Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 2.078
Filtrer
1.
Transfus Apher Sci ; 63(5): 103973, 2024 Jul 23.
Article de Anglais | MEDLINE | ID: mdl-39089169

RÉSUMÉ

BACKGROUND: RhD variants are categorized into partial D, weak D, and DEL. The detection of DEL can only be achieved through the adsorption and elution method or molecular techniques. Here, we report a case of DEL phenotypes associated with a novel allele in a Chinese individual. STUDY DESIGN AND METHODS: We used serological methods such as saline, indirect anti-human globulin, and adsorption-elution. The RHD genotype was determined by the PCR-sequence specific primer (PCR-SSP) method as well as the Sanger dideoxy sequencing. RESULTS: RBCs of the sample were found to be DEL phenotype by serological testing, with negative reactions in the saline and indirect anti-human globulin tests while positive reactions by the absorption-elution method. The genotyping results revealed a hemizygous (RHDc .1127 T>G/RHD-). The novel allele sequence has been submitted to GenBank (Accession number: OR608456). CONCLUSION: Our study demonstrates a case of a Chinese individual with DEL phenotype caused by a novel allele RHD c .1127 T > G. It expands the database of the DEL variant.

2.
J Nutr Biochem ; 132: 109696, 2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-39094217

RÉSUMÉ

Nobiletin has been reported to protect against obesity-related metabolic disorders by enhancing the circadian rhythm; however its effects on lipid metabolism in adipose tissue are unclear. In this study, mice were fed with high-fat diet (HFD) for four weeks firstly and gavaged with 50 or 200 mg/kg bodyweight/day nobiletin at Zeitgeber time (ZT) 4 for another four weeks while still receiving HFD. At the end of the 8-week experimental period, the mice were sacrificed at ZT4 or ZT8 on the same day. Mature 3T3-L1 adipocytes were treated with nobiletin in the presence or absence of siBmal1, siRora, siRorc, SR8278 or SR9009. Nobiletin reduced the weight of white adipose tissue (WAT) and the size of adipocytes in WAT. At ZT4, nobiletin decreased the TG, TC and LDL-c levels and increased serum FFA level and glucose tolerance. Nobiletin triggered the lipolysis of mesenteric and epididymal WAT at both ZT4 and ZT16. Nobiletin increased the level of RORγ at ZT16, that of BMAL1 and PPARγ at ZT4, and that of ATGL at both ZT4 and ZT16. Nobiletin increased lipolysis and ATGL levels in 3T3-L1 adipocytes in Bmal1- or Rora/c- dependent manner. Dual luciferase assay indicated that nobiletin enhanced the transcriptional activation of RORα/γ on Atgl promoter and decreased the repression of RORα/γ on PPARγ-binding PPRE. Promoter deletion analysis indicated that nobiletin inhibited the suppression of PPARγ-mediated Atgl transcription by RORα/γ. Taken together, nobiletin elevated lipolysis in WAT by increasing ATGL levels through activating the transcriptional activity of RORα/γ and decreasing the repression of RORα/γ on PPARγ-binding PPRE.

3.
Stem Cells Dev ; 2024 Aug 03.
Article de Anglais | MEDLINE | ID: mdl-39096202

RÉSUMÉ

Periodontal ligament stem cells (PDLSCs) have broad applications in tissue engineering and regeneration. However, the function of PDLSCs changes in different microenvironments. This study aimed to explore the effects of different developmental stages on the biological characteristics of PDLSCs. Here, PDLSCs were successfully cultured from the periodontal tissues of various groups, including a group with immature roots, a young group with mature roots, and an aging group with mature roots. By comparing the results of the three experimental groups, we found that the donors with immature roots exhibited the best proliferative ability and osteogenic differentiation, while the aging group demonstrated the worst proliferation. The trend for adipogenic differentiation was the opposite to that for osteogenic differentiation. The cell sheet and in vivo experiments revealed that in the immature root group, the cells produced more extracellular matrix (ECM) and new bone and better absorbed the implant materials. These results indicate that PDLSCs perform various functions at different stages of development. In clinical applications of PDLSCs for periodontal regeneration, donors with incompletely developed roots have stronger biological characteristics.

4.
BMJ Open ; 14(7): e082799, 2024 Jul 18.
Article de Anglais | MEDLINE | ID: mdl-39025815

RÉSUMÉ

BACKGROUND: Anaemia is a severe and common complication in patients with aneurysmal subarachnoid haemorrhage (aSAH). Early intervention for at-risk patients before anaemia occurs is indicated as potentially beneficial, but no validated method synthesises patients' complicated clinical features into an instrument. The purpose of the current study was to develop and externally validate a nomogram that predicted postacute phase anaemia after aSAH. METHODS: We developed a novel nomogram for aSAH patients to predict postacute phase anaemia (3 days after occurrence of aSAH, prior to discharge) on the basis of demographic information, imaging, type of treatment, aneurysm features, blood tests and clinical characteristics. We designed the model from a development cohort and tested the nomogram in external and prospective validation cohorts. We included 456 aSAH patients from The First Affiliated Hospital for the development, 220 from Sanmen People's Hospital for external validation and a prospective validation cohort that included 13 patients from Hangzhou Red Cross Hospital. We assessed the performance of the nomogram via concordance statistics and evaluated the calibration of predicted anaemia outcome with observed anaemia occurrence. RESULTS: Variables included in the nomogram were age, treatment method (open surgery or endovascular therapy), baseline haemoglobin level, fasting blood glucose level, systemic inflammatory response syndrome score on admission, Glasgow Coma Scale score, aneurysm size, prothrombin time and heart rate. In the validation cohort, the model for prediction of postacute phase anaemia had a c-statistic of 0.910, with satisfactory calibration (judged by eye) for the predicted and reported anaemia outcome. Among forward-looking forecasts, our predictive model achieved an 84% success rate, which showed that it has some clinical practicability. CONCLUSIONS: The developed and validated nomogram can be used to calculate individualised anaemia risk and has the potential to serve as a practical tool for clinicians in devising improved treatment strategies for aSAH.


Sujet(s)
Anémie , Nomogrammes , Hémorragie meningée , Humains , Hémorragie meningée/complications , Femelle , Mâle , Adulte d'âge moyen , Anémie/étiologie , Anémie/diagnostic , Anémie/sang , Études prospectives , Sujet âgé , Adulte , Anévrysme intracrânien/complications
5.
BMJ Open Respir Res ; 11(1)2024 Jul 20.
Article de Anglais | MEDLINE | ID: mdl-39032939

RÉSUMÉ

BACKGROUND: Impaired ventilatory efficiency during exercise is a predictor of mortality in chronic obstructive pulmonary disease. However, little is known about the clinical features and associated factors of impaired ventilatory efficiency in China. METHODS: We conducted a cross-sectional community-based study in China and collected demographic and clinical information, cardiopulmonary exercise testing, spirometry, and CT data. Impaired ventilatory efficiency was defined by a nadir ventilatory equivalent for CO2 production above the upper limit of normal. Multivariable linear and logistic regression models were used to explore the clinical features and associated factors of impaired ventilatory efficiency. RESULTS: The final analyses included 941 subjects, 702 (74.6%) of whom had normal ventilatory efficiency and 239 (25.4%) had impaired ventilatory efficiency. Participants with impaired ventilatory efficiency had more chronic respiratory symptoms, poorer lung function and exercise capacity, and more severe emphysema (natural logarithm transformation of the low-attenuation area of the lung with attenuation values below -950 Hounsfield units, logLAA-950: 0.19±0.65 vs -0.28±0.63, p<0.001) and air trapping (logLAA-856: 1.03±0.65 vs 0.68±0.70, p<0.001) than those with normal ventilatory efficiency. Older age (60-69 years, OR 3.10 (95% CI 1.33 to 7.21), p=0.009 and 70-80 years, OR 6.48 (95% CI 2.56 to 16.43), p<0.001 vs 40-49 years) and smoking (former, OR 3.19 (95% CI 1.29 to 7.86), p=0.012; current, OR 4.27 (95% CI 1.78 to 10.24), p=0.001 vs never) were identified as high risk factors of impaired ventilatory efficiency. CONCLUSIONS: Impaired ventilatory efficiency was associated with poorer respiratory characteristics. Longitudinal studies are warranted to explore the progression of individuals with impaired ventilatory efficiency.


Sujet(s)
Broncho-pneumopathie chronique obstructive , Humains , Chine/épidémiologie , Mâle , Femelle , Adulte d'âge moyen , Études transversales , Sujet âgé , Broncho-pneumopathie chronique obstructive/physiopathologie , Broncho-pneumopathie chronique obstructive/épidémiologie , Spirométrie , Épreuve d'effort , Poumon/physiopathologie , Poumon/imagerie diagnostique , Tomodensitométrie , Tolérance à l'effort , Facteurs de risque , Ventilation pulmonaire
6.
Entropy (Basel) ; 26(7)2024 Jul 14.
Article de Anglais | MEDLINE | ID: mdl-39056960

RÉSUMÉ

Due to the information non-independence of attributes, combined with a complex and changeable environment, the analysis of risks faces great difficulties. In view of this problem, this paper proposes a new three-way decision-making (3WD) method, combined with prospect theory and a non-additive measure, to cope with multi-source and incomplete risk information systems. Prospect theory improves the loss function of the original 3WD model, and the combination of non-additive measurement and probability measurement provides a new perspective to understand the meaning of decision-making, which could measure the relative degree by considering expert knowledge and objective data. The theoretical basis and framework of this model are illustrated, and this model is applied to a real in-service aviation equipment structures risk evaluation problem involving multiple incomplete risk information sources. When the simulation analysis is carried out, the results show that the availability of this method is verified. This method can also evaluate and rank key risk factors in equipment structures, which provides a reliable basis for decisions in aviation safety management.

7.
Sci Data ; 11(1): 804, 2024 Jul 20.
Article de Anglais | MEDLINE | ID: mdl-39033167

RÉSUMÉ

The Tibetan Plateau (TP) is crucial for global climate change and China's ecological security. Given recent drastic changes in vegetation from climate change and human activities, long-term vegetation monitoring is urgently required. This study produced the vegetation maps of the TP from 1990 to 2020 every ten years using random forest classifier and Landsat imagery. We selected the same stable samples and features for mapping to reduce errors between years and proposed spatial filtering to further improve the accuracy. The overall accuracy surpassed 95.00%, with all Kappa coefficients exceeding 0.95. A further assessment based on sampling sites from literature and field survey was higher than 80%. The importance ranking results indicated that in the TP, climate factors and terrain factors are the most important factors in the vegetation mapping. This study provides a method for mapping vegetation in alpine areas and data support for researching the dynamic change of vegetation on the TP and evaluating its response to climate change.

8.
J Colloid Interface Sci ; 675: 580-591, 2024 Jul 06.
Article de Anglais | MEDLINE | ID: mdl-38986331

RÉSUMÉ

Single-atom nanozymes (SANZs) have emerged as new media for enhancing chemodynamic therapy (CDT) to achieve desirable enzyme-like effects and excellent nanoscale specificity. However, non-optimal adsorption of Fenton-like reaction intermediates prevents SANZs from exerting kinetic activity and hinders the CDT effect. Herein, we demonstrate that heteroatom-doped Co single-atom nanozymes (SACNZs) with intrinsic charge transfer exhibit peroxidase-like properties and significantly improve the ability of CDT to treat Staphylococcus aureus-infected wounds. Density functional theory calculations showed that the S-induced charge transfer effect regulated the electronic distribution of the central metal more efficiently than P, thereby lowering the energy levels for the generation of OH and increasing the catalytic effect. Polyvinylpyrrolidone-modified SACNZs showed effects consistent with this theory in both in vitro antibacterial and in vivo ward management assays. This study systematically investigated the relationship between heteroatom-doping and the catalytic activity of metal centres, opening a new perspective for the application of CDT.

9.
Chem Sci ; 15(27): 10491-10498, 2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-38994426

RÉSUMÉ

The development of novel near-infrared (NIR) materials with extremely small energy gaps and high stability is highly desirable in bioimaging and phototherapy. Here we report an effective strategy for narrowing the energy gaps of porphyrins by synergistic regulation of meso/ß substituents. The novel NIR absorbing/emitting meso-alkynyl naphthoporphyrins (Zn-TNP and Pt-TNP) are synthesized via the retro-Diels-Alder reaction. X-ray crystallography analysis confirms the highly distorted structures of the complexes. Both compounds exhibit intense Q bands around 800 nm, while Zn-TNP shows deep NIR fluorescence at 847 nm. Pt-TNP displays NIR-II room temperature phosphorescence peaking at 1106 nm with an extremely large Stokes shift of 314 nm, which are the longest wavelengths observed among the reported platinum porphyrinoids. Furthermore, Pt-TNP shows remarkable photostability and a notable capacity for synchronous singlet oxygen and heat generation under NIR light irradiation, demonstrating potential in combined photodynamic/photothermal therapy. A theoretical analysis reveals the progressive lifting of the HOMO by the ß-fused benzene ring, the decrease of the LUMO upon meso-alkynyl substitution, and energy-releasing pathways varying with metal ions. This dual regulation approach demonstrates great promise in designing innovative multifunctional NIR porphyrin materials.

10.
Phys Chem Chem Phys ; 26(28): 19543-19553, 2024 Jul 17.
Article de Anglais | MEDLINE | ID: mdl-38979972

RÉSUMÉ

Rational design of γ-alumina-based catalysts relies on an extensive understanding of the distribution of hydroxyl groups on the surface of γ-alumina and their physicochemical properties, which remain unclear and challenging to determine experimentally due to the structural complexity. In this work, by means of DFT and thermodynamic calculations, various hydroxylation modes of γ-alumina (110) and (100) surfaces at different OH coverages were evaluated, based on which a thermodynamic model to reflect the relationship between temperature and the surface structure was established and the stable hydroxylation modes under experimental conditions were predicted. This enables us to identify the experimentally measured IR spectra. The effect of hydroxyl coverages on the surface Lewis acidity was then analyzed, showing that the presence of hydroxyl groups could promote the Lewis acidity of neighboring Al sites. This work provides fundamental insights into the molecular level understanding of the surface properties of γ-alumina and benefits the rational design of alumina-based catalysts.

11.
Nanomaterials (Basel) ; 14(13)2024 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-38998712

RÉSUMÉ

Magnetic metal absorbing materials have exhibited excellent absorptance performance. However, their applications are still limited in terms of light weight, low thickness and wide absorption bandwidth. To address this challenge, we design a broadband and low-profile multilayer absorber using cobalt-iron (CoFe) alloys doped with rare earth elements (REEs) lanthanum (La) and Neodymium (Nd). An improved estimation of distribution algorithm (IEDA) is employed in conjunction with a mathematical model of multilayer absorbing materials (MAMs) to optimize both the relative bandwidth with reflection loss (RL) below -10 dB and the thickness. Firstly, the absorption performance of CoFe alloys doped with La/Nd with different contents is analysed. Subsequently, IEDA is introduced based on a mathematical model to achieve an optimal MAM design that obtains a balance between absorption bandwidth and thickness. To validate the feasibility of our proposed method, a triple-layer MAM is designed and optimized to exhibit wide absorption bandwidth covering C, X, and Ku bands (6.16-12.82 GHz) and a total thickness of 2.39 mm. Then, the electromagnetic (EM) absorption mechanisms of the triple-layer MAMs are systematically investigated. Finally, the triple-layer sample is further fabricated and measured. The experimental result is in good agreement with the simulated result. This paper presents a rapid and efficient optimization method for designing MAMs, offering promising prospects in microwave applications, such as radar-stealth technology, EM shielding, and reduced EM pollution for electronic devices.

12.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3540-3547, 2024 Jul.
Article de Chinois | MEDLINE | ID: mdl-39041125

RÉSUMÉ

The chemical constituents from the stems and leaves of Artocarpus tonkinensis in Artocarpus of Moraceae were systematically studied by means of silica gel, octadecylsilyl(ODS), and Sephadex LH-20 gel column chromatographies, as well as preparative high-performance liquid chromatography(Pre-HPLC) and a variety of chromatographic separation techniques. The spectral data and physicochemical properties of the compounds were obtained from separation and compared with those of the compounds reported in the literature. As a result, 11 compounds isolated from the 90% ethanol extract of the stems and leaves of A. tonkinensis were identified as artocatonkine(1), 5,6,7,4'-tetramethoxyflavone(2), apigenin-4'-O-ß-D-glucoside(3), rayalinol(4), psorachalcone A(5), 4-ketopinoresinol(6), ficusesquilignan B(7), pinnatifidanin AI(8), pinnatifidanin A(9), O-methylmellein(10), and trans-4-hydroxymellein(11). Among these compounds, compound 1 was a new prenylated flavone, and compounds 2-11 were isolated from the plants belonging to the genus Artocarpus for the first time. Furthermore, all compounds 1-11 were evaluated for their anti-rheumatoid arthritis activities, and the MTS method was used to measure their inhibitory effects on the proliferation of synovioblasts in vitro. The results of activity evaluation showed that flavonoid compounds 1-3, 5, and lignan compounds 8 and 9 displayed significant anti-rheumatoid arthritis activities, showing the IC_(50) values in inhibiting the proliferation of synovioblasts MH7A from(6.38±0.06) µmol·L~(-1) to(168.58±0.28)µmol·L~(-1).


Sujet(s)
Artocarpus , Prolifération cellulaire , Feuilles de plante , Tiges de plante , Artocarpus/composition chimique , Feuilles de plante/composition chimique , Tiges de plante/composition chimique , Prolifération cellulaire/effets des médicaments et des substances chimiques , Humains , Médicaments issus de plantes chinoises/pharmacologie , Médicaments issus de plantes chinoises/composition chimique , Lignée cellulaire , Structure moléculaire , Chromatographie en phase liquide à haute performance
13.
Int Immunopharmacol ; 139: 112719, 2024 Jul 19.
Article de Anglais | MEDLINE | ID: mdl-39032470

RÉSUMÉ

Autophagy in alveolar macrophages (AMs) is an important mechanism for maintaining immune homeostasis and normal lung tissue function, and insufficient autophagy in AMs may mediate the development of sepsis-induced acute lung injury (SALI). Insufficient autophagy in AMs and the activation of the NLRP3 inflammasome were observed in a mouse model with SALI induced by cecal ligation and puncture (CLP), resulting in the release of a substantial quantity of proinflammatory factors and the formation of SALI. However, after andrographolide (AG) intervention, autophagy in AMs was significantly promoted, the activation of the NLRP3 inflammasome was inhibited, the release of proinflammatory factors and pyroptosis were suppressed, and SALI was then ameliorated. In the MH-S cell model stimulated with LPS, insufficient autophagy was discovered to promote the overactivation of the NLRP3 inflammasome. AG was found to significantly promote autophagy, inhibit the activation of the NLRP3 inflammasome, and attenuate the release of proinflammatory factors. The primary mechanism of AG promoting autophagy was to inhibit the activation of the PI3K/AKT/mTOR pathway by binding RAGE to the membrane. In addition, it inhibited the activation of the NLRP3 inflammasome to ameliorate SALI. Our findings suggest that AG promotes autophagy in AMs through the RAGE/PI3K/AKT/mTOR pathway to inhibit the activation of the NLRP3 inflammasome, remodel the functional homeostasis of AMs in SALI, and exert anti-inflammatory and lung-protective effects. It has also been the first to suggest that RAGE is likely a direct target through which AG regulates autophagy, providing theoretical support for a novel therapeutic strategy in sepsis.

14.
Nat Commun ; 15(1): 5747, 2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-38982069

RÉSUMÉ

Friction as a fundamental physical phenomenon dominates nature and human civilization, among which the achievement of molecular rolling lubrication is desired to bring another breakthrough, like the macroscale design of wheel. Herein, an edge self-curling nanodeformation phenomenon of graphite nanosheets (GNSs) at cryogenic temperature is found, which is then used to promote the formation of graphite nanorollers in friction process towards molecular rolling lubrication. The observation of parallel nanorollers at the friction interface give the experimental evidence for the occurrence of molecular rolling lubrication, and the graphite exhibits abnormal lubrication performance in vacuum with ultra-low friction and wear at macroscale. The molecular rolling lubrication mechanism is elucidated from the electronic interaction perspective. Experiments and theoretical simulations indicate that the driving force of the self-curling is the uneven atomic shrinkage induced stress, and then the shear force promotes the intact nanoroller formation, while the constraint of atomic vibration decreases the dissipation of driving stress and favors the nanoroller formation therein. It will open up a new pathway for controlling friction at microscale and nanostructural manipulation.

15.
Mater Horiz ; 2024 Jul 19.
Article de Anglais | MEDLINE | ID: mdl-39026466

RÉSUMÉ

The overuse of antibiotics has led to the rapid development of multi-drug resistant bacteria, making antibiotics increasingly ineffective against bacterial infections. Consequently, there is an urgent need to develop alternative strategies to combat multi-drug-resistant bacterial infections. In this study, gold nanoparticles modified with ellagic acid (EA-AuNPs) were prepared using a simple and mild one-pot hydrothermal process. EA-AuNPs demonstrated high bactericidal efficacy and broad-spectrum antimicrobial activities against clinical isolates of the antibiotic-resistant ESKAPE pathogens. Furthermore, EA-AuNPs effectively disperse biofilms of multi-drug-resistant bacteria. Additionally, EA-AuNPs mitigated inflammatory responses at the bacterial infection sites. The combined bactericidal and anti-inflammatory treatment with EA-AuNPs resulted in faster curing of peritonitis caused by Staphylococcus aureus in mice compared to treatment with free EA or gentamicin. Moreover, transcriptome analysis revealed that EA-AuNPs exhibited a multi-targeting mechanism, making resistance development in pathogens more challenging than traditional antibiotics that recognize specific cellular targets. Overall, EA-AuNPs emerged as a promising antimicrobial agent against multi-drug-resistant bacterial infections.

16.
Langmuir ; 40(28): 14346-14354, 2024 Jul 16.
Article de Anglais | MEDLINE | ID: mdl-38953474

RÉSUMÉ

The issue of bacterial infectious diseases remains a significant concern worldwide, particularly due to the misuse of antibiotics, which has caused the emergence of antibiotic-resistant strains. Fortunately, the rapid development of nanomaterials has propelled significant progress in antimicrobial therapy, offering promising solutions. Among them, the utilization of nanoenzyme-based chemodynamic therapy (CDT) has become a highly hopeful approach to combating bacterial infectious diseases. Nevertheless, the application of CDT appears to be facing certain constraints for its low efficiency in the Fenton reaction at the infected site. In this study, we have successfully synthesized a versatile nanozyme, which was a composite of molybdenum sulfide (MoS2) and iron sulfide (FeS2), through the hydrothermal method. The results showed that iron/molybdenum sulfide nanozymes (Fe/Mo SNZs) with desirable peroxidase (POD) mimic activity can generate cytotoxic reactive oxygen species (ROS) by successfully triggering the Fenton reaction. The presence of MoS2 significantly accelerates the conversion of Fe2+/Fe3+ through a cocatalytic reaction that involves the participation of redox pairs of Mo4+/Mo6+, thereby enhancing the efficiency of CDT. Additionally, based on the excellent photothermal performance of Fe/Mo SNZs, a near-infrared (NIR) laser was used to induce localized temperature elevation for photothermal therapy (PTT) and enhance the POD-like nanoenzymatic activity. Notably, both in vitro and in vivo results demonstrated that Fe/Mo SNZs with good broad-spectrum antibacterial properties can help eradicate Gram-negative bacteria like Escherichia coli and Gram-positive bacteria like Staphylococcus aureus. The most exciting thing is that the synergistic PTT/CDT exhibited astonishing antibacterial ability and can achieve complete elimination of bacteria, which promoted wound healing after infection. Overall, this study presents a synergistic PTT/CDT strategy to address antibiotic resistance, providing avenues and directions for enhancing the efficacy of wound healing treatments and offering promising prospects for further clinical use in the near future.


Sujet(s)
Antibactériens , Disulfures , Fer , Molybdène , Sulfures , Cicatrisation de plaie , Molybdène/composition chimique , Molybdène/pharmacologie , Cicatrisation de plaie/effets des médicaments et des substances chimiques , Sulfures/composition chimique , Sulfures/pharmacologie , Animaux , Disulfures/composition chimique , Disulfures/pharmacologie , Fer/composition chimique , Fer/pharmacologie , Antibactériens/pharmacologie , Antibactériens/composition chimique , Antibactériens/synthèse chimique , Catalyse , Staphylococcus aureus/effets des médicaments et des substances chimiques , Souris , Escherichia coli/effets des médicaments et des substances chimiques , Peroxyde d'hydrogène/composition chimique , Peroxyde d'hydrogène/pharmacologie , Espèces réactives de l'oxygène/métabolisme , Nanostructures/composition chimique , Photothérapie , Tests de sensibilité microbienne , Thérapie photothermique , Composés du fer II
17.
J Adv Res ; 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38960279

RÉSUMÉ

INTRODUCTION: Glioblastoma multiforme (GBM) poses a significant challenge in terms of treatment due to its high malignancy, necessitating the identification of additional molecular targets. VSIG4, an oncogenic gene participates in tumor growth and migration in various cancer types. Nevertheless, the precise process through which VSIG4 facilitates the malignant progression of glioma remains to be elucidated. OBJECTIVES: This research aims to explore the function and molecular mechanism involving VSIG4 in the malignant progression of glioma. METHODS: The amount of VSIG4 was measured using qPCR, western blotting, and immunohistochemistry. Lentivirus infections were applied for upregulating or downregulating molecules within glioma cells. The incorporation of 5-ethynyl-20-deoxyuridine, Transwell, cell counting kit-8, and clone formation experiments, were applied to assess the biological functions of molecules on glioma cells. Dual luciferase reporter gene, RNA immunoprecipitation, and chromatin immunoprecipitation assays were used to explore the functional relationship among relevant molecules. RESULTS: The upregulation of VSIG4 was observed in GBM tissues, indicating an adverse prognosis. Silencing VSIG4 in glioma cells resulted in a decrease in cell viability, invasion, proliferation, and tumorigenesis, an increase in cell apoptosis, and a stagnation in the cell cycle progression at the G0/G1 phase. Mechanistically, SPI1-mediated upregulation of VSIG4 expression led to binding between VSIG4 and THBS1 protein, ultimately facilitating the malignant progression of glioma cells through the activation of the PI3K/AKT pathway. The inhibited proliferative and invasive capabilities of glioma cells were reversed by overexpressing THBS1 following the knockdown of VSIG4. CONCLUSION: Our findings provide evidence for the role of VSIG4 as an oncogene and reveal the previously unidentified contribution of the SPI1/VSIG4/THBS1 axis in the malignant progression of glioma. This signaling cascade enhances tumor growth and invasion by modulating the PI3K/AKT pathway. VSIG4 as a potential biomarker may be a viable strategy in the development of tailored molecular therapies for GBM.

18.
Beilstein J Org Chem ; 20: 1405-1411, 2024.
Article de Anglais | MEDLINE | ID: mdl-38952958

RÉSUMÉ

Hypervalent iodine catalysis has been widely utilized in olefin functionalization reactions. Intermolecularly, the regioselective addition of two distinct nucleophiles across the olefin is a challenging process in hypervalent iodine catalysis. We introduce here a unique strategy using simple lithium salts for hypervalent iodine catalyst activation. The activated hypervalent iodine catalyst allows the intermolecular coupling of soft nucleophiles such as amides onto electronically activated olefins with high regioselectivity.

19.
Cell Biol Int ; 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38953242

RÉSUMÉ

Ferroptosis, a form of cell death driven by iron-dependent lipid peroxidation, is emerging as a promising target in cancer therapy. It is regulated by a network of molecules and pathways that modulate lipid metabolism, iron homeostasis and redox balance, and related processes. However, there are still numerous regulatory molecules intricately involved in ferroptosis that remain to be identified. Here, we indicated that suppression of Golgi protein acyl-coenzyme A binding domain A containing 3 (ACBD3) increased the sensitivity of Henrieta Lacks and PANC1 cells to ferroptosis. ACBD3 knockdown increases labile iron levels by promoting ferritinophagy. This increase in free iron, coupled with reduced levels of glutathione peroxidase 4 due to ACBD3 knockdown, leads to the accumulation of reactive oxygen species and lipid peroxides. Moreover, ACBD3 knockdown also results in elevated levels of polyunsaturated fatty acid-containing glycerophospholipids through mechanisms that remain to be elucidated. Furthermore, inhibition of ferrtinophagy in ACBD3 downregulated cells by knocking down the nuclear receptor co-activator 4 or Bafilomycin A1 treatment impeded ferroptosis. Collectively, our findings highlight the pivotal role of ACBD3 in governing cellular resistance to ferroptosis and suggest that pharmacological manipulation of ACBD3 levels is a promising strategy for cancer therapy.

20.
Small ; : e2403903, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38953301

RÉSUMÉ

Asymmetric electronic environments based on microscopic-scale perspective have injected infinite vitality in understanding the intrinsic mechanism of polarization loss for electromagnetic (EM) wave absorption, but still exists a significant challenge. Herein, Zn single-atoms (SAs), structural defects, and Co nanoclusters are simultaneously implanted into bimetallic metal-organic framework derivatives via the two-step dual coordination-pyrolysis process. Theoretical simulations and experimental results reveal that the electronic coupling interactions between Zn SAs and structural defects delocalize the symmetric electronic environments and generate additional dipole polarization without sacrificing conduction loss owing to the compensation of carbon nanotubes. Moreover, Co nanoclusters with large nanocurvatures induce a strong interfacial electric field, activate the superiority of heterointerfaces and promote interfacial polarization. Benefiting from the aforementioned merits, the resultant derivatives deliver an optimal reflection loss of -58.9 dB and the effective absorption bandwidth is 5.2 GHz. These findings provide an innovative insight into clarifying the microscopic loss mechanism from the asymmetric electron environments viewpoint and inspire the generalized electronic modulation engineering in optimizing EM wave absorption.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE