Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 15 de 15
Filtrer
1.
Environ Int ; 180: 108210, 2023 10.
Article de Anglais | MEDLINE | ID: mdl-37778289

RÉSUMÉ

The SARS-CoV-2 pandemic had huge impacts on global urban populations, activity and health, yet little is known about attendant consequences for urban river ecosystems. We detected significant changes in occurrence and risks from contaminants of emerging concern (CECs) in waterways across Greater London (UK) during the pandemic. We were able to rapidly identify and monitor large numbers of CECs in n = 390 samples across 2019-2021 using novel direct-injection liquid chromatography-mass spectrometry methods for scalable targeted analysis, suspect screening and prioritisation of CEC risks. A total of 10,029 measured environmental concentrations (MECs) were obtained for 66 unique CECs. Pharmaceutical MECs decreased during lockdown in 2020 in the R. Thames (p ≤ 0.001), but then increased significantly in 2021 (p ≤ 0.01). For the tributary rivers, the R. Lee, Beverley Brook, R. Wandle and R. Hogsmill were the most impacted, primarily via wastewater treatment plant effluent and combined sewer overflows. In the R. Hogsmill in particular, pharmaceutical MEC trends were generally correlated with NHS prescription statistics, likely reflecting limited wastewater dilution. Suspect screening of âˆ¼ 1,200 compounds tentatively identified 25 additional CECs at the five most impacted sites, including metabolites such as O-desmethylvenlafaxine, an EU Watch List compound. Lastly, risk quotients (RQs) ≥ 0.1 were calculated for 21 compounds across the whole Greater London freshwater catchment, of which seven were of medium risk (RQ ≥ 1.0) and three were in the high-risk category (RQ ≥ 10), including imidacloprid (RQ = 19.6), azithromycin (15.7) and diclofenac (10.5). This is the largest spatiotemporal dataset of its kind for any major capital city globally and the first for Greater London, representing âˆ¼ 16 % of the population of England, and delivering a foundational One-Health case study in the third largest city in Europe across a global pandemic.


Sujet(s)
COVID-19 , Une seule santé , Polluants chimiques de l'eau , Humains , Surveillance de l'environnement/méthodes , SARS-CoV-2 , Polluants chimiques de l'eau/analyse , Écosystème , Londres/épidémiologie , Pandémies , COVID-19/épidémiologie , Contrôle des maladies transmissibles , Préparations pharmaceutiques
2.
Molecules ; 28(16)2023 Aug 10.
Article de Anglais | MEDLINE | ID: mdl-37630246

RÉSUMÉ

Endocrine-disrupting compounds (EDCs) constitute a wide variety of chemistries with diverse properties that may/can pose risks to both humans and the environment. Herein, a total of 26 compounds, including steroids, flame retardants, and plasticizers, were monitored in three major and heavily urbanized river catchments: the R. Liffey (Ireland), the R. Thames (UK), and the R. Ter (Spain), by using a single solid-phase extraction liquid chromatography-mass spectrometry (SPE-LC-MS/MS) method. Occurrence and frequency rates were investigated across all locations over a 10-week period, with the highest concentration obtained for the flame retardant tris(2-chloroethyl) phosphate (TCEP) at 4767 ng∙L-1 in the R. Thames in Central London. Geographical variations were observed between sites and were partially explained using principal component analysis (PCA) and hierarchical cluster analysis (HCA). In particular, discrimination between the R. Ter and the R. Thames was observed based on the presence and concentration of flame retardants, benzotriazole, and steroids. Environmental risk assessment (ERA) across sites showed that caffeine, a chemical marker, and bisphenol A (BPA), a plasticizer, were classified as high-risk for the R. Liffey and R. Thames, based on relative risk quotients (rRQs), and that caffeine was classified as high-risk for the R. Ter, based on RQs. The total risks at each location, namely ΣRQriver, and ΣrRQriver, were: 361, 455, and 723 for the rivers Liffey, Thames, and Ter, respectively. Caffeine, as expected, was ubiquitous in all 3 urban areas, though with the highest RQ observed in the R. Ter. High contributions of BPA were also observed across the three matrices. Therefore, these two compounds should be prioritized independently of location. This study represents a comprehensive EDC monitoring comparison between different European cities based on a single analytical method, which allowed for a geographically independent ERA prioritization to be performed.


Sujet(s)
Perturbateurs endocriniens , Ignifuges , Humains , Irlande , Espagne , Caféine , Chromatographie en phase liquide , Rivières , Spectrométrie de masse en tandem , Appréciation des risques , Plastifiants , Royaume-Uni
3.
Front Immunol ; 14: 1216967, 2023.
Article de Anglais | MEDLINE | ID: mdl-37483614

RÉSUMÉ

Interleukin-13 (IL-13) is a cytokine involved in T-cell immune responses and is a well validated therapeutic target for the treatment of asthma, along with other allergic and inflammatory diseases. IL-13 signals through a ternary signalling complex formed with the receptors IL-13Rα1 and IL-4Rα. This complex is assembled by IL-13 initially binding IL-13Rα1, followed by association of the binary IL-13:IL-13Rα1 complex with IL-4Rα. The receptors are shared with IL-4, but IL-4 initially binds IL-4Rα. Here we report the identification and characterisation of a diverse panel of single-domain antibodies (VHHs) that bind to IL-13 (KD 40 nM-5.5 µM) and inhibit downstream IL-13 signalling (IC50 0.2-53.8 µM). NMR mapping showed that the VHHs recognise a number of epitopes on IL-13, including previously unknown allosteric sites. Further NMR investigation of VHH204 bound to IL-13 revealed a novel allosteric mechanism of inhibition, with the antibody stabilising IL-13 in a conformation incompatible with receptor binding. This also led to the identification of a conformational equilibrium for free IL-13, providing insights into differing receptor signalling complex assembly seen for IL-13 compared to IL-4, with formation of the IL-13:IL-13Rα1 complex required to stabilise IL-13 in a conformation with high affinity for IL-4Rα. These findings highlight new opportunities for therapeutic targeting of IL-13 and we report a successful 19F fragment screen of the IL-13:VHH204 complex, including binding sites identified for several hits. To our knowledge, these 19F containing fragments represent the first small-molecules shown to bind to IL-13 and could provide starting points for a small-molecule drug discovery programme.


Sujet(s)
Interleukine-13 , Anticorps à domaine unique , Interleukine-13/métabolisme , Interleukine-4/métabolisme , Sous-unité alpha1 du récepteur à l'interleukine-13/métabolisme , Cytokines
4.
Sci Total Environ ; 860: 160379, 2023 Feb 20.
Article de Anglais | MEDLINE | ID: mdl-36427717

RÉSUMÉ

Despite being a developed country in the European Union (EU), knowledge of the nature and extent of contamination of water bodies with contaminants of emerging concern (CECs) in Ireland is limited. In this study, >140 CECs including pharmaceuticals, pesticides and personal care products were monitored in monthly samples of wastewater treatment plant (WWTP) influent, effluent and receiving surface waters at both an urban and a rural location (72 samples in total) in Ireland over a 12-month period in 2018-2019. In total, 58 CECs were detected, including several EU Water Framework Directive Watch List compounds. Of all classes, the highest concentrations were measured for pharmaceuticals across all media, i.e., propranolol in surface waters (134 ng·L-1), hydrochlorothiazide in effluent (1067 ng·L-1) and venlafaxine in influent wastewater (8273 ng·L-1). Overall, high wastewater treatment removal was observed and a further reduction in CEC occurrence and concentration was measured via dilution in the receiving river environment. Lastly, an environmental risk assessment (ERA) was performed using risk quotients (RQ), which revealed that in surface waters, total RQ for all CECs was an order of magnitude lower than in effluents. The majority of CECs in surface waters posed a lower risk except E2 and EE2 which presented a medium risk (RQs of 3.5 and 1.1, respectively) in the rural area. This work represents the most comprehensive CEC monitoring dataset to date for Ireland which allowed for an ERA prioritisation to be performed for the first time.


Sujet(s)
Eaux usées , Polluants chimiques de l'eau , Élimination des déchets liquides , Surveillance de l'environnement , Irlande , Polluants chimiques de l'eau/analyse , Eau , Préparations pharmaceutiques
5.
J Biol Chem ; 299(1): 102769, 2023 01.
Article de Anglais | MEDLINE | ID: mdl-36470427

RÉSUMÉ

Programmed death-ligand 1 (PD-L1) is a key immune regulatory protein that interacts with programmed cell death protein 1 (PD-1), leading to T-cell suppression. Whilst this interaction is key in self-tolerance, cancer cells evade the immune system by overexpressing PD-L1. Inhibition of the PD-1/PD-L1 pathway with standard monoclonal antibodies has proven a highly effective cancer treatment; however, single domain antibodies (VHH) may offer numerous potential benefits. Here, we report the identification and characterization of a diverse panel of 16 novel VHHs specific to PD-L1. The panel of VHHs demonstrate affinities of 0.7 nM to 5.1 µM and were able to completely inhibit PD-1 binding to PD-L1. The binding site for each VHH on PD-L1 was determined using NMR chemical shift perturbation mapping and revealed a common binding surface encompassing the PD-1-binding site. Additionally, we solved crystal structures of two representative VHHs in complex with PD-L1, which revealed unique binding modes. Similar NMR experiments were used to identify the binding site of CD80 on PD-L1, which is another immune response regulatory element and interacts with PD-L1 localized on the same cell surface. CD80 and PD-1 were revealed to share a highly overlapping binding site on PD-L1, with the panel of VHHs identified expected to inhibit CD80 binding. Comparison of the CD80 and PD-1 binding sites on PD-L1 enabled the identification of a potential antibody binding region able to confer specificity for the inhibition of PD-1 binding only, which may offer therapeutic benefits to counteract cancer cell evasion of the immune system.


Sujet(s)
Anticorps , Antigène CD80 , Antigène CD274 , Récepteur-1 de mort cellulaire programmée , Humains , Antigène CD80/métabolisme , Antigène CD274/génétique , Antigène CD274/métabolisme , Tumeurs/thérapie , Récepteur-1 de mort cellulaire programmée/métabolisme , Liaison aux protéines , Sites de fixation , Cristallographie , Anticorps/composition chimique , Anticorps/métabolisme
6.
Sci Total Environ ; 839: 156260, 2022 Sep 15.
Article de Anglais | MEDLINE | ID: mdl-35644406

RÉSUMÉ

The miniaturization of a full workflow for identification and monitoring of contaminants of emerging concern (CECs) is presented. Firstly, successful development of a low-cost small 3D-printed passive sampler device (3D-PSD), based on a two-piece methacrylate housing that held up to five separate 9 mm disk sorbents, is discussed. Secondly, a highly sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method reduced the need for large scale in-laboratory apparatus, solvent, reagents and reference material quantities for in-laboratory passive sampler device (PSD) calibration and extraction. Using hydrophilic-lipophilic balanced sorbents, sampling rates (Rs) were determined after a low 50 ng L-1 exposure over seven days for 39 pesticides, pharmaceuticals, drug metabolites and illicit drugs over the range 0.3 to 12.3 mL day-1. The high sensitivity LC-MS/MS method enabled rapid analysis of river water using only 10 µL of directly injected sample filtrate to measure occurrence of 164 CECs and sources along 19 sites on the River Wandle, (London, UK). The new 3D-PSD was then field-tested over seven days at the site with the highest number and concentration of CECs, which was down-river from a wastewater treatment plant. Almost double the number of CECs were identified in 3D-PSD extracts across sites in comparison to water samples (80 versus 42 CECs, respectively). Time-weighted average CEC concentrations ranged from 8.2 to 845 ng L-1, which were generally comparable to measured concentrations in grab samples. Lastly, high resolution mass spectrometry-based suspect screening of 3D-PSD extracts enabled 113 additional compounds to be tentatively identified via library matching, many of which are currently or are under consideration for the EU Watch List. This miniaturized workflow represents a new, cost-effective, and more practically efficient means to perform passive sampling chemical monitoring at a large scale. SYNOPSIS: Miniaturized, low cost, multi-disk passive samplers enabled more efficient multi-residue chemical contaminant characterization, potentially for large-scale monitoring programs.


Sujet(s)
Surveillance de l'environnement , Polluants chimiques de l'eau , Chromatographie en phase liquide , Surveillance de l'environnement/méthodes , Spectrométrie de masse en tandem , Eaux usées/analyse , Eau/analyse , Polluants chimiques de l'eau/analyse , Flux de travaux
7.
Molecules ; 26(18)2021 Sep 07.
Article de Anglais | MEDLINE | ID: mdl-34576902

RÉSUMÉ

The rapid source identification and environmental risk assessment (ERA) of hundreds of chemicals of emerging concern (CECs) in river water represent a significant analytical challenge. Herein, a potential solution involving a rapid direct-injection liquid chromatography-tandem mass spectrometry method for the quantitative determination of 102 CECs (151 qualitatively) in river water is presented and applied across six rivers in Germany and Switzerland at high spatial resolution. The method required an injection volume of only 10 µL of filtered sample, with a runtime of 5.5 min including re-equilibration with >10 datapoints per peak per transition (mostly 2 per compound), and 36 stable isotope-labelled standards. Performance was excellent from the low ng/L to µg/L concentration level, with 260 injections possible in any 24 h period. The method was applied in three separate campaigns focusing on the ERA of rivers impacted by wastewater effluent discharges (1 urban area in the Basel city region with 4 rivers, as well as 1 semi-rural and 1 rural area, each focusing on 1 river). Between 25 and 40 compounds were quantified directly in each campaign, and in all cases small tributary rivers showed higher CEC concentrations (e.g., up to ~4000 ng/L in total in the R. Schwarzach, Bavaria, Germany). The source of selected CECs could also be identified and differentiated from other sources at pre- and post- wastewater treatment plant effluent discharge points, as well as the effect of dilution downstream, which occurred over very short distances in all cases. Lastly, ERA for 41 CECs was performed at specific impacted sites, with risk quotients (RQs) at 1 or more sites estimated as high risk (RQ > 10) for 1 pharmaceutical (diclofenac), medium risk (RQ of 1-10) for 3 CECs (carbamazepine, venlafaxine, and sulfamethoxazole), and low risk (RQ = 0.1-1.0) for 7 CECs (i.e., RQ > 0.1 for 11 CECs in total). The application of high-throughput methods like this could enable a better understanding of the risks of CECs, especially in low flow/volume tributary rivers at scale and with high resolution.


Sujet(s)
Chromatographie en phase liquide , Rivières , Spectrométrie de masse en tandem , Eaux usées , Villes , Surveillance de l'environnement , Appréciation des risques
8.
Anal Methods ; 13(5): 595-606, 2021 02 07.
Article de Anglais | MEDLINE | ID: mdl-33427827

RÉSUMÉ

A novel and rapid approach to characterise the occurrence of contaminants of emerging concern (CECs) in river water is presented using multi-residue targeted analysis and machine learning-assisted in silico suspect screening of passive sampler extracts. Passive samplers (Chemcatcher®) configured with hydrophilic-lipophilic balanced (HLB) sorbents were deployed in the Central London region of the tidal River Thames (UK) catchment in winter and summer campaigns in 2018 and 2019. Extracts were analysed by; (a) a rapid 5.5 min direct injection targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for 164 CECs and (b) a full-scan LC coupled to quadrupole time of flight mass spectrometry (QTOF-MS) method using data-independent acquisition over 15 min. From targeted analysis of grab water samples, a total of 33 pharmaceuticals, illicit drugs, drug metabolites, personal care products and pesticides (including several EU Watch-List chemicals) were identified, and mean concentrations determined at 40 ± 37 ng L-1. For targeted analysis of passive sampler extracts, 65 unique compounds were detected with differences observed between summer and winter campaigns. For suspect screening, 59 additional compounds were shortlisted based on mass spectral database matching, followed by machine learning-assisted retention time prediction. Many of these included additional pharmaceuticals and pesticides, but also new metabolites and industrial chemicals. The novelty in this approach lies in the convenience of using passive samplers together with machine learning-assisted chemical analysis methods for rapid, time-integrated catchment monitoring of CECs.

9.
J Hazard Mater ; 398: 122933, 2020 11 05.
Article de Anglais | MEDLINE | ID: mdl-32768824

RÉSUMÉ

A rapid quantitative method for 135 contaminants of emerging concern (CECs) in untreated wastewater enabled with direct injection liquid chromatography-tandem mass spectrometry is presented. All compounds were analysed within 5 min on a short biphenyl cartridge using only 10 µL of filtered sample per injection. Up to 76 compounds were monitored simultaneously during the gradient (including mostly two transitions per compound and stable isotope-labelled analogues) while yielding >10 data points per peak. Evaluation of seven solid phase extraction sorbents showed no advantage for wastewater matrix removal. Excellent linearity, range, accuracy and precision was achieved for most compounds. Matrix effects were <11 % and detection limits were <30 ng L-1 on average. Application to untreated wastewater samples from three wastewater treatment works in the UK, USA and Mexico, enabled quantification of 56 compounds. Banned and EU 'watch-list' substances are critically discussed, including pesticides, macrolide antibiotics, diclofenac, illicit drugs as well as multiple pharmaceuticals and biocides. This high-throughput method sets a new standard for the speedy and confident determination of over a hundred CECs in wastewater at the part-per-trillion level, as demonstrated by performing over 260 injections per day.

10.
J Hazard Mater ; 329: 11-21, 2017 May 05.
Article de Anglais | MEDLINE | ID: mdl-28119193

RÉSUMÉ

The first comprehensive assessment of 34 solid phase extraction sorbents is presented for organic explosive residues in wastewater prior to analysis with liquid chromatography-high resolution accurate mass spectrometry (LC-HRMS). A total of 18 explosives were selected including nitramines, nitrate esters, nitroaromatics and organic peroxides. Three polymeric divinylbenzene-based sorbents were found to be most suitable and one co-polymerised with n-vinyl pyrrolidone offered satisfactory recoveries for 14 compounds in fortified wastewater (77-124%). Limits of detection in matrix ranged from 0.026-23µgL-1 with R2≥0.98 for most compounds. The method was applied to eight 24-h composite wastewater samples from a London wastewater works and one compound, 2,4-dinitrotoluene, was determined over five days between 332 and 468g day-1 (225-303ngL-1). To further exploit the suspect screening capability, 17 additional explosives, precursors and transformation products were screened in spiked wastewater samples. Of these, 14 were detected with recoveries from 62 to 92%, highlighting the broad applicability of the method. To our knowledge, this represents the first screen of explosives-related compounds in wastewater from a major European city. This method also allows post-analysis detection of new or emerging compounds using full-scan HRMS datasets to potentially identify and locate illegal manufacture of explosives via wastewater analysis.

11.
ISME J ; 8(10): 2148-50, 2014 Oct.
Article de Anglais | MEDLINE | ID: mdl-25036924

RÉSUMÉ

Functionally important proteins at the interface of cell and soil are of potentially low abundance when compared with commonly recovered intracellular proteins. A novel approach was developed and used to extract the metaexoproteome, the subset of proteins found outside the cell, in the context of a soil enriched with the nitrogen-containing recalcitrant polymer chitin. The majority of proteins recovered was of bacterial origin and localized to the outer membrane or extracellular milieu. A wide variety of transporter proteins were identified, particularly those associated with amino-acid and phosphate uptake. The metaexoproteome extract retained chitinolytic activity and we were successful in detecting Nocardiopsis-like chitinases that correlated with the glycoside hydrolase family 18 (GH18) chi gene data and metataxonomic analysis. Nocardiopsis-like chitinases appeared to be solely responsible for chitinolytic activity in soil. This is the first study to detect and sequence bacterial exoenzymes with proven activity in the soil enzyme pool.


Sujet(s)
Bactéries/enzymologie , Chitinase/analyse , Microbiologie du sol , Bactéries/classification , Chitine/métabolisme , Chitinase/métabolisme , Protéomique
12.
Protein Sci ; 19(3): 535-43, 2010 Mar.
Article de Anglais | MEDLINE | ID: mdl-20066665

RÉSUMÉ

A good model to experimentally explore evolutionary hypothesis related to enzyme function is the ancient-like dual-substrate (beta alpha)(8) phosphoribosyl isomerase A (PriA), which takes part in both histidine and tryptophan biosynthesis in Streptomyces coelicolor and related organisms. In this study, we determined the Michaelis-Menten enzyme kinetics for both isomerase activities in wild-type PriA from S. coelicolor and in selected single-residue monofunctional mutants, identified after Escherichia coli in vivo complementation experiments. Structural and functional analyses of a hitherto unnoticed residue contained on the functionally important beta --> alpha loop 5, namely, Arg(139), which was postulated on structural grounds to be important for the dual-substrate specificity of PriA, is presented for the first time. Indeed, enzyme kinetics analyses done on the mutant variants PriA_Ser(81)Thr and PriA_Arg(139)Asn showed that these residues, which are contained on beta --> alpha loops and in close proximity to the N-terminal phosphate-binding site, are essential solely for the phosphoribosyl anthranilate isomerase activity of PriA. Moreover, analysis of the X-ray crystallographic structure of PriA_Arg(139)Asn elucidated at 1.95 A herein strongly implicates the occurrence of conformational changes in this beta --> alpha loop as a major structural feature related to the evolution of the dual-substrate specificity of PriA. It is suggested that PriA has evolved by tuning a fine energetic balance that allows the sufficient degree of structural flexibility needed for accommodating two topologically dissimilar substrates--within a bifunctional and thus highly constrained active site--without compromising its structural stability.


Sujet(s)
Aldose-ketose isomerases/composition chimique , Évolution moléculaire , Streptomyces coelicolor/enzymologie , Aldose-ketose isomerases/génétique , Séquence d'acides aminés , Arginine/composition chimique , Asparagine/composition chimique , Domaine catalytique , Cristallographie aux rayons X , Cinétique , Conformation des protéines , Structure secondaire des protéines , Analyse de séquence de protéine , Sérine/composition chimique , Thréonine/composition chimique
13.
Biochem Biophys Res Commun ; 365(1): 16-21, 2008 Jan 04.
Article de Anglais | MEDLINE | ID: mdl-17967415

RÉSUMÉ

Two structures of phosphoribosyl isomerase A (PriA) from Streptomyces coelicolor, involved in both histidine and tryptophan biosynthesis, were solved at 1.8A resolution. A closed conformer was obtained, which represents the first complete structure of PriA, revealing hitherto unnoticed molecular interactions and the occurrence of conformational changes. Inspection of these conformers, including ligand-docking simulations, allowed identification of residues involved in substrate recognition, chemical catalysis and conformational changes. These predictions were validated by mutagenesis and functional analysis. Arg19 and Ser81 were shown to play critical roles within the carboxyl and amino phosphate-binding sites, respectively; the catalytic residues Asp11 and Asp130 are responsible for both activities; and Thr166 and Asp171, which make an unusual contact, are likely to elicit the conformational changes needed for adopting the active site architectures. This represents the first report of the structure/function relationship of this (betaalpha)8-isomerase.


Sujet(s)
Aldose-ketose isomerases/composition chimique , Protéines bactériennes/composition chimique , Aldose-ketose isomerases/génétique , Séquence d'acides aminés , Sites de fixation , Modèles moléculaires , Données de séquences moléculaires , Streptomyces coelicolor/enzymologie , Relation structure-activité , Spécificité du substrat
14.
Article de Anglais | MEDLINE | ID: mdl-16511202

RÉSUMÉ

Acylaminoacyl peptidase (also known as acylamino-acid-releasing enzyme or acylpeptide hydrolase; EC 3.4.19.1) is an unusual member of the prolyl oligopeptidase family catalysing the hydrolysis of an N-acylated peptide to an acylamino acid and a peptide with a free N-terminus. Acylaminoacyl peptidase purified from porcine liver has been crystallized in mother liquor containing 0.1 M Tris-HCl pH 7.0, 10%(w/v) polyethylene glycol 8000, 50 mM MgCl2 and 1%(w/v) CHAPS using the hanging-drop vapour-diffusion technique. A full data set to 3.4 A resolution was collected at ESRF beamline ID14-4 and space group C222 was assigned, with unit-cell parameters a = 84.8, b = 421.1, c = 212.0 A and four molecules in the asymmetric unit.


Sujet(s)
Peptide hydrolases/composition chimique , Animaux , Réactifs réticulants/pharmacologie , Cryoconservation , Cristallisation , Cristallographie aux rayons X , Hydrolyse , Foie/métabolisme , Modèles statistiques , Polyéthylène glycols/composition chimique , Structure tertiaire des protéines , Suidae , Diffraction des rayons X
15.
Acta Crystallogr D Biol Crystallogr ; 60(Pt 3): 534-6, 2004 Mar.
Article de Anglais | MEDLINE | ID: mdl-14993684

RÉSUMÉ

The priA gene encoding the enzyme phosphoribosyl isomerase from Streptomyces coelicolor, a novel bifunctional enzyme involved in both histidine and tryptophan biosynthesis, was heterologously expressed and purified in Escherichia coli as an N-terminal His-tag fusion. The purified recombinant enzyme was crystallized using the hanging-drop method in 1.50 M ammonium sulfate and 100 mM sodium citrate pH 4.8. Crystals were obtained of up to 0.05 x 0.05 x 0.3 mm in size. A full data set to 2 A resolution was collected at the ESRF beamline ID14-1 and space group P3(1,2)21 was assigned, with unit-cell parameters a = 65.1, c = 104.7 A.


Sujet(s)
Aldose-ketose isomerases , Aldose-ketose isomerases/composition chimique , Aldose-ketose isomerases/isolement et purification , Protéines bactériennes/composition chimique , Protéines bactériennes/isolement et purification , Streptomyces/enzymologie , Aldose-ketose isomerases/génétique , Aldose-ketose isomerases/métabolisme , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , Cristallisation , Cristallographie aux rayons X , Expression des gènes , Histidine/biosynthèse , Histidine/composition chimique , Protéines de fusion recombinantes/composition chimique , Protéines de fusion recombinantes/génétique , Protéines de fusion recombinantes/isolement et purification , Protéines de fusion recombinantes/métabolisme , Streptomyces/génétique , Tryptophane/biosynthèse
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE