Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 34
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
JCI Insight ; 9(17)2024 Jul 25.
Article de Anglais | MEDLINE | ID: mdl-39052387

RÉSUMÉ

Over 200,000 individuals are diagnosed with lung cancer in the United States every year, with a growing proportion of cases, especially lung adenocarcinoma, occurring in individuals who have never smoked. Women over the age of 50 comprise the largest affected demographic. To understand the genomic drivers of lung adenocarcinoma and therapeutic response in this population, we performed whole genome and/or whole exome sequencing on 73 matched lung tumor/normal pairs from postmenopausal women who participated in the Women's Health Initiative. Somatic copy number alterations showed little variation by smoking status, suggesting that aneuploidy may be a general characteristic of lung cancer regardless of smoke exposure. Similarly, clock-like and APOBEC mutation signatures were prevalent but did not differ in tumors from smokers and never-smokers. However, mutations in both EGFR and KRAS showed unique allelic differences determined by smoking status that are known to alter tumor response to targeted therapy. Mutations in the MYC-network member MGA were more prevalent in tumors from smokers. Fusion events in ALK, RET, and ROS1 were absent, likely due to age-related differences in fusion prevalence. Our work underscores the profound effect of smoking status, age, and sex on the tumor mutational landscape and identifies areas of unmet medical need.


Sujet(s)
Tumeurs du poumon , Mutation , Humains , Femelle , Tumeurs du poumon/génétique , Tumeurs du poumon/épidémiologie , Sujet âgé , Adulte d'âge moyen , Fumer/génétique , Fumer/épidémiologie , Fumer/effets indésirables , Santé des femmes , Adénocarcinome pulmonaire/génétique , Adénocarcinome pulmonaire/épidémiologie , Non-fumeurs/statistiques et données numériques , Génomique/méthodes , Variations de nombre de copies de segment d'ADN , États-Unis/épidémiologie , Récepteurs ErbB/génétique , , Protéines proto-oncogènes p21(ras)/génétique , Fumeurs/statistiques et données numériques
2.
Sci Adv ; 10(21): eadh2588, 2024 May 24.
Article de Anglais | MEDLINE | ID: mdl-38781336

RÉSUMÉ

Sample-wise deconvolution methods estimate cell-type proportions and gene expressions in bulk tissue samples, yet their performance and biological applications remain unexplored, particularly in human brain transcriptomic data. Here, nine deconvolution methods were evaluated with sample-matched data from bulk tissue RNA sequencing (RNA-seq), single-cell/nuclei (sc/sn) RNA-seq, and immunohistochemistry. A total of 1,130,767 nuclei per cells from 149 adult postmortem brains and 72 organoid samples were used. The results showed the best performance of dtangle for estimating cell proportions and bMIND for estimating sample-wise cell-type gene expressions. For eight brain cell types, 25,273 cell-type eQTLs were identified with deconvoluted expressions (decon-eQTLs). The results showed that decon-eQTLs explained more schizophrenia GWAS heritability than bulk tissue or single-cell eQTLs did alone. Differential gene expressions associated with Alzheimer's disease, schizophrenia, and brain development were also examined using the deconvoluted data. Our findings, which were replicated in bulk tissue and single-cell data, provided insights into the biological applications of deconvoluted data in multiple brain disorders.


Sujet(s)
Encéphale , Analyse sur cellule unique , Transcriptome , Humains , Encéphale/métabolisme , Analyse sur cellule unique/méthodes , Maladie d'Alzheimer/génétique , Maladie d'Alzheimer/métabolisme , Maladie d'Alzheimer/anatomopathologie , Analyse de profil d'expression de gènes/méthodes , Schizophrénie/génétique , Schizophrénie/métabolisme , Schizophrénie/anatomopathologie , Étude d'association pangénomique/méthodes , Analyse de séquence d'ARN/méthodes , Adulte
3.
bioRxiv ; 2024 May 19.
Article de Anglais | MEDLINE | ID: mdl-38798404

RÉSUMÉ

The repertory of neurons generated by progenitor cells depends on their location along antero-posterior and dorso-ventral axes of the neural tube. To understand if recreating those axes was sufficient to specify human brain neuronal diversity, we designed a mesofluidic device termed Duo-MAPS to expose induced pluripotent stem cells (iPSC) to concomitant orthogonal gradients of a posteriorizing and a ventralizing morphogen, activating WNT and SHH signaling, respectively. Comparison of single cell transcriptomes with fetal human brain revealed that Duo-MAPS-patterned organoids generated the major neuronal lineages of the forebrain, midbrain, and hindbrain. Morphogens crosstalk translated into early patterns of gene expression programs predicting the generation of specific brain lineages. Human iPSC lines from six different genetic backgrounds showed substantial differences in response to morphogens, suggesting that interindividual genomic and epigenomic variations could impact brain lineages formation. Morphogen gradients promise to be a key approach to model the brain in its entirety.

4.
Sci Adv ; 10(15): eadk2082, 2024 Apr 12.
Article de Anglais | MEDLINE | ID: mdl-38598634

RÉSUMÉ

We report an approach for cancer phenotyping based on targeted sequencing of cell-free DNA (cfDNA) for small cell lung cancer (SCLC). In SCLC, differential activation of transcription factors (TFs), such as ASCL1, NEUROD1, POU2F3, and REST defines molecular subtypes. We designed a targeted capture panel that identifies chromatin organization signatures at 1535 TF binding sites and 13,240 gene transcription start sites and detects exonic mutations in 842 genes. Sequencing of cfDNA from SCLC patient-derived xenograft models captured TF activity and gene expression and revealed individual highly informative loci. Prediction models of ASCL1 and NEUROD1 activity using informative loci achieved areas under the receiver operating characteristic curve (AUCs) from 0.84 to 0.88 in patients with SCLC. As non-SCLC (NSCLC) often transforms to SCLC following targeted therapy, we applied our framework to distinguish NSCLC from SCLC and achieved an AUC of 0.99. Our approach shows promising utility for SCLC subtyping and transformation monitoring, with potential applicability to diverse tumor types.


Sujet(s)
Carcinome pulmonaire non à petites cellules , Acides nucléiques acellulaires , Tumeurs du poumon , Carcinome pulmonaire à petites cellules , Humains , Carcinome pulmonaire à petites cellules/métabolisme , Tumeurs du poumon/métabolisme , Carcinome pulmonaire non à petites cellules/anatomopathologie , Séquences d'acides nucléiques régulatrices , Régulation de l'expression des gènes tumoraux
5.
bioRxiv ; 2024 May 10.
Article de Anglais | MEDLINE | ID: mdl-38464084

RÉSUMÉ

Tourette syndrome (TS) is a disorder of high-order integration of sensory, motor, and cognitive functions afflicting as many as 1 in 150 children and characterized by motor hyperactivity and tics. Despite high familial recurrence rates, a few risk genes and no biomarkers have emerged as causative or predisposing factors. The syndrome is believed to originate in basal ganglia, where patterns of motor programs are encoded. Postmortem immunocytochemical analyses of brains with severe TS revealed decreases in cholinergic, fast-spiking parvalbumin, and somatostatin interneurons within the striatum (caudate and putamen nuclei). Here, we performed single cell transcriptomic and chromatin accessibility analyses of the caudate nucleus from 6 adult TS and 6 control post-mortem brains. The data reproduced the known cellular composition of the adult human striatum, including a majority of medium spiny neurons (MSN) and small populations of GABAergic and cholinergic interneurons. Comparative analysis revealed that interneurons were decreased by roughly 50% in TS brains, while no difference was observed for other cell types. Differential gene expression analysis suggested that mitochondrial function, and specifically oxidative metabolism, in MSN and synaptic function in interneurons are both impaired in TS subjects. Furthermore, such an impairment was coupled with activation of immune response pathways in microglia. Also, our data explicitly link gene expression changes to changes in cis-regulatory activity in the corresponding cell types, suggesting de-regulation as a factor for the etiology of TS. These findings expand on previous research and suggest that impaired modulation of striatal function by interneurons may be the origin of TS symptoms.

6.
Sci Rep ; 14(1): 3936, 2024 02 16.
Article de Anglais | MEDLINE | ID: mdl-38365907

RÉSUMÉ

Regulation of gene expression through enhancers is one of the major processes shaping the structure and function of the human brain during development. High-throughput assays have predicted thousands of enhancers involved in neurodevelopment, and confirming their activity through orthogonal functional assays is crucial. Here, we utilized Massively Parallel Reporter Assays (MPRAs) in stem cells and forebrain organoids to evaluate the activity of ~ 7000 gene-linked enhancers previously identified in human fetal tissues and brain organoids. We used a Gaussian mixture model to evaluate the contribution of background noise in the measured activity signal to confirm the activity of ~ 35% of the tested enhancers, with most showing temporal-specific activity, suggesting their evolving role in neurodevelopment. The temporal specificity was further supported by the correlation of activity with gene expression. Our findings provide a valuable gene regulatory resource to the scientific community.


Sujet(s)
Régulation de l'expression des gènes , Séquences d'acides nucléiques régulatrices , Humains , Organoïdes , Prosencéphale , Éléments activateurs (génétique)
8.
bioRxiv ; 2023 Aug 14.
Article de Anglais | MEDLINE | ID: mdl-37645832

RÉSUMÉ

Regulation of gene expression through enhancers is one of the major processes shaping the structure and function of the human brain during development. High-throughput assays have predicted thousands of enhancers involved in neurodevelopment, and confirming their activity through orthogonal functional assays is crucial. Here, we utilized Massively Parallel Reporter Assays (MPRAs) in stem cells and forebrain organoids to evaluate the activity of ~7,000 gene-linked enhancers previously identified in human fetal tissues and brain organoids. We used a Gaussian mixture model to evaluate the contribution of background noise in the measured activity signal to confirm the activity of ~35% of the tested enhancers, with most showing temporal-specific activity, suggesting their evolving role in neurodevelopment. The temporal specificity was further supported by the correlation of activity with gene expression. Our findings provide a valuable gene regulatory resource to the scientific community.

9.
Nat Neurosci ; 26(9): 1505-1515, 2023 09.
Article de Anglais | MEDLINE | ID: mdl-37563294

RÉSUMÉ

Idiopathic autism spectrum disorder (ASD) is highly heterogeneous, and it remains unclear how convergent biological processes in affected individuals may give rise to symptoms. Here, using cortical organoids and single-cell transcriptomics, we modeled alterations in the forebrain development between boys with idiopathic ASD and their unaffected fathers in 13 families. Transcriptomic changes suggest that ASD pathogenesis in macrocephalic and normocephalic probands involves an opposite disruption of the balance between excitatory neurons of the dorsal cortical plate and other lineages such as early-generated neurons from the putative preplate. The imbalance stemmed from divergent expression of transcription factors driving cell fate during early cortical development. While we did not find genomic variants in probands that explained the observed transcriptomic alterations, a significant overlap between altered transcripts and reported ASD risk genes affected by rare variants suggests a degree of gene convergence between rare forms of ASD and the developmental transcriptome in idiopathic ASD.


Sujet(s)
Trouble du spectre autistique , Trouble autistique , Mâle , Humains , Trouble autistique/génétique , Trouble du spectre autistique/anatomopathologie , Neurones/métabolisme , Neurogenèse , Prosencéphale/métabolisme , Organoïdes/métabolisme
10.
bioRxiv ; 2023 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-37461590

RÉSUMÉ

APOBEC mutagenesis is one of the most common endogenous sources of mutations in human cancer and is a major source of genetic intratumor heterogeneity. High levels of APOBEC mutagenesis are associated with poor prognosis and aggressive disease across diverse cancers, but the mechanistic and functional impacts of APOBEC mutagenesis on tumor evolution and therapy resistance remain relatively unexplored. To address this, we investigated the contribution of APOBEC mutagenesis to acquired therapy resistance in a model of EGFR-mutant non-small cell lung cancer. We find that inhibition of EGFR in lung cancer cells leads to a rapid and pronounced induction of APOBEC3 expression and activity. Functionally, APOBEC expression promotes the survival of drug-tolerant persister cells (DTPs) following EGFR inhibition. Constitutive expression of APOBEC3B alters the evolutionary trajectory of acquired resistance to the EGFR inhibitor gefitinib, making it more likely that resistance arises through de novo acquisition of the T790M gatekeeper mutation and squamous transdifferentiation during the DTP state. APOBEC3B expression is associated with increased expression of the squamous cell transcription factor ΔNp63 and squamous cell transdifferentiation in gefitinib-resistant cells. Knockout of ΔNp63 in gefitinibresistant cells reduces the expression of the p63 target genes IL1a/b and sensitizes these cells to the thirdgeneration EGFR inhibitor osimertinib. These results suggest that APOBEC activity promotes acquired resistance by facilitating evolution and transdifferentiation in DTPs, and suggest that approaches to target ΔNp63 in gefitinib-resistant lung cancers may have therapeutic benefit.

12.
Biomark Res ; 11(1): 31, 2023 Mar 16.
Article de Anglais | MEDLINE | ID: mdl-36927800

RÉSUMÉ

BACKGROUND: Studies have not systematically compared the ability to verify performance of prognostic transcripts in paired bulk mononuclear cells versus viable CD34-expressing leukemic blasts from patients with acute myeloid leukemia. We hypothesized that examining the homogenous leukemic blasts will yield different biological information and may improve prognostic performance of expression biomarkers. METHODS: To assess the impact of cellular heterogeneity on expression biomarkers in acute myeloid leukemia, we systematically examined paired mononuclear cells and viable CD34-expressing leukemic blasts from SWOG diagnostic specimens. After enrichment, patients were assigned into discovery and validation cohorts based on availability of extracted RNA. Analyses of RNA sequencing data examined how enrichment impacted differentially expressed genes associated with pre-analytic variables, patient characteristics, and clinical outcomes. RESULTS: Blast enrichment yielded significantly different expression profiles and biological pathways associated with clinical characteristics (e.g., cytogenetics). Although numerous differentially expressed genes were associated with clinical outcomes, most lost their prognostic significance in the mononuclear cells and blasts after adjusting for age and ELN risk, with only 11 genes remaining significant for overall survival in both cell populations (CEP70, COMMD7, DNMT3B, ECE1, LNX2, NEGR1, PIK3C2B, SEMA4D, SMAD2, TAF8, ZNF444). To examine the impact of enrichment on biomarker verification, these 11 candidate biomarkers were examined by quantitative RT/PCR in the validation cohort. After adjusting for ELN risk and age, expression of 4 genes (CEP70, DNMT3B, ECE1, and PIK3CB) remained significantly associated with overall survival in the blasts, while none met statistical significance in mononuclear cells. CONCLUSIONS: This study provides insights into biological information gained/lost by examining viable CD34-expressing leukemic blasts versus mononuclear cells from the same patient and shows an improved verification rate for expression biomarkers in blasts.

13.
bioRxiv ; 2023 Mar 15.
Article de Anglais | MEDLINE | ID: mdl-36993743

RÉSUMÉ

Sample-wise deconvolution methods have been developed to estimate cell-type proportions and gene expressions in bulk-tissue samples. However, the performance of these methods and their biological applications has not been evaluated, particularly on human brain transcriptomic data. Here, nine deconvolution methods were evaluated with sample-matched data from bulk-tissue RNAseq, single-cell/nuclei (sc/sn) RNAseq, and immunohistochemistry. A total of 1,130,767 nuclei/cells from 149 adult postmortem brains and 72 organoid samples were used. The results showed the best performance of dtangle for estimating cell proportions and bMIND for estimating sample-wise cell-type gene expression. For eight brain cell types, 25,273 cell-type eQTLs were identified with deconvoluted expressions (decon-eQTLs). The results showed that decon-eQTLs explained more schizophrenia GWAS heritability than bulk-tissue or single-cell eQTLs alone. Differential gene expression associated with multiple phenotypes were also examined using the deconvoluted data. Our findings, which were replicated in bulk-tissue RNAseq and sc/snRNAseq data, provided new insights into the biological applications of deconvoluted data.

14.
bioRxiv ; 2023 Jan 06.
Article de Anglais | MEDLINE | ID: mdl-36712079

RÉSUMÉ

Lung cancer in never-smokers disproportionately affects older women. To understand the mutational landscape of this cohort, we performed detailed genome characterization of 73 lung adenocarcinomas from participants of the Women’s Health Initiative (WHI). We find enrichment of EGFR mutations in never-/light-smokers and KRAS mutations in heavy smokers as expected, but we also show that the specific variants of these genes differ by smoking status, with important therapeutic implications. Mutational signature analysis revealed signatures of clock, APOBEC, and DNA repair deficiency in never-/light-smokers; however, the mutational load of these signatures did not differ significantly from those found in smokers. Last, tumors from both smokers and never-/light-smokers shared copy number subtypes, with no significant differences in aneuploidy. Thus, the genomic landscape of lung cancer in never-/light-smokers and smokers is predominantly differentiated by somatic mutations and not copy number alterations.

15.
J Immunother Cancer ; 11(11)2023 11 20.
Article de Anglais | MEDLINE | ID: mdl-38251688

RÉSUMÉ

BACKGROUND: Cell culture conditions during manufacturing can impact the clinical efficacy of chimeric antigen receptor (CAR) T cell products. Production methods have not been standardized because the optimal approach remains unknown. Separate CD4+ and CD8+ cultures offer a potential advantage but complicate manufacturing and may affect cell expansion and function. In a phase 1/2 clinical trial, we observed poor expansion of separate CD8+ cell cultures and hypothesized that coculture of CD4+ cells and CD8+ cells at a defined ratio at culture initiation would enhance CD8+ cell expansion and simplify manufacturing. METHODS: We generated CAR T cells either as separate CD4+ and CD8+ cells, or as combined cultures mixed in defined CD4:CD8 ratios at culture initiation. We assessed CAR T cell expansion, phenotype, function, gene expression, and in vivo activity of CAR T cells and compared these between separately expanded or mixed CAR T cell cultures. RESULTS: We found that the coculture of CD8+ CAR T cells with CD4+ cells markedly improves CD8+ cell expansion, and further discovered that CD8+ cells cultured in isolation exhibit a hypofunctional phenotype and transcriptional signature compared with those in mixed cultures with CD4+ cells. Cocultured CAR T cells also confer superior antitumor activity in vivo compared with separately expanded cells. The positive impact of CD4+ cells on CD8+ cells was mediated through both cytokines and direct cell contact, including CD40L-CD40 and CD70-CD27 interactions. CONCLUSIONS: Our data indicate that CD4+ cell help during cell culture maintains robust CD8+ CAR T cell function, with implications for clinical cell manufacturing.


Sujet(s)
Récepteurs chimériques pour l'antigène , Humains , Récepteurs chimériques pour l'antigène/génétique , Lymphocytes T CD4+ , Techniques de culture cellulaire , Lymphocytes T CD8+ , Phénotype
16.
Clin Cancer Res ; 28(20): 4551-4564, 2022 10 14.
Article de Anglais | MEDLINE | ID: mdl-35920742

RÉSUMÉ

PURPOSE: The addition of immune checkpoint blockade (ICB) to platinum/etoposide chemotherapy changed the standard of care for small cell lung cancer (SCLC) treatment. However, ICB addition only modestly improved clinical outcomes, likely reflecting the high prevalence of an immunologically "cold" tumor microenvironment in SCLC, despite high mutational burden. Nevertheless, some patients clearly benefit from ICB and recent reports have associated clinical responses to ICB in SCLC with (i) decreased neuroendocrine characteristics and (ii) activation of NOTCH signaling. We previously showed that inhibition of the lysine-specific demethylase 1a (LSD1) demethylase activates NOTCH and suppresses neuroendocrine features of SCLC, leading us to investigate whether LSD1 inhibition would enhance the response to PD-1 inhibition in SCLC. EXPERIMENTAL DESIGN: We employed a syngeneic immunocompetent model of SCLC, derived from a genetically engineered mouse model harboring Rb1/Trp53 inactivation, to investigate combining the LSD1 inhibitor bomedemstat with anti-PD-1 therapy. In vivo experiments were complemented by cell-based studies in murine and human models. RESULTS: Bomedemstat potentiated responses to PD-1 inhibition in a syngeneic model of SCLC, resulting in increased CD8+ T-cell infiltration and strong tumor growth inhibition. Bomedemstat increased MHC class I expression in mouse SCLC tumor cells in vivo and augmented MHC-I induction by IFNγ and increased killing by tumor-specific T cells in cell culture. CONCLUSIONS: LSD1 inhibition increased MHC-I expression and enhanced responses to PD-1 inhibition in vivo, supporting a new clinical trial to combine bomedemstat with standard-of-care PD-1 axis inhibition in SCLC.


Sujet(s)
Tumeurs du poumon , Carcinome pulmonaire à petites cellules , Animaux , Mort cellulaire , Antienzymes/usage thérapeutique , Étoposide/usage thérapeutique , Histone Demethylases/métabolisme , Humains , Inhibiteurs de points de contrôle immunitaires , Tumeurs du poumon/anatomopathologie , Lysine/usage thérapeutique , Souris , Platine/usage thérapeutique , Carcinome pulmonaire à petites cellules/anatomopathologie , Microenvironnement tumoral
17.
Science ; 377(6605): 511-517, 2022 07 29.
Article de Anglais | MEDLINE | ID: mdl-35901164

RÉSUMÉ

We analyzed 131 human brains (44 neurotypical, 19 with Tourette syndrome, 9 with schizophrenia, and 59 with autism) for somatic mutations after whole genome sequencing to a depth of more than 200×. Typically, brains had 20 to 60 detectable single-nucleotide mutations, but ~6% of brains harbored hundreds of somatic mutations. Hypermutability was associated with age and damaging mutations in genes implicated in cancers and, in some brains, reflected in vivo clonal expansions. Somatic duplications, likely arising during development, were found in ~5% of normal and diseased brains, reflecting background mutagenesis. Brains with autism were associated with mutations creating putative transcription factor binding motifs in enhancer-like regions in the developing brain. The top-ranked affected motifs corresponded to MEIS (myeloid ectopic viral integration site) transcription factors, suggesting a potential link between their involvement in gene regulation and autism.


Sujet(s)
Vieillissement , Trouble autistique , Encéphale , Mutagenèse , Facteurs de transcription , Vieillissement/génétique , Trouble autistique/génétique , Éléments activateurs (génétique)/génétique , Régulation de l'expression des gènes , Humains , Mutation , Liaison aux protéines/génétique , Facteurs de transcription/génétique , Séquençage du génome entier
18.
Clin Cancer Res ; 28(20): 4466-4478, 2022 10 14.
Article de Anglais | MEDLINE | ID: mdl-35653119

RÉSUMÉ

PURPOSE: Propagation of Ewing sarcoma requires precise regulation of EWS::FLI1 transcriptional activity. Determining the mechanisms of fusion regulation will advance our understanding of tumor progression. Here we investigated whether HOXD13, a developmental transcription factor that promotes Ewing sarcoma metastatic phenotypes, influences EWS::FLI1 transcriptional activity. EXPERIMENTAL DESIGN: Existing tumor and cell line datasets were used to define EWS::FLI1 binding sites and transcriptional targets. Chromatin immunoprecipitation and CRISPR interference were employed to identify enhancers. CUT&RUN and RNA sequencing defined binding sites and transcriptional targets of HOXD13. Transcriptional states were investigated using bulk and single-cell transcriptomic data from cell lines, patient-derived xenografts, and patient tumors. Mesenchymal phenotypes were assessed by gene set enrichment, flow cytometry, and migration assays. RESULTS: We found that EWS::FLI1 creates a de novo GGAA microsatellite enhancer in a developmentally conserved regulatory region of the HOXD locus. Knockdown of HOXD13 led to widespread changes in expression of developmental gene programs and EWS::FLI1 targets. HOXD13 binding was enriched at established EWS::FLI1 binding sites where it influenced expression of EWS::FLI1-activated genes. More strikingly, HOXD13 bound and activated EWS::FLI1-repressed genes, leading to adoption of mesenchymal and migratory cell states that are normally suppressed by the fusion. Single-cell analysis confirmed that direct transcriptional antagonism between HOXD13-mediated gene activation and EWS::FLI1-dependent gene repression defines the state of Ewing sarcoma cells along a mesenchymal axis. CONCLUSIONS: Ewing sarcoma tumors are comprised of tumor cells that exist along a mesenchymal transcriptional continuum. The identity of cells along this continuum is, in large part, determined by the competing activities of EWS::FLI1 and HOXD13. See related commentary by Weiss and Bailey, p. 4360.


Sujet(s)
Sarcome d'Ewing , Lignée cellulaire tumorale , Plasticité cellulaire , Immunoprécipitation de la chromatine , Régulation de l'expression des gènes tumoraux , Protéines à homéodomaine/génétique , Protéines à homéodomaine/métabolisme , Humains , Protéines de fusion oncogènes/génétique , Protéines de fusion oncogènes/métabolisme , Protéine proto-oncogène c-fli-1/génétique , Protéine proto-oncogène c-fli-1/métabolisme , Protéine EWS de liaison à l'ARN/génétique , Protéine EWS de liaison à l'ARN/métabolisme , Sarcome d'Ewing/anatomopathologie , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme
19.
Elife ; 112022 02 28.
Article de Anglais | MEDLINE | ID: mdl-35225231

RÉSUMÉ

The Fbw7 ubiquitin ligase targets many proteins for proteasomal degradation, which include oncogenic transcription factors (TFs) (e.g., c-Myc, c-Jun, and Notch). Fbw7 is a tumor suppressor and tumors often contain mutations in FBXW7, the gene that encodes Fbw7. The complexity of its substrate network has obscured the mechanisms of Fbw7-associated tumorigenesis, yet this understanding is needed for developing therapies. We used an integrated approach employing RNA-Seq and high-resolution mapping (cleavage under target and release using nuclease) of histone modifications and TF occupancy (c-Jun and c-Myc) to examine the combinatorial effects of misregulated Fbw7 substrates in colorectal cancer (CRC) cells with engineered tumor-associated FBXW7 null or missense mutations. Both Fbw7 mutations caused widespread transcriptional changes associated with active chromatin and altered TF occupancy: some were common to both Fbw7 mutant cell lines, whereas others were mutation specific. We identified loci where both Jun and Myc were coregulated by Fbw7, suggesting that substrates may have synergistic effects. One coregulated gene was CIITA, the master regulator of MHC Class II gene expression. Fbw7 loss increased MHC Class II expression and Fbw7 mutations were correlated with increased CIITA expression in TCGA colorectal tumors and cell lines, which may have immunotherapeutic implications for Fbw7-associated cancers. Analogous studies in neural stem cells in which FBXW7 had been acutely deleted closely mirrored the results in CRC cells. Gene set enrichment analyses revealed Fbw7-associated pathways that were conserved across both cell types that may reflect fundamental Fbw7 functions. These analyses provide a framework for understanding normal and neoplastic context-specific Fbw7 functions.


Sujet(s)
Tumeurs colorectales , Protéines F-box , Protéine-7 contenant une boite F et des répétitions WD/génétique , Protéines du cycle cellulaire/métabolisme , Tumeurs colorectales/anatomopathologie , Protéines F-box/génétique , Protéines F-box/métabolisme , Humains , Mutation , Ubiquitin-protein ligases/génétique , Ubiquitin-protein ligases/métabolisme
20.
Front Immunol ; 12: 782152, 2021.
Article de Anglais | MEDLINE | ID: mdl-34868058

RÉSUMÉ

Minor histocompatibility antigens (mHAg) composed of peptides presented by HLA molecules can cause immune responses involved in graft-versus-host disease (GVHD) and graft-versus-leukemia effects after allogeneic hematopoietic cell transplantation (HCT). The current study was designed to identify individual graft-versus-host genomic mismatches associated with altered risks of acute or chronic GVHD or relapse after HCT between HLA-genotypically identical siblings. Our results demonstrate that in allogeneic HCT between a pair of HLA-identical siblings, a mHAg manifests as a set of peptides originating from annotated proteins and non-annotated open reading frames, which i) are encoded by a group of highly associated recipient genomic mismatches, ii) bind to HLA allotypes in the recipient, and iii) evoke a donor immune response. Attribution of the immune response and consequent clinical outcomes to individual peptide components within this set will likely differ from patient to patient according to their HLA types.


Sujet(s)
Transplantation de cellules souches hématopoïétiques , Antigènes mineurs d'histocompatibilité/immunologie , Immunologie en transplantation , Adolescent , Adulte , Sujet âgé , Allèles , Enfant , Enfant d'âge préscolaire , Prédisposition aux maladies/immunologie , Femelle , Prédisposition génétique à une maladie , Variation génétique , Maladie du greffon contre l'hôte/épidémiologie , Maladie du greffon contre l'hôte/étiologie , Antigènes HLA/génétique , Antigènes HLA/immunologie , Transplantation de cellules souches hématopoïétiques/effets indésirables , Transplantation de cellules souches hématopoïétiques/méthodes , Humains , Incidence , Nourrisson , Nouveau-né , Déséquilibre de liaison , Mâle , Adulte d'âge moyen , Antigènes mineurs d'histocompatibilité/génétique , Peptides/génétique , Peptides/immunologie , Transplantation homologue , Jeune adulte
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE