Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 41
Filtrer
Plus de filtres










Base de données
Gamme d'année
2.
BMC Genom Data ; 25(1): 60, 2024 Jun 14.
Article de Anglais | MEDLINE | ID: mdl-38877416

RÉSUMÉ

BACKGROUND: Forest geneticists typically use provenances to account for population differences in their improvement schemes; however, the historical records of the imported materials might not be very precise or well-aligned with the genetic clusters derived from advanced molecular techniques. The main objective of this study was to assess the impact of marker-based population structure on genetic parameter estimates related to growth and wood properties and their trade-offs in Norway spruce, by either incorporating it as a fixed effect (model-A) or excluding it entirely from the analysis (model-B). RESULTS: Our results indicate that models incorporating population structure significantly reduce estimates of additive genetic variance, resulting in substantial reduction of narrow-sense heritability. However, these models considerably improve prediction accuracies. This was particularly significant for growth and solid-wood properties, which showed to have the highest population genetic differentiation (QST) among the studied traits. Additionally, although the pattern of correlations remained similar across the models, their magnitude was slightly lower for models that included population structure as a fixed effect. This suggests that selection, consistently performed within populations, might be less affected by unfavourable genetic correlations compared to mass selection conducted without pedigree restrictions. CONCLUSION: We conclude that the results of models properly accounting for population structure are more accurate and less biased compared to those neglecting this effect. This might have practical implications for breeders and forest managers where, decisions based on imprecise selections can pose a high risk to economic efficiency.


Sujet(s)
Picea , Bois , Picea/génétique , Picea/croissance et développement , Bois/génétique , Marqueurs génétiques/génétique , Modèles génétiques , Génétique des populations/méthodes , Variation génétique/génétique
3.
Plant J ; 117(3): 944-955, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-37947292

RÉSUMÉ

Scots pine (Pinus sylvestris L.) is one of the most widespread and economically important conifer species in the world. Applications like genomic selection and association studies, which could help accelerate breeding cycles, are challenging in Scots pine because of its large and repetitive genome. For this reason, genotyping tools for conifer species, and in particular for Scots pine, are commonly based on transcribed regions of the genome. In this article, we present the Axiom Psyl50K array, the first single nucleotide polymorphism (SNP) genotyping array for Scots pine based on whole-genome resequencing, that represents both genic and intergenic regions. This array was designed following a two-step procedure: first, 192 trees were sequenced, and a 430K SNP screening array was constructed. Then, 480 samples, including haploid megagametophytes, full-sib family trios, breeding population, and range-wide individuals from across Eurasia were genotyped with the screening array. The best 50K SNPs were selected based on quality, replicability, distribution across the draft genome assembly, balance between genic and intergenic regions, and genotype-environment and genotype-phenotype associations. Of the final 49 877 probes tiled in the array, 20 372 (40.84%) occur inside gene models, while the rest lie in intergenic regions. We also show that the Psyl50K array can yield enough high-confidence SNPs for genetic studies in pine species from North America and Eurasia. This new genotyping tool will be a valuable resource for high-throughput fundamental and applied research of Scots pine and other pine species.


Sujet(s)
Pinus sylvestris , Pinus , Humains , Pinus sylvestris/génétique , Polymorphisme de nucléotide simple/génétique , Génotype , Amélioration des plantes , Pinus/génétique , ADN intergénique
4.
Plant Cell ; 35(11): 4046-4065, 2023 Oct 30.
Article de Anglais | MEDLINE | ID: mdl-37522322

RÉSUMÉ

Perennial trees must maintain stem growth throughout their entire lifespan to progressively increase in size as they age. The overarching question of the molecular mechanisms that govern stem perennial growth in trees remains largely unanswered. Here we deciphered the genetic architecture that underlies perennial growth trajectories using genome-wide association studies (GWAS) for measures of growth traits across years in a natural population of Populus tomentosa. By analyzing the stem growth trajectory, we identified PtoP4H9, encoding prolyl 4-hydroxylase 9, which is responsible for the natural variation in the growth rate of diameter at breast height (DBH) across years. Quantifying the dynamic genetic contribution of PtoP4H9 loci to stem growth showed that PtoP4H9 played a pivotal role in stem growth regulation. Spatiotemporal expression analysis showed that PtoP4H9 was highly expressed in cambium tissues of poplars of various ages. Overexpression and knockdown of PtoP4H9 revealed that it altered cell expansion to regulate cell wall modification and mechanical characteristics, thereby promoting stem growth in Populus. We showed that natural variation in PtoP4H9 occurred in a BASIC PENTACYSTEINE transcription factor PtoBPC1-binding promoter element controlling PtoP4H9 expression. The geographic distribution of PtoP4H9 allelic variation was consistent with the modes of selection among populations. Altogether, our study provides important genetic insights into dynamic stem growth in Populus, and we confirmed PtoP4H9 as a potential useful marker for breeding or genetic engineering of poplars.


Sujet(s)
Populus , Étude d'association pangénomique , Prolyl hydroxylases/génétique , Prolyl hydroxylases/métabolisme , Gènes de plante , Phénotype
5.
Nat Commun ; 14(1): 1947, 2023 04 07.
Article de Anglais | MEDLINE | ID: mdl-37029142

RÉSUMÉ

Epigenetics has been revealed to play a crucial role in the long-term memory in plants. However, little is known about whether the epigenetic modifications occur with age progressively in conifers. Here, we present the single-base resolution DNA methylation landscapes of the 25-gigabase Chinese pine (Pinus tabuliformis) genome at different ages. The result shows that DNA methylation is closely coupled with the regulation of gene transcription. The age-dependent methylation profile with a linearly increasing trend is the most significant pattern of DMRs between ages. Two segments at the five-prime end of the first ultra-long intron in DAL1, a conservative age biomarker in conifers, shows a gradual decline of CHG methylation as the age increased, which is highly correlated with its expression profile. Similar high correlation is also observed in nine other age marker genes. Our results suggest that DNA methylation serves as an important epigenetic signature of developmental age in conifers.


Sujet(s)
Génome végétal , Pinus , Méthylation de l'ADN/génétique , Épigenèse génétique , Génome végétal/génétique , Pinus/génétique
6.
BMC Genomics ; 24(1): 147, 2023 Mar 27.
Article de Anglais | MEDLINE | ID: mdl-36973641

RÉSUMÉ

Genomic prediction (GP) or genomic selection is a method to predict the accumulative effect of all quantitative trait loci (QTLs) in a population by estimating the realized genomic relationships between the individuals and by capturing the linkage disequilibrium between markers and QTLs. Thus, marker preselection is considered a promising method to capture Mendelian segregation effects. Using QTLs detected in a genome-wide association study (GWAS) may improve GP. Here, we performed GWAS and GP in a population with 904 clones from 32 full-sib families using a newly developed 50 k SNP Norway spruce array. Through GWAS we identified 41 SNPs associated with budburst stage (BB) and the largest effect association explained 5.1% of the phenotypic variation (PVE). For the other five traits such as growth and wood quality traits, only 2 - 13 associations were observed and the PVE of the strongest effects ranged from 1.2% to 2.0%. GP using approximately 100 preselected SNPs, based on the smallest p-values from GWAS showed the greatest predictive ability (PA) for the trait BB. For the other traits, a preselection of 2000-4000 SNPs, was found to offer the best model fit according to the Akaike information criterion being minimized. But PA-magnitudes from GP using such selections were still similar to that of GP using all markers. Analyses on both real-life and simulated data also showed that the inclusion of a large QTL SNP in the model as a fixed effect could improve PA and accuracy of GP provided that the PVE of the QTL was ≥ 2.5%.


Sujet(s)
Picea , Locus de caractère quantitatif , Humains , Étude d'association pangénomique/méthodes , Déséquilibre de liaison , Génomique/méthodes , Phénotype , Picea/génétique , Norvège , Polymorphisme de nucléotide simple , Génotype
7.
New Phytol ; 236(5): 1976-1987, 2022 12.
Article de Anglais | MEDLINE | ID: mdl-36093739

RÉSUMÉ

Vast population movements induced by recurrent climatic cycles have shaped the genetic structure of plant species. During glacial periods species were confined to low-latitude refugia from which they recolonized higher latitudes as the climate improved. This multipronged recolonization led to many lineages that later met and formed large contact zones. We utilize genomic data from 5000 Picea abies trees to test for the presence of natural selection during recolonization and establishment of a contact zone in Scandinavia. Scandinavian P. abies is today made up of a southern genetic cluster originating from the Baltics, and a northern one originating from Northern Russia. The contact zone delineating them closely matches the limit between two major climatic regions. We show that natural selection contributed to its establishment and maintenance. First, an isolation-with-migration model with genome-wide linked selection fits the data better than a purely neutral one. Second, many loci show signatures of selection or are associated with environmental variables. These loci, regrouped in clusters on chromosomes, are often related to phenology. Altogether, our results illustrate how climatic cycles, recolonization and selection can establish strong local adaptation along contact zones and affect the genetic architecture of adaptive traits.


Sujet(s)
Abies , Sélection génétique , Arbres , Phénotype , Démographie , Variation génétique
8.
Front Plant Sci ; 13: 927673, 2022.
Article de Anglais | MEDLINE | ID: mdl-36017254

RÉSUMÉ

Genetic control of tree growth and wood formation varies depending on the age of the tree and the time of the year. Single-locus, multi-locus, and multi-trait genome-wide association studies (GWAS) were conducted on 34 growth and wood property traits in 1,303 Norway spruce individuals using exome capture to cover ~130K single-nucleotide polymorphisms (SNPs). GWAS identified associations to the different wood traits in a total of 85 gene models, and several of these were validated in a progenitor population. A multi-locus GWAS model identified more SNPs associated with the studied traits than single-locus or multivariate models. Changes in tree age and annual season influenced the genetic architecture of growth and wood properties in unique ways, manifested by non-overlapping SNP loci. In addition to completely novel candidate genes, SNPs were located in genes previously associated with wood formation, such as cellulose synthases and a NAC transcription factor, but that have not been earlier linked to seasonal or age-dependent regulation of wood properties. Interestingly, SNPs associated with the width of the year rings were identified in homologs of Arabidopsis thaliana BARELY ANY MERISTEM 1 and rice BIG GRAIN 1, which have been previously shown to control cell division and biomass production. The results provide tools for future Norway spruce breeding and functional studies.

9.
BMC Plant Biol ; 22(1): 167, 2022 Apr 02.
Article de Anglais | MEDLINE | ID: mdl-35366809

RÉSUMÉ

BACKGROUND: Pinus tabuliformis adapts to cold climate with dry winter in northern China, serving as important commercial tree species. The TEOSINTE BRANCHED 1, CYCLOIDEA, and PROLIFERATING CELL FACTOR family(TCP)transcription factors were found to play a role in the circadian clock system in Arabidopsis. However, the role of TCP transcription factors in P. tabuliformis remains little understood. RESULTS: In the present study, 43 TCP genes were identified from P. tabuliformis genome database. Based on the phylogeny tree and sequence similarity, the 43 TCP genes were classified into four groups. The motif results showed that different subfamilies indeed contained different motifs. Clade II genes contain motif 1, clade I genes contain motif 1, 8, 10 and clade III and IV contain more motifs, which is consistent with our grouping results. The structural analysis of PtTCP genes showed that most PtTCPs lacked introns. The distribution of clade I and clade II on the chromosome is relatively scattered, while clade III and clade IV is relatively concentrated. Co-expression network indicated that PtTCP2, PtTCP12, PtTCP36, PtTCP37, PtTCP38, PtTCP41 and PtTCP43 were co-expressed with clock genes in annual cycle and their annual cycle expression profiles both showed obvious seasonal oscillations. PtTCP2, PtTCP12, PtTCP37, PtTCP38, PtTCP40, PtTCP41, PtTCP42 and PtTCP43 were co-expressed with clock genes in diurnal cycle. Only the expression of PtTCP42 showed diurnal oscillation. CONCLUSIONS: The TCP gene family, especially clade II, may play an important role in the regulation of the season and circadian rhythm of P. tabuliformis. In addition, the low temperature in winter may affect the diurnal oscillations.


Sujet(s)
Arabidopsis , Pinus , Arabidopsis/génétique , Rythme circadien/génétique , Pinus/génétique , Pinus/métabolisme , Saisons , Facteurs de transcription/métabolisme
10.
J Hazard Mater ; 433: 128769, 2022 07 05.
Article de Anglais | MEDLINE | ID: mdl-35364535

RÉSUMÉ

Lead (Pb2+) is one of the most toxic heavy-metal contaminants. Fast-growing woody plants with substantial biomass are ideal for bioremediation. However, the transcriptional regulation of Pb2+ uptake in woody plants remains unclear. Here, we identified 226 Pb2+-induced, differentially expressed long non-coding RNAs (DELs) in Populus tomentosa. Functional annotation revealed that these DELs mainly regulate carbon metabolism, biosynthesis of secondary metabolites, energy metabolism, and signal transduction through their potential target genes. Association and epistasis analysis showed that the lncRNA PMAT (Pb2+-induced multidrug and toxic compound extrusion (MATE) antisense lncRNA) interacts epistatically with PtoMYB46 to regulate leaf dry weight, photosynthesis rate, and transketolase activity. Genetic transformation and molecular assays showed that PtoMYB46 reduces the expression of PtoMATE directly or indirectly through PMAT, thereby reducing the secretion of citric acid (CA) and ultimately promoting Pb2+ uptake. Meanwhile, PtoMYB46 targets auxin response factor 2 (ARF2) and reduces its expression, thus positively regulating plant growth. We concluded that the PMAT-PtoMYB46-PtoMATE-PtoARF2 regulatory module control Pb2+ tolerance, uptake, and plant growth. This study demonstrates the involvement of lncRNAs in response to Pb2+ in poplar, yielding new insight into the potential for developing genetically improved woody plant varieties for phytoremediating lead-contaminated soils.


Sujet(s)
Populus , ARN long non codant , Dépollution biologique de l'environnement , Plomb/métabolisme , Plomb/toxicité , Développement des plantes , Populus/métabolisme , ARN long non codant/génétique , ARN long non codant/métabolisme
11.
PLoS Genet ; 18(2): e1010017, 2022 02.
Article de Anglais | MEDLINE | ID: mdl-35108269

RÉSUMÉ

Slash pine (Pinus elliottii Engelm.) is an important timber and resin species in the United States, China, Brazil and other countries. Understanding the genetic basis of these traits will accelerate its breeding progress. We carried out a genome-wide association study (GWAS), transcriptome-wide association study (TWAS) and weighted gene co-expression network analysis (WGCNA) for growth, wood quality, and oleoresin traits using 240 unrelated individuals from a Chinese slash pine breeding population. We developed high quality 53,229 single nucleotide polymorphisms (SNPs). Our analysis reveals three main results: (1) the Chinese breeding population can be divided into three genetic groups with a mean inbreeding coefficient of 0.137; (2) 32 SNPs significantly were associated with growth and oleoresin traits, accounting for the phenotypic variance ranging from 12.3% to 21.8% and from 10.6% to 16.7%, respectively; and (3) six genes encoding PeTLP, PeAP2/ERF, PePUP9, PeSLP, PeHSP, and PeOCT1 proteins were identified and validated by quantitative real time polymerase chain reaction for their association with growth and oleoresin traits. These results could be useful for tree breeding and functional studies in advanced slash pine breeding program.


Sujet(s)
Pinus/croissance et développement , Pinus/génétique , Extraits de plantes/génétique , Brésil , Chine , Expression des gènes/génétique , Régulation de l'expression des gènes végétaux/génétique , Étude d'association pangénomique/méthodes , Amélioration des plantes/méthodes , Polymorphisme de nucléotide simple/génétique , Transcriptome/génétique , Bois/génétique , Bois/croissance et développement
12.
Cell ; 185(1): 204-217.e14, 2022 01 06.
Article de Anglais | MEDLINE | ID: mdl-34965378

RÉSUMÉ

Conifers dominate the world's forest ecosystems and are the most widely planted tree species. Their giant and complex genomes present great challenges for assembling a complete reference genome for evolutionary and genomic studies. We present a 25.4-Gb chromosome-level assembly of Chinese pine (Pinus tabuliformis) and revealed that its genome size is mostly attributable to huge intergenic regions and long introns with high transposable element (TE) content. Large genes with long introns exhibited higher expressions levels. Despite a lack of recent whole-genome duplication, 91.2% of genes were duplicated through dispersed duplication, and expanded gene families are mainly related to stress responses, which may underpin conifers' adaptation, particularly in cold and/or arid conditions. The reproductive regulation network is distinct compared with angiosperms. Slow removal of TEs with high-level methylation may have contributed to genomic expansion. This study provides insights into conifer evolution and resources for advancing research on conifer adaptation and development.


Sujet(s)
Épigénome , Évolution moléculaire , Régulation de l'expression des gènes végétaux , Gènes de plante , Pinus/génétique , Acclimatation/génétique , Chromosomes de plante/génétique , Cycadopsida/génétique , Éléments transposables d'ADN/génétique , Forêts , Réseaux de régulation génique , Taille du génome , Génomique/méthodes , Introns , Magnoliopsida/génétique
13.
Plant Physiol ; 187(1): 247-262, 2021 09 04.
Article de Anglais | MEDLINE | ID: mdl-34618133

RÉSUMÉ

The reproductive transition is an important event that is crucial for plant survival and reproduction. Relative to the thorough understanding of the vegetative phase transition in angiosperms, a little is known about this process in perennial conifers. To gain insight into the molecular basis of the regulatory mechanism in conifers, we used temporal dynamic transcriptome analysis with samples from seven different ages of Pinus tabuliformis to identify a gene module substantially associated with aging. The results first demonstrated that the phase change in P. tabuliformis occurred as an unexpectedly rapid transition rather than a slow, gradual progression. The age-related gene module contains 33 transcription factors and was enriched in genes that belong to the MADS (MCMl, AGAMOUS, DEFICIENS, SRF)-box family, including six SOC1-like genes and DAL1 and DAL10. Expression analysis in P. tabuliformis and a late-cone-setting P. bungeana mutant showed a tight association between PtMADS11 and reproductive competence. We then confirmed that MADS11 and DAL1 coordinate the aging pathway through physical interaction. Overexpression of PtMADS11 and PtDAL1 partially rescued the flowering of 35S::miR156A and spl1,2,3,4,5,6 mutants in Arabidopsis (Arabidopsis thaliana), but only PtMADS11 could rescue the flowering of the ft-10 mutant, suggesting PtMADS11 and PtDAL1 play different roles in flowering regulatory networks in Arabidopsis. The PtMADS11 could not alter the flowering phenotype of soc1-1-2, indicating it may function differently from AtSOC1 in Arabidopsis. In this study, we identified the MADS11 gene in pine as a regulatory mediator of the juvenile-to-adult transition with functions differentiated from the angiosperm SOC1.


Sujet(s)
Protéines à domaine MADS/génétique , Pinus/physiologie , Protéines végétales/génétique , Protéines à domaine MADS/métabolisme , Pinus/génétique , Protéines végétales/métabolisme , Reproduction/génétique
14.
Int J Mol Sci ; 22(17)2021 Sep 04.
Article de Anglais | MEDLINE | ID: mdl-34502511

RÉSUMÉ

Drought stress has an extensive impact on regulating various physiological, metabolic, and molecular responses. In the present study, the Pinus tabuliformis transcriptome was studied to evaluate the drought-responsive genes using RNA- Sequencing approache. The results depicted that photosynthetic rate and H2O conductance started to decline under drought but recovered 24 h after re-watering; however, the intercellular CO2 concentration (Ci) increased with the onset of drought. We identified 84 drought-responsive transcription factors, 62 protein kinases, 17 transcriptional regulators, and 10 network hub genes. Additionally, we observed the expression patterns of several important gene families, including 2192 genes positively expressed in all 48 samples, and 40 genes were commonly co-expressed in all drought and recovery stages compared with the control samples. The drought-responsive transcriptome was conserved mainly between P. tabuliformis and A. thaliana, as 70% (6163) genes had a homologous in arabidopsis, out of which 52% homologous (3178 genes corresponding to 2086 genes in Arabidopsis) were also drought response genes in arabidopsis. The collaborative network exhibited 10 core hub genes integrating with ABA-dependent and independent pathways closely conserved with the ABA signaling pathway in the transcription factors module. PtNCED3 from the ABA family genes had shown significantly different expression patterns under control, mild, prolonged drought, and recovery stages. We found the expression pattern was considerably increased with the prolonged drought condition. PtNCED3 highly expressed in all drought-tested samples; more interestingly, expression pattern was higher under mild and prolonged drought. PtNCED3 is reported as one of the important regulating enzymes in ABA synthesis. The continuous accumulation of ABA in leaves increased resistance against drought was due to accumulation of PtNCED3 under drought stress in the pine needles.


Sujet(s)
Régulation de l'expression des gènes végétaux/génétique , Pinus/génétique , Stress physiologique/génétique , Acide abscissique/métabolisme , Arabidopsis/génétique , Sécheresses , Expression des gènes/génétique , Analyse de profil d'expression de gènes/méthodes , Feuilles de plante/métabolisme , Analyse de séquence d'ARN/méthodes , Facteurs de transcription/métabolisme , Transcriptome/génétique
16.
Mol Ecol ; 30(18): 4433-4447, 2021 09.
Article de Anglais | MEDLINE | ID: mdl-34218489

RÉSUMÉ

Trees must cope with the attack of multiple pathogens, often simultaneously during their long lifespan. Ironically, the genetic and molecular mechanisms controlling this process are poorly understood. The objective of this study was to compare the genetic component of resistance in Norway spruce to Heterobasidion annosum s.s. and its sympatric congener Heterobasidion parviporum. Heterobasidion root- and stem-rot is a major disease of Norway spruce caused by members of the Heterobasidion annosum species complex. Resistance to both pathogens was measured using artificial inoculations in half-sib families of Norway spruce trees originating from central to northern Europe. The genetic component of resistance was analysed using 63,760 genome-wide exome-capture sequenced SNPs and multitrait genome-wide associations. No correlation was found for resistance to the two pathogens; however, associations were found between genomic variants and resistance traits with synergic or antagonist pleiotropic effects to both pathogens. Additionally, a latitudinal cline in resistance in the bark to H. annosum s.s. was found; trees from southern latitudes, with a later bud-set and thicker stem diameter, allowed longer lesions, but this was not the case for H. parviporum. In summary, this study detects genomic variants with pleiotropic effects which explain multiple disease resistance from a genic level and could be useful for selection of resistant trees to both pathogens. Furthermore, it highlights the need for additional research to understand the evolution of resistance traits to multiple pathogens in trees.


Sujet(s)
Basidiomycota , Picea , Basidiomycota/génétique , Génomique , Norvège , Picea/génétique , Maladies des plantes/génétique
17.
Front Plant Sci ; 12: 666820, 2021.
Article de Anglais | MEDLINE | ID: mdl-34305966

RÉSUMÉ

Genomic selection study (GS) focusing on nonadditive genetic effects of dominance and the first order of epistatic effects, in a full-sib family population of 695 Scots pine (Pinus sylvestris L.) trees, was undertaken for growth and wood quality traits, using 6,344 single nucleotide polymorphism markers (SNPs) generated by genotyping-by-sequencing (GBS). Genomic marker-based relationship matrices offer more effective modeling of nonadditive genetic effects than pedigree-based models, thus increasing the knowledge on the relevance of dominance and epistatic variation in forest tree breeding. Genomic marker-based models were compared with pedigree-based models showing a considerable dominance and epistatic variation for growth traits. Nonadditive genetic variation of epistatic nature (additive × additive) was detected for growth traits, wood density (DEN), and modulus of elasticity (MOEd) representing between 2.27 and 34.5% of the total phenotypic variance. Including dominance variance in pedigree-based Best Linear Unbiased Prediction (PBLUP) and epistatic variance in genomic-based Best Linear Unbiased Prediction (GBLUP) resulted in decreased narrow-sense heritability and increased broad-sense heritability for growth traits, DEN and MOEd. Higher genetic gains were reached with early GS based on total genetic values, than with conventional pedigree selection for a selection intensity of 1%. This study indicates that nonadditive genetic variance may have a significant role in the variation of selection traits of Scots pine, thus clonal deployment could be an attractive alternative for the species. Additionally, confidence in the role of nonadditive genetic effects in this breeding program should be pursued in the future, using GS.

18.
Genome Biol ; 22(1): 179, 2021 06 13.
Article de Anglais | MEDLINE | ID: mdl-34120648

RÉSUMÉ

BACKGROUND: Genome-wide association studies (GWAS) identify loci underlying the variation of complex traits. One of the main limitations of GWAS is the availability of reliable phenotypic data, particularly for long-lived tree species. Although an extensive amount of phenotypic data already exists in breeding programs, accounting for its high heterogeneity is a great challenge. We combine spatial and factor-analytics analyses to standardize the heterogeneous data from 120 field experiments of 483,424 progenies of Norway spruce to implement the largest reported GWAS for trees using 134 605 SNPs from exome sequencing of 5056 parental trees. RESULTS: We identify 55 novel quantitative trait loci (QTLs) that are associated with phenotypic variation. The largest number of QTLs is associated with the budburst stage, followed by diameter at breast height, wood quality, and frost damage. Two QTLs with the largest effect have a pleiotropic effect for budburst stage, frost damage, and diameter and are associated with MAP3K genes. Genotype data called from exome capture, recently developed SNP array and gene expression data indirectly support this discovery. CONCLUSION: Several important QTLs associated with growth and frost damage have been verified in several southern and northern progeny plantations, indicating that these loci can be used in QTL-assisted genomic selection. Our study also demonstrates that existing heterogeneous phenotypic data from breeding programs, collected over several decades, is an important source for GWAS and that such integration into GWAS should be a major area of inquiry in the future.


Sujet(s)
Génome végétal , Picea/génétique , Protéines végétales/génétique , Protein-Serine-Threonine Kinases/génétique , Locus de caractère quantitatif , Analyse de profil d'expression de gènes , Régulation de l'expression des gènes végétaux , Variation génétique , Étude d'association pangénomique , Génotype , Famille multigénique , Phénotype , Amélioration des plantes/méthodes , Dispersion des plantes/physiologie , Protéines végétales/classification , Protéines végétales/métabolisme , Protein-Serine-Threonine Kinases/classification , Protein-Serine-Threonine Kinases/métabolisme , Sélection génétique
19.
Evol Appl ; 14(3): 834-846, 2021 Mar.
Article de Anglais | MEDLINE | ID: mdl-33767756

RÉSUMÉ

Tree breeding has focused on increasing stem volume growth with a cost to fecundity. However, fecundity is important in maintaining the fitness in natural stands and facilitating cross-pollination to advance breeding populations. Understanding the inheritance of fecundity and the genetic relationship between fecundity and growth is essential to understand the constraints of evolution in natural population and design an optimal selection strategy to balance breeding for growth and fecundity. Inheritance of female fecundity and the genetic relationship between fecundity and growth in radiata pine were investigated using a large Australia-wide progeny test, planted on eight sites involving 279 control-pollinated families. It was found that fecundity of female cones was highly heritable with an estimated heritability of 0.39-0.61, but genetically correlated with growth (-0.30 to -0.39). This indicates that improvement in tree growth alone could reduce the fecundity, thus to break the possible evolutionary constraint in natural population. To maintain fecundity for breeding purposes and minimize the interruption of the evolutionary constraint between fecundity and growth, use of a restraint selection index to impose no change of fecundity is developed in current breeding, while dissecting the genetic basis of adversely correlated traits at loci level is required for optimal long-term strategy.

20.
Mol Ecol Resour ; 21(3): 880-896, 2021 Apr.
Article de Anglais | MEDLINE | ID: mdl-33179386

RÉSUMÉ

Norway spruce (Picea abies L. Karst) is one of the most important forest tree species with significant economic and ecological impact in Europe. For decades, genomic and genetic studies on Norway spruce have been challenging due to the large and repetitive genome (19.6 Gb with more than 70% being repetitive). To accelerate genomic studies, including population genetics, genome-wide association studies (GWAS) and genomic selection (GS), in Norway spruce and related species, we here report on the design and performance of a 50K single nucleotide polymorphism (SNP) genotyping array for Norway spruce. The array is developed based on whole genome resequencing (WGS), making it the first WGS-based SNP array in any conifer species so far. After identifying SNPs using genome resequencing data from 29 trees collected in northern Europe, we adopted a two-step approach to design the array. First, we built a 450K screening array and used this to genotype a population of 480 trees sampled from both natural and breeding populations across the Norway spruce distribution range. These samples were then used to select high-confidence probes that were put on the final 50K array. The SNPs selected are distributed over 45,552 scaffolds from the P. abies version 1.0 genome assembly and target 19,954 unique gene models with an even coverage of the 12 linkage groups in Norway spruce. We show that the array has a 99.5% probe specificity, >98% Mendelian allelic inheritance concordance, an average sample call rate of 96.30% and an SNP call rate of 98.90% in family trios and haploid tissues. We also observed that 23,797 probes (50%) could be identified with high confidence in three other spruce species (white spruce [Picea glauca], black spruce [P. mariana] and Sitka spruce [P. sitchensis]). The high-quality genotyping array will be a valuable resource for genetic and genomic studies in Norway spruce as well as in other conifer species of the same genus.


Sujet(s)
Génome végétal , Picea , Polymorphisme de nucléotide simple , Europe , Études d'associations génétiques , Génotype , Norvège , Picea/génétique , Séquençage du génome entier
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...