these BTV strains cannot be determined based on the VP2 and VP5 genome sequences. Hence, continued surveillance based on complete genome characterization is needed to understand the genetic diversity of BTV strains in this region and the potential threat they may pose to the health of deer and other ruminants.


Sujet(s)
Virus de la langue bleue , Cervidae , Animaux , Floride , Virus de la langue bleue/génétique , Sérogroupe
5.
Article de Anglais | MEDLINE | ID: mdl-37841307

RÉSUMÉ

Triatomines (Hemiptera: Reduviidae: Triatominae), commonly called "kissing bugs", are blood-sucking pests and vectors of the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease (CD). Eleven species of kissing bugs occur throughout the southern half of the USA, four of which are well known to invade human dwellings. Certain kissing bugs in the USA are known to transmit T. cruzi to humans and other animals and their bites can also lead to serious allergic reactions, including anaphylaxis. In Florida, the kissing bug Triatoma sanguisuga frequently invades homes, bites residents, and has been found infected with T. cruzi, placing humans and companion animals at risk for CD. This review outlines integrated pest management (IPM) strategies for minimizing human exposure to T. sanguisuga and CD. A comprehensive IPM plan for kissing bugs includes detailed inspections, removal of vertebrate host nesting areas, and kissing bug harborage, home improvements to exclude kissing bugs from entering structures, pest removal, and judicious use of pesticides. This approach can limit or eliminate kissing bug entry into residential structures, thereby preventing kissing bug bites, and CD infections in humans and companion animals.

6.
Vet Q ; 43(1): 1-10, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37589252

RÉSUMÉ

Recent research focused on farmed deer has exposed many knowledge gaps regarding health assessment protocols for white-tailed deer (WTD). The objectives of this study were to establish de novo blood analyte reference intervals for farmed WTD fawns at birth (1-2 days of age; n = 84) and again at weaning (76-125 days of age; n = 28), to compare data at birth and at weaning to understand how these analytes are affected by the intrinsic factors age and sex in clinically normal WTD fawns, and to compare between clinically normal and sick WTD weanlings (respiratory disease n = 12; orbivirus-infected n = 6). Reference intervals were established for WTD fawns at birth and weaning. Female WTD neonates had significantly higher red blood cell counts, hematocrit, and hemoglobin compared to males. Most blood analytes were significantly different in clinically normal WTD neonates compared to weanlings, suggesting an effect of age. The observed sex- and age-related variations in WTD highlight the need to establish reference intervals that account for intrinsic factors. The comparison of clinically normal and sick WTD weanlings in this study identified higher MCHC and absolute monocytes in sick weanlings but these findings were presumably not biologically relevant given the small sample size for sick fawns. While the reference interval data presented herein will be useful for the veterinary care of WTD fawns at critical time periods in a high-density farm setting, this study also demonstrates the need to identify more sensitive and specific biomarkers for the assessment of health status in farmed WTD with specific underlying diseases.


Sujet(s)
Cervidae , Femelle , Mâle , Animaux , Sevrage , Fermes , Facteurs âges
7.
Int J Parasitol Parasites Wildl ; 21: 237-245, 2023 Aug.
Article de Anglais | MEDLINE | ID: mdl-37575667

RÉSUMÉ

In Latin America, synanthropic mammalian reservoirs maintain Trypanosoma cruzi, a parasitic protozoan, where they facilitate the transmission of the parasite to humans and other reservoir hosts in peridomestic settings. In the United States, raccoons (Procyon lotor) and Virginia opossums (Didelphis virginiana) are known synanthropic T. cruzi reservoir hosts; however, the role these species have in the peridomestic transmission cycle in the US is not well understood. This study aimed to identify the suite of mammalian reservoirs of T. cruzi in Florida. We also compared infection prevalence in raccoon populations sampled from within and outside of the estimated distribution of the common T. cruzi vector in Florida to gain insight into how the arthropod vector distribution impacts the distribution of infected reservoirs in the state. Finally, to investigate the impact of peridomestic landscapes on parasite prevalence, we compared the prevalence of T. cruzi-infected raccoons and opossums across five paired peridomestic and sylvatic sites. We live-trapped and collected peripheral blood samples from 135 raccoons, 112 opossums, 18 nine-banded armadillos (Dasypus novemcinctus), and nine species of rodents in north central Florida. Using quantitative PCR methods, we found that raccoons (42.2%, 95% CI [34.2-50.7%]) and opossums (50.9%, 95% CI [41.8-60.0%]) were infected with T. cruzi and the prevalence across habitats was similar for both raccoons (peridomestic: n = 77, 44.2%, 95% CI [33.6-55.3%], sylvatic: n = 58, 39.7%, 95% CI [28.1-52.5%]) and opossums (peridomestic: n = 66, 48.5%, 95% CI [36.8-60.3%], sylvatic: n = 46, 54.3%, 95% CI [40.2-67.8%]). Raccoons sampled outside the estimated distribution of Triatoma sanguisuga were not infected with T. cruzi (n = 73, 0.0%, 95% CI [0.0-5.0%]). Our study did not indicate that peridomestic habitats in Florida maintained a higher infection prevalence than their sylvatic counterparts; however, we did find a difference in prevalence within vs. outside the estimated vector distribution in Florida.

8.
Insects ; 14(7)2023 Jul 06.
Article de Anglais | MEDLINE | ID: mdl-37504618

RÉSUMÉ

Invasive wild pigs are distributed across much of the U.S. and are hosts to tick vectors of human disease. Herein, adult ticks were collected from 157 wild pigs in 21 northern and central Florida counties from 2019-2020 during removal efforts by USDA-APHIS Wildlife Services personnel and evaluated for their potential to be used as a method of tick-borne disease surveillance. Collected ticks were identified, screened for pathogens, and the effects of landscape metrics on tick community composition and abundance were investigated. A total of 1415 adult ticks of four species were collected. The diversity of tick species collected from wild pigs was comparable to collections made throughout the state with conventional surveillance methods. All species collected have implications for pathogen transmission to humans and other animals. Ehrlichia, Anaplasma-like, and Rickettsia spp. were detected in ticks collected from wild pigs. These results suggest that tick collection from wild pigs is a suitable means of surveillance for pathogens and vectors. The strongest drivers of variation in tick community composition were the developed open space and mixed forest landcover classes. Fragmented shrub/scrub habitat was associated with increased tick abundance. Similar models may be useful in predicting tick abundance and distribution patterns.

9.
Virus Genes ; 59(5): 732-740, 2023 Oct.
Article de Anglais | MEDLINE | ID: mdl-37439882

RÉSUMÉ

Hemorrhagic diseases caused by epizootic hemorrhagic disease virus or by bluetongue virus (BTV) are the most important orbivirus diseases affecting ruminants, including white-tailed deer (WTD). Bluetongue virus is of particular concern for farmed WTD in Florida, given its lethality and its wide distribution throughout the state. This study reports the clinical findings, ancillary diagnostics, and genomic characterization of two BTV serotype 1 strains isolated from two farmed WTD, from two different farms in Florida in 2019 and 2022. Phylogenetic and genetic analyses indicated that these two novel BTV-1 strains were reassortants. In addition, our analyses reveal that most genome segments of these strains were acquired from BTVs previously detected in ruminants in Florida, substantiating their endemism in the Southeastern U.S. Our findings underscore the need for additional research to determine the genetic diversity of BTV strains in Florida, their prevalence, and the potential risk of new BTV strains to WTD and other ruminants.


Sujet(s)
Virus de la langue bleue , Fièvre catarrhale du mouton , Cervidae , Virus de la maladie hémorragique épizootique , Infections à Reoviridae , Ovis , Animaux , Virus de la langue bleue/génétique , Floride , Sérogroupe , Fermes , Phylogenèse , Ruminants , Virus de la maladie hémorragique épizootique/génétique , Infections à Reoviridae/médecine vétérinaire
10.
J Med Entomol ; 60(3): 518-526, 2023 05 12.
Article de Anglais | MEDLINE | ID: mdl-37040561

RÉSUMÉ

Documenting the host use of vector species is important for understanding the transmission dynamics of vector-borne pathogens. Biting midges (Diptera: Ceratopogonidae: Culicoides) are vectors of epizootic hemorrhagic disease virus (EHDV) and bluetongue virus (BTV) worldwide. However, relative to mosquitoes and many other vector groups, host associations of this group are poorly documented. In this study, we used PCR-based bloodmeal analysis to determine species-level host associations of 3,603 blood-engorged specimens belonging to 18 Culicoides species at 8 deer farms in Florida, USA. We used a binomial mixed model with a Bayesian framework to compare the effect of host composition on the feeding patterns of Culicoides spp. and employed the Morisita-Horn Index to investigate the similarity of host use between farms for Culicoides stellifer and Culicoides insignis. Results show that the estimated probability of Culicoides spp. feeding upon white-tailed deer depends on the availability of cattle or exotic game and demonstrates differences in host-feeding selection among species. Culicoides insignis had high host similarity across farms suggesting that its host-use patterns are somewhat conserved. Culicoides stellifer had lower host similarity across farms suggesting that it is a more opportunistic feeder. White-tailed deer are fed upon by many Culicoides species on deer farms in Florida, and while most Culicoides species feed on white-tailed deer, the ratio of white-tailed deer bloodmeals to other bloodmeals is likely influenced by host availability. Culicoides spp. taking a majority of their bloodmeals from farmed white-tailed deer should be assessed for their vector competence for EHDV and BTV.


Sujet(s)
Virus de la langue bleue , Ceratopogonidae , Cervidae , Virus de la maladie hémorragique épizootique , Animaux , Bovins , Floride , Fermes , Théorème de Bayes , Vecteurs moustiques
11.
Microorganisms ; 11(3)2023 Mar 15.
Article de Anglais | MEDLINE | ID: mdl-36985329

RÉSUMÉ

Tick-borne infections are an increasing medical and veterinary concern in the southeastern United States, but there is limited understanding of how recreational greenspaces influence the hazard of pathogen transmission. This study aimed to estimate the potential human and companion animal encounter risk with different questing tick species, and the bacterial or protozoal agents they carry in recreational greenspaces. We collected ticks bimonthly along trails and designated recreational areas in 17 publicly accessible greenspaces, in and around Gainesville, Florida, USA. We collected Amblyomma americanum, Ixodes scapularis, Amblyomma maculatum, Dermacentor variabilis, Ixodes affinis, and Haemaphysalis leporispalustris. Across the six tick species collected, we detected 18 species of bacteria or protozoa within the Babesia, Borrelia, Cytauxzoon, Cryptoplasma (Allocryptoplasma), Ehrlichia, Hepatozoon, Rickettsia, and Theileria genera, including pathogens of medical or veterinary importance. While tick abundance and associated microorganism prevalence and richness were the greatest in natural habitats surrounded by forests, we found both ticks and pathogenic microorganisms in manicured groundcover. This relationship is important for public health and awareness, because it suggests that the probability of encountering an infected tick is measurable and substantial even on closely manicured turf or gravel, if the surrounding landcover is undeveloped. The presence of medically important ticks and pathogenic microorganisms in recreational greenspaces indicates that public education efforts regarding ticks and tick-borne diseases are warranted in this region of the United States.

12.
PLoS Negl Trop Dis ; 16(12): e0010974, 2022 12.
Article de Anglais | MEDLINE | ID: mdl-36534706

RÉSUMÉ

BACKGROUND: Trypanosoma cruzi, a parasitic protozoan, is endemic to the Americas and the causative agent of Chagas disease in humans. In South America, opossums facilitate transmission via infected anal gland secretions in addition to transmission via triatomine vectors. In North America, the Virginia opossum is a reservoir host for the parasite with transmission routes that are not clearly defined. The unique biology of this marsupial provides the opportunity to investigate vertical transmission in this wildlife species in situ. Our objectives were to investigate alternative routes of transmission that may facilitate spillover into other species and to determine if vertical transmission was evident. METHODOLOGY/PRINCIPAL FINDINGS: Virginia opossums were sampled at 10 trapping locations over a 10-month period in a 5-county region of north central Florida. Peripheral blood, fecal swabs, and anal gland secretions were collected from each adult individual, and peripheral blood was collected from joey opossums. Total DNA was extracted from each collected sample type, and T. cruzi infected individuals and the infecting Discrete Typing Unit (DTU) were identified using real time PCR methods. Adult Virginia opossums (n = 112) were infected with T. cruzi (51.8%, 95% CI [42.6-60.8%]) throughout the sampled period and at each location. T. cruzi DNA was found in each of the three biological sample types. Vertical transmission of T. cruzi was inferred in one litter of mother-dependent (n = 20, 5.0%, 95% CI [0.9-23.6%]) joey opossums where 2 joeys from this same litter were rtPCR positive for T. cruzi. CONCLUSIONS/SIGNIFICANCE: We inferred vertical transmission from mother to neonate which may serve to amplify the prevalence of T. cruzi in adult Virginia opossums. T. cruzi DNA was detected in the anal gland secretions of Virginia opossums. Infected anal gland secretions suggest a possible environmental route of transmission for T. cruzi via the deposition of contaminated feces and spraint at wildlife latrines. Only DTU1 was identified in the sampled population which is consistent with human autochthonous cases in the United States.


Sujet(s)
Maladie de Chagas , Didelphis , Parasites , Trypanosoma cruzi , Animaux , Humains , Trypanosoma cruzi/génétique , Virginie , Réservoirs de maladies , Maladie de Chagas/épidémiologie , Maladie de Chagas/médecine vétérinaire , Maladie de Chagas/parasitologie , Animaux sauvages/parasitologie , Opossum/parasitologie
13.
Diseases ; 10(2)2022 Jun 08.
Article de Anglais | MEDLINE | ID: mdl-35735632

RÉSUMÉ

Ensembles of Species Distribution Models (SDMs) represent the geographic ranges of pathogen vectors by combining alternative analytical approaches and merging information on vector occurrences with more extensive environmental data. Biased collection data impact SDMs, regardless of the target species, but no studies have compared the differences in the distributions predicted by the ensemble models when different sampling frameworks are used for the same species. We compared Ensemble SDMs for two important Ixodid tick vectors, Amblyomma americanum and Ixodes scapularis in mainland Florida, USA, when inputs were either convenience samples of ticks, or collections obtained using the standard protocols promulgated by the U.S. Centers for Disease Control and Prevention. The Ensemble SDMs for the convenience samples and standard surveys showed only a slight agreement (Kappa = 0.060, A. americanum; 0.053, I. scapularis). Convenience sample SDMs indicated A. americanum and I. scapularis should be absent from nearly one third (34.5% and 30.9%, respectively) of the state where standard surveys predicted the highest likelihood of occurrence. Ensemble models from standard surveys predicted 81.4% and 72.5% (A. americanum and I. scapularis) of convenience sample sites. Omission errors by standard survey SDMs of the convenience collections were associated almost exclusively with either adjacency to at least one SDM, or errors in geocoding algorithms that failed to correctly locate geographic locations of convenience samples. These errors emphasize commonly overlooked needs to explicitly evaluate and improve data quality for arthropod survey data that are applied to spatial models.

14.
Viruses ; 14(5)2022 05 10.
Article de Anglais | MEDLINE | ID: mdl-35632753

RÉSUMÉ

We report an outbreak of a novel reassortant epizootic hemorrhagic disease virus serotype 6 (EHDV-6) in white-tailed deer (WTD) on a Florida farm in 2019. At necropsy, most animals exhibited hemorrhagic lesions in the lung and heart, and congestion in the lung, liver, and spleen. Histopathology revealed multi-organ hemorrhage and congestion, and renal tubular necrosis. Tissues were screened by RT-qPCR and all animals tested positive for EHDV. Tissues were processed for virus isolation and next-generation sequencing was performed on cDNA libraries generated from the RNA extracts of cultures displaying cytopathic effects. Six isolates yielded nearly identical complete genome sequences of a novel U.S. EHDV-6 strain. Genetic and phylogenetic analyses revealed the novel strain to be most closely related to a reassortant EHDV-6 strain isolated from cattle in Trinidad and both strains received segment 4 from an Australian EHDV-2 strain. The novel U.S. EHDV-6 strain is unique in that it acquired segment 8 from an Australian EHDV-8 strain. An RNAscope® in situ hybridization assay was developed against the novel U.S. EHDV-6 strain and labeling was detected within lesions of the heart, kidney, liver, and lung. These data support the novel U.S. reassortant EHDV-6 strain as the cause of disease in the farmed WTD.


Sujet(s)
Cervidae , Virus de la maladie hémorragique épizootique , Infections à Reoviridae , Animaux , Australie , Bovins , Fermes , Floride , Virus de la maladie hémorragique épizootique/génétique , Phylogenèse , Sérogroupe
15.
PLoS Negl Trop Dis ; 16(5): e0010437, 2022 05.
Article de Anglais | MEDLINE | ID: mdl-35576190

RÉSUMÉ

BACKGROUND: Rickettsia africae is a tick-borne bacterium that causes African tick-bite fever (ATBF) in humans. In southern Africa, the tick Amblyomma hebraeum serves as the primary vector and reservoir for R. africae and transmits the bacterium during any life stage. Previous research has shown that even when malaria has been dramatically reduced, unexplained acute febrile illnesses persist and may be explained by the serological evidence of rickettsiae in humans. METHODOLOGY/PRINCIPAL FINDINGS: We collected 12,711 questing Amblyomma larvae across multiple land use types in a savanna landscape in Eswatini. Our results show that host-seeking Amblyomma larvae are abundant across both space and time, with no significant difference in density by land use or season. We investigated the entomological risk (density of infected larvae) of ATBF from A. hebraeum larvae by testing over 1,600 individual larvae for the presence of R. africae using a novel multiplex qPCR assay. We found an infection prevalence of 64.9% (95% CI: 62.1-67.6%) with no land use type significantly impacting prevalence during the dry season of 2018. The mean density of infected larvae was 57.3 individuals per 100m2 (95% CI: 49-65 individuals per 100m2). CONCLUSIONS: Collectively, our results demonstrate R. africae infected A. hebraeum larvae, the most common tick species and life stage to bite humans in southern Africa, are ubiquitous in the savanna landscape of this region. Increased awareness of rickettsial diseases is warranted for policymakers, scientists, clinicians, and patients. Early detection of disease via increased clinician awareness and rapid diagnostics will improve patient outcomes for travelers and residents of this region.


Sujet(s)
Rickettsioses , Rickettsia , Rickettsiose du groupe des fièvres boutonneuses , Maladies transmises par les tiques , Tiques , Amblyomma , Animaux , Swaziland , Humains , Rickettsia/génétique , Rickettsioses/microbiologie , Maladies transmises par les tiques/microbiologie , Tiques/microbiologie
16.
Insects ; 12(11)2021 Nov 12.
Article de Anglais | MEDLINE | ID: mdl-34821818

RÉSUMÉ

BACKGROUND: Triatoma protracta is a triatomine found naturally throughout many regions of California and has been shown to invade human dwellings and bite residents. A man living in Mendocino County, California, reported developing anaphylactic reactions due to the bite of an "unusual bug", which he had found in his home for several years. METHODS: We conducted environmental, entomological, and clinical investigations to examine the risk for kissing bug invasion, presence of Trypanosoma cruzi, and concerns for Chagas disease at this human dwelling with triatomine invasion. RESULTS: Home assessment revealed several risk factors for triatomine invasion, which includes pack rat infestation, above-ground wooden plank floor without a concrete foundation, canine living in the home, and lack of residual insecticide use. Triatomines were all identified as Triatoma protracta. Midgut molecular analysis of the collected triatomines revealed the detection of T. cruzi discrete typing unit I among one of the kissing bugs. Blood meal PCR-based analysis showed these triatomines had bitten humans, canine and unidentified snake species. The patient was tested for chronic Chagas disease utilizing rapid diagnostic testing and laboratory serological testing, and all were negative. CONCLUSIONS: Triatoma protracta is known to invade human dwellings in the western portions of the United States. This is the first report of T. cruzi-infected triatomines invading homes in Mendocino County, California. Triatoma protracta is a known vector responsible for autochthonous Chagas disease within the United States, and their bites can also trigger serious systemic allergic reactions, such as anaphylaxis.

17.
Pathogens ; 10(8)2021 Aug 07.
Article de Anglais | MEDLINE | ID: mdl-34451463

RÉSUMÉ

Host associations of the tick vector for Lyme Borreliosis, Ixodes scapularis, differ across its geographic range. In Florida, the primary competent mammalian host of Lyme disease is not present but instead has other small mammals and herpetofauna that I. scapularis can utilize. We investigated host-tick association for lizards, the abundance of ticks on lizards and the prevalence of Borrelia burgdorferi sensu lato (sl). To determine which lizard species I. scapularis associates with, we examined 11 native lizard species from historical herpetological specimens. We found that (294/5828) of the specimens had attached ticks. The most infested species were Plestiodon skinks (241/1228) and Ophisaurus glass lizards (25/572). These species were then targeted at six field sites across Florida and sampled from June to September 2020, using drift fence arrays, cover boards and fishing. We captured 125 lizards and collected 233 immature I. scapularis. DNA was extracted from ticks and lizard tissue samples, followed by PCR testing for Borrelia spp. Of the captured lizards, 69/125 were infested with immature I. scapularis. We did not detect Borrelia spp. from tick or lizard tissue samples. Overall, we found that lizards are commonly infested with I. scapularis. However, we did not detect Borrelia burgdorferi sl. These findings add to a growing body of evidence that lizards are poor reservoir species.

18.
Pathogens ; 10(8)2021 Aug 17.
Article de Anglais | MEDLINE | ID: mdl-34451507

RÉSUMÉ

Ticks are widespread parasites of vertebrates and major vectors of pathogens to humans, domestic animals, and wildlife. In southern Africa, numerous tick species transmit diseases of economic and health importance. This study aimed to describe the occurrence of ticks and tick-borne pathogens in multiple land-use types and the possible role of ticks in the transmission of pathogen species. Using molecular techniques, we screened 1716 ticks for infection by rickettsial bacteria and protozoans. To characterize pathogen identity, we sequenced multiple loci from positive samples and analyzed sequences within a phylogenetic framework. Across the seven tick species collected as nymphs or adults, we detected Rickettsia, Anaplasma, Ehrlichia, Babesia, Hepatozoon, and Theileira species. We found that some tick species and tick-borne pathogens differed according to land use. For example, we found a higher density of Haemaphysalis elliptica and higher prevalence of Rickettsia in H. elliptica collected from savanna grasses used for livestock grazing near human settlements than savanna grasses in conservation areas. These findings highlight the importance of comprehensive surveillance to achieve a full understanding of the diversity and ecology of the tick-borne pathogens that can infect humans, domestic animals, and wildlife.

19.
J Wildl Dis ; 57(4): 784-798, 2021 10 01.
Article de Anglais | MEDLINE | ID: mdl-34460918

RÉSUMÉ

Feral swine (Sus scrofa), an important prey species for the endangered Florida panther (Puma concolor coryi), is the natural host for pseudorabies virus (PRV). Prior to this study, PRV had been detected in just three panthers. To determine the effect of PRV on the panther population, we prospectively necropsied 199 panthers and retrospectively reviewed necropsy and laboratory findings, reexamined histology, and tested archived tissues using real-time PCR from 46 undiagnosed panther mortalities. Seven additional infections (two prospective, five retrospective) were detected for a total of 10 confirmed panther mortalities due to PRV. To further evaluate the effect of PRV, we categorized radio-collared (n=168) and uncollared panther mortalities (n=367) sampled from 1981 to 2018 based on the likelihood of PRV infection as confirmed, probable, suspected, possible, or unlikely/negative. Of 168 radio-collared panthers necropsied, PRV was the cause of death for between eight (confirmed; 4.8%) and 32 (combined confirmed, probable, suspected, and possible categories; 19.0%) panthers. The number of radio-collared panther mortalities due to PRV was estimated to be 15 (95% empirical limits: 12-19), representing 8.9% (confidence interval: 4.6-13.2%) of mortalities. Gross necropsy findings in 10 confirmed cases were nonspecific. Microscopic changes included slight to mild perivascular cuffing and gliosis (primarily in the brain stem), lymphoplasmacytic meningoencephalitis (cerebral cortex), and intranuclear inclusion bodies (adrenal medulla). The PRV glycoprotein C gene sequences from three positive panthers grouped with the sequence from a Florida feral swine. Our findings indicate that PRV may be an important and underdiagnosed cause of death in Florida panthers.


Sujet(s)
Herpèsvirus porcin de type 1 , Maladie d'Aujeszky , Puma , Animaux , Cause de décès , Études prospectives , Maladie d'Aujeszky/épidémiologie , Études rétrospectives
20.
Environ Sci Process Impacts ; 23(9): 1301-1307, 2021 Sep 23.
Article de Anglais | MEDLINE | ID: mdl-34369533

RÉSUMÉ

Per- and polyfluoroalkyl substances (PFAS) are environmentally persistent, ubiquitous pollutants. It is important to continuously monitor the presence of PFAS contamination, utilizing both legacy and new sentinels. In this study, environmental PFAS levels were evaluated using ticks as a sentinel model due to their world-wide distribution, hematophagous nature, and ease of collection and sampling. Hematophagy in discrete blood meals, from a suite of vertebrates, allows ticks to sample dozens of species of consumers and bioaccumulation across communities. Four different species of ticks, across two states (NY, n = 28 in mid-April of 2020 and FL, n = 32 between 2015 and 2020) with two sampling sites in each state were analyzed for the presence of 53 PFAS. The total PFAS concentration in ticks was the lowest at Newburgh (NY), a site that has been undergoing remediation efforts, while the highest total PFAS concentrations were measured in ticks at the Sweetwater site, a wastewater treatment wetland. Detection of PFAS and the potential for variation between tick species and between locations are necessary to establish the utility of ticks as sentinels, in addition to assessing additional environmental factors, such as other wildlife, water, or soil.


Sujet(s)
Acides alcanesulfoniques , Polluants environnementaux , Fluorocarbones , Tiques , Polluants chimiques de l'eau , Purification de l'eau , Animaux , Bioaccumulation , Fluorocarbones/analyse , Polluants chimiques de l'eau/analyse
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...