Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 96
Filtrer
1.
EMBO J ; 2024 Aug 12.
Article de Anglais | MEDLINE | ID: mdl-39134659

RÉSUMÉ

Sex determination in animals is not only determined by karyotype but can also be modulated by environmental cues like temperature via unclear transduction mechanisms. Moreover, in contrast to earlier views that sex may exclusively be determined by either karyotype or temperature, recent observations suggest that these factors rather co-regulate sex, posing another mechanistic mystery. Here, we discovered that certain wild-isolated and mutant C. elegans strains displayed genotypic germline sex determination (GGSD), but with a temperature-override mechanism. Further, we found that BiP, an ER chaperone, transduces temperature information into a germline sex-governing signal, thereby enabling the coexistence of GGSD and temperature-dependent germline sex determination (TGSD). At the molecular level, increased ER protein-folding requirements upon increased temperatures lead to BiP sequestration, resulting in ERAD-dependent degradation of the oocyte fate-driving factor, TRA-2, thus promoting male germline fate. Remarkably, experimentally manipulating BiP or TRA-2 expression allows to switch between GGSD and TGSD. Physiologically, TGSD allows C. elegans hermaphrodites to maintain brood size at warmer temperatures. Moreover, BiP can also influence germline sex determination in a different, non-hermaphroditic nematode species. Collectively, our findings identify thermosensitive BiP as a conserved temperature sensor in TGSD, and provide mechanistic insights into the transition between GGSD and TGSD.

2.
BMC Med Imaging ; 24(1): 189, 2024 Jul 26.
Article de Anglais | MEDLINE | ID: mdl-39060962

RÉSUMÉ

BACKGROUND: The purpose of this study is to develop and validate the potential value of the deep learning radiomics nomogram (DLRN) based on ultrasound to differentiate mass mastitis (MM) and invasive breast cancer (IBC). METHODS: 50 cases of MM and 180 cases of IBC with ultrasound Breast Imaging Reporting and Data System 4 category were recruited (training cohort, n = 161, validation cohort, n = 69). Based on PyRadiomics and ResNet50 extractors, radiomics and deep learning features were extracted, respectively. Based on supervised machine learning methods such as logistic regression, random forest, and support vector machine, as well as unsupervised machine learning methods using K-means clustering analysis, the differences in features between MM and IBC were analyzed to develop DLRN. The performance of DLRN had been evaluated by receiver operating characteristic curve, calibration, and clinical practicality. RESULTS: Supervised machine learning results showed that compared with radiomics models, especially random forest models, deep learning models were better at recognizing MM and IBC. The area under the curve (AUC) of the validation cohort was 0.84, the accuracy was 0.83, the sensitivity was 0.73, and the specificity was 0.83. Compared to radiomics or deep learning models, DLRN even further improved discrimination ability (AUC of 0.90 and 0.90, accuracy of 0.83 and 0.88 for training and validation cohorts), which had better clinical benefits and good calibratability. In addition, the information heterogeneity of deep learning features in MM and IBC was validated again through unsupervised machine learning clustering analysis, indicating that MM had a unique features phenotype. CONCLUSION: The DLRN developed based on radiomics and deep learning features of ultrasound images has potential clinical value in effectively distinguishing between MM and IBC. DLRN breaks through visual limitations and quantifies more image information related to MM based on computers, further utilizing machine learning to effectively utilize this information for clinical decision-making. As DLRN becomes an autonomous screening system, it will improve the recognition rate of MM in grassroots hospitals and reduce the possibility of incorrect treatment and overtreatment.


Sujet(s)
Tumeurs du sein , Apprentissage profond , Mastite , Nomogrammes , Échographie mammaire , Humains , Femelle , Tumeurs du sein/imagerie diagnostique , Diagnostic différentiel , Adulte d'âge moyen , Adulte , Échographie mammaire/méthodes , Mastite/imagerie diagnostique , Sujet âgé , Courbe ROC , Sensibilité et spécificité ,
3.
Orthop Surg ; 2024 Jul 26.
Article de Anglais | MEDLINE | ID: mdl-39056377

RÉSUMÉ

OBJECTIVE: The C4 is the transition point between the upper and lower cervical vertebrae and plays a pivotal role in the middle of the cervical spine. Currently, there are limited reports on large-scale sample studies regarding C4 anatomy in children, and a scarcity of experience exists in pediatric cervical spine surgery. The current study addresses the dearth of anatomical measurements of the C4 vertebral arch and lateral mass in a substantial sample of children. This study aims to measure the imaging anatomy of the C4 vertebral arch and lateral mass in children under 14 years of age across various age groups, investigate the growth and development of these structures. METHODS: We measured 12 indicators, including the size (D1, D2, D3, D4, D5, D6, D7, and D8) and angle (A, C, D, and E) of the C4 vertebral arch and lateral mass, in 513 children who underwent cervical CT examinations at our hospital. We employed the aggregate function for statistical analysis, conducted t-tests for difference statistics, and utilized the least squares method for regression analysis. RESULTS: Overall, as age increased, there was a gradual increase in the size of the vertebral arch and lateral mass. Additionally, the medial inclination angle of the vertebral arch decreased, and the lateral mass flattened gradually. The rate of change decreased gradually with age. The mean value of D1 increased from 2.31 mm to 3.88 mm, of D2 from 16.75 mm to 29.2 mm, of D3 from 2.21 mm to 4.92 mm, and of D4 from 7.34 mm to 11.84 mm. Meanwhile, the mean value of D5 increased from 5.2 mm to 9.71 mm, of D6 from 10.19 mm to 16.16 mm, of D7 from 2.53 mm to 5.67 mm, and of D8 from 6.11 mm to 11.45 mm. Angle A ranged from 49.12° to 54.97°, angle C from 15.28° to 19.83°, angle D from 39.91° to 53.7°, and angle E from 18.63° to 28.08°. CONCLUSION: Prior to cervical spine surgery in children, meticulous CT imaging anatomical measurements is essential. The imaging data serves as a reference for posterior C4 internal fixation, aids in designing posterior cervical screws for pediatric patients, and offer morphological anatomical references for posterior cervical spine surgery and screw design in pediatric patients.

4.
Genes Immun ; 2024 Jul 25.
Article de Anglais | MEDLINE | ID: mdl-39060428

RÉSUMÉ

This study aimed to analyze single-cell sequencing data to investigate immune cell interactions in ankylosing spondylitis (AS) and ulcerative colitis (UC). Vertebral bone marrow blood was collected from three AS patients for 10X single-cell sequencing. Analysis of single-cell data revealed distinct cell types in AS and UC patients. Cells significantly co-expressing immune cells (P < 0.05) were subjected to communication analysis. Overlapping genes of these co-expressing immune cells were subjected to GO and KEGG analyses. Key genes were identified using STRING and Cytoscape to assess their correlation with immune cell expression. The results showed the significance of neutrophils in both diseases (P < 0.01), with notable interactions identified through communication analysis. XBP1 emerged as a Hub gene for both diseases, with AUC values of 0.760 for AS and 0.933 for UC. Immunohistochemistry verified that the expression of XBP1 was significantly lower in the AS group and significantly greater in the UC group than in the control group (P < 0.01). This finding highlights the critical role of neutrophils in both AS and UC, suggesting the presence of shared immune response elements. The identification of XBP1 as a potential therapeutic target offers promising intervention avenues for both diseases.

5.
Comput Assist Surg (Abingdon) ; 29(1): 2345066, 2024 Dec.
Article de Anglais | MEDLINE | ID: mdl-38860617

RÉSUMÉ

BACKGROUND: Machine learning (ML), a subset of artificial intelligence (AI), uses algorithms to analyze data and predict outcomes without extensive human intervention. In healthcare, ML is gaining attention for enhancing patient outcomes. This study focuses on predicting additional hospital days (AHD) for patients with cervical spondylosis (CS), a condition affecting the cervical spine. The research aims to develop an ML-based nomogram model analyzing clinical and demographic factors to estimate hospital length of stay (LOS). Accurate AHD predictions enable efficient resource allocation, improved patient care, and potential cost reduction in healthcare. METHODS: The study selected CS patients undergoing cervical spine surgery and investigated their medical data. A total of 945 patients were recruited, with 570 males and 375 females. The mean number of LOS calculated for the total sample was 8.64 ± 3.7 days. A LOS equal to or <8.64 days was categorized as the AHD-negative group (n = 539), and a LOS > 8.64 days comprised the AHD-positive group (n = 406). The collected data was randomly divided into training and validation cohorts using a 7:3 ratio. The parameters included their general conditions, chronic diseases, preoperative clinical scores, and preoperative radiographic data including ossification of the anterior longitudinal ligament (OALL), ossification of the posterior longitudinal ligament (OPLL), cervical instability and magnetic resonance imaging T2-weighted imaging high signal (MRI T2WIHS), operative indicators and complications. ML-based models like Lasso regression, random forest (RF), and support vector machine (SVM) recursive feature elimination (SVM-RFE) were developed for predicting AHD-related risk factors. The intersections of the variables screened by the aforementioned algorithms were utilized to construct a nomogram model for predicting AHD in patients. The area under the curve (AUC) of the receiver operating characteristic (ROC) curve and C-index were used to evaluate the performance of the nomogram. Calibration curve and decision curve analysis (DCA) were performed to test the calibration performance and clinical utility. RESULTS: For these participants, 25 statistically significant parameters were identified as risk factors for AHD. Among these, nine factors were obtained as the intersection factors of these three ML algorithms and were used to develop a nomogram model. These factors were gender, age, body mass index (BMI), American Spinal Injury Association (ASIA) scores, magnetic resonance imaging T2-weighted imaging high signal (MRI T2WIHS), operated segment, intraoperative bleeding volume, the volume of drainage, and diabetes. After model validation, the AUC was 0.753 in the training cohort and 0.777 in the validation cohort. The calibration curve exhibited a satisfactory agreement between the nomogram predictions and actual probabilities. The C-index was 0.788 (95% confidence interval: 0.73214-0.84386). On the decision curve analysis (DCA), the threshold probability of the nomogram ranged from 1 to 99% (training cohort) and 1 to 75% (validation cohort). CONCLUSION: We successfully developed an ML model for predicting AHD in patients undergoing cervical spine surgery, showcasing its potential to support clinicians in AHD identification and enhance perioperative treatment strategies.


Sujet(s)
Vertèbres cervicales , Durée du séjour , Apprentissage machine , Spondylose , Humains , Mâle , Femelle , Vertèbres cervicales/chirurgie , Vertèbres cervicales/imagerie diagnostique , Adulte d'âge moyen , Durée du séjour/statistiques et données numériques , Spondylose/chirurgie , Spondylose/imagerie diagnostique , Nomogrammes , Sujet âgé , Adulte , Algorithmes
6.
Org Lett ; 26(20): 4329-4334, 2024 May 24.
Article de Anglais | MEDLINE | ID: mdl-38743509

RÉSUMÉ

A photoinduced deuterodetriazenation of aryltriazenes with CDCl3 under catalyst-free conditions is reported. The reactions featured simple operation, ecofriendly conditions, readily available reagents, inexpensive D sources, precise site selectivity, and a wide range of substrates. Since aryltriazenes could be readily synthesized from arylamine, this protocol can be used as a general method for easily and accurately incorporating deuterium into aromatic systems by using CDCl3 as a D source.

7.
J Org Chem ; 89(11): 8064-8075, 2024 Jun 07.
Article de Anglais | MEDLINE | ID: mdl-38757807

RÉSUMÉ

Reported herein is the 1,2-dithiocyanation of alkenes and alkynes via an efficient and facile electrochemical method. This approach not only showed a broad substrate scope and good functional-group compatibility but also avoided stoichiometric oxidants. Different from previous reports, various internal alkynes could be tolerated to provide tetra-substituted alkenes. Further gram-scale-up experiments and synthetic transformation demonstrated a potential application in organic synthesis. This process underwent a radical pathway, as evidenced by our mechanistic studies.

8.
Sci Rep ; 14(1): 7691, 2024 04 02.
Article de Anglais | MEDLINE | ID: mdl-38565845

RÉSUMÉ

Spinal cord injury (SCI) is a prevalent and serious complication among patients with spinal tuberculosis (STB) that can lead to motor and sensory impairment and potentially paraplegia. This research aims to identify factors associated with SCI in STB patients and to develop a clinically significant predictive model. Clinical data from STB patients at a single hospital were collected and divided into training and validation sets. Univariate analysis was employed to screen clinical indicators in the training set. Multiple machine learning (ML) algorithms were utilized to establish predictive models. Model performance was evaluated and compared using receiver operating characteristic (ROC) curves, area under the curve (AUC), calibration curve analysis, decision curve analysis (DCA), and precision-recall (PR) curves. The optimal model was determined, and a prospective cohort from two other hospitals served as a testing set to assess its accuracy. Model interpretation and variable importance ranking were conducted using the DALEX R package. The model was deployed on the web by using the Shiny app. Ten clinical characteristics were utilized for the model. The random forest (RF) model emerged as the optimal choice based on the AUC, PRs, calibration curve analysis, and DCA, achieving a test set AUC of 0.816. Additionally, MONO was identified as the primary predictor of SCI in STB patients through variable importance ranking. The RF predictive model provides an efficient and swift approach for predicting SCI in STB patients.


Sujet(s)
Traumatismes de la moelle épinière , Tuberculose vertébrale , Humains , Études prospectives , Tuberculose vertébrale/complications , Traumatismes de la moelle épinière/complications , Algorithmes , Apprentissage machine , Études rétrospectives
9.
J Org Chem ; 89(8): 5783-5796, 2024 Apr 19.
Article de Anglais | MEDLINE | ID: mdl-38591967

RÉSUMÉ

A visible-light-induced radical-cascade selenocyanation/cyclization of N-alkyl-N-methacryloyl benzamides, 2-aryl-N-acryloyl indoles, and N-methacryloyl-2-phenylbenzimidazoles with potassium isoselenocyanate (KSeCN) was developed. The reactions were carried out with inexpensive KSeCN as a selenocyanation reagent, potassium persulfate as an oxidant, 2,4,6-triphenylpyrylium tetrafluoroborate as a bifunctional catalyst for phase-transfer catalysis, and photocatalysis. A library of selenocyanate-containing isoquinoline-1,3(2H,4H)-diones, indolo[2,1-a]isoquinoline-6(5H)-ones, and benzimidazo[2,1-a]isoquinolin-6(5H)-ones were achieved in moderate to excellent yields at room temperature under visible-light and ambient conditions. Importantly, the present protocol features mild reaction conditions, large-scale synthesis, simple manipulation, product derivatization, good functional group, and heterocycle tolerance.

10.
Org Lett ; 26(12): 2365-2370, 2024 Mar 29.
Article de Anglais | MEDLINE | ID: mdl-38507739

RÉSUMÉ

A green visible-light-promoted and electron donor-acceptor (EDA) complex-driven synthetic strategy for the construction of value-added naphtho[1',2':4,5]imidazo[1,2-a]pyridines from 2-arylimidazo[1,2-a]pyridines with Z-α-bromocinnamaldehydes has been accomplished under photocatalyst- and transition-metal-free conditions. This efficient annulation approach provides a new and straightforward pathway for the annulative π-extension of imidazo[1,2-a]pyridine-based aromatics. Moreover, the sustainable methodology exhibits simple operation, a wide range of substrates, benign conditions, and good functional group compatibility.

11.
Mycotoxin Res ; 40(2): 255-268, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38400893

RÉSUMÉ

Aflatoxin B1 (AFB1) is a widespread toxic contamination in feed for animals. The primary active component of turmeric, curcumin (Cur), is an antioxidant and an anti-inflammatory. However, it is yet unknown how AFB1 affects the intestinal epithelial barrier and whether Cur acts as a protective mechanism when exposed to AFB1. Here, we explored the mechanism of AFB1-induced intestinal injury from intestinal epithelial barrier, inflammation, pyroptosis, and intestinal flora, and evaluated the protective role of Cur. We found that AFB1 caused weight loss and intestinal morphological damage that is mainly characterized by shortened intestinal villi, deepened crypts, and damaged intestinal epithelium. Exposure to AFB1 decreased the expression of Claudin-1, MUC2, ZO-1, and Occludin and increased the expression of pyroptosis-related factors (NLRP3, GSDMD, Caspase-1, IL-1ß, and IL-18) and inflammation-related factors (TLR4, NF-κB, IκB, IFN-γ, and TNF-α). Furthermore, ileal gut microbiota was altered, and simultaneously, the Lactobacillus abundance was decreased. The gut microbiota interacts with a wide range of physiologic functions and disease development in the host through its metabolites, and disturbances in gut microbial metabolism can cause functional impairment of the ileum. Meanwhile, Cur can ameliorate histological ileum injuries and intestinal flora disturbance caused by AFB1. We found that Cur reversed the effects of AFB1 through modulating both NLRP3 inflammasome and the TLR4/NF-κB signaling pathway. In conclusion, AFB1 can induce inflammatory damage and pyroptosis in duck ileum, while Cur has obviously protective effects on all the above damages.


Sujet(s)
Aflatoxine B1 , Curcumine , Canards , Iléum , Inflammasomes , Facteur de transcription NF-kappa B , Protéine-3 de la famille des NLR contenant un domaine pyrine , Transduction du signal , Récepteur de type Toll-4 , Animaux , Aflatoxine B1/toxicité , Protéine-3 de la famille des NLR contenant un domaine pyrine/métabolisme , Facteur de transcription NF-kappa B/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Récepteur de type Toll-4/métabolisme , Curcumine/pharmacologie , Inflammasomes/métabolisme , Iléum/effets des médicaments et des substances chimiques , Iléum/anatomopathologie , Microbiome gastro-intestinal/effets des médicaments et des substances chimiques , Muqueuse intestinale/effets des médicaments et des substances chimiques , Muqueuse intestinale/métabolisme , Muqueuse intestinale/anatomopathologie , Muqueuse intestinale/microbiologie
12.
Org Lett ; 26(18): 3685-3690, 2024 May 10.
Article de Anglais | MEDLINE | ID: mdl-38286988

RÉSUMÉ

An efficient palladium-catalyzed region-selective C7-trifluoromethylation of indolines using commercially available Umemoto's reagent was reported. The reaction utilizing Umemoto's reagent as CF3 radical precursor, pyrimidine as a removable directing group, Pd(II) as a catalyst, and Cu(II) as an oxidant furnished the required products with excellent regioselectivities and good yields. The present strategy has good region-selectivity, broad substrate scope, and scale-up application. Additionally, the present method was underlined by the direct C-1 trifluoromethylation of carbazoles. Furthermore, C7 trifluoromethylated indole can also be easily obtained via Pd-catalyzed direct C-7 trifluoromethylation/oxidation/deprotection sequential reactions.

13.
Arthritis Res Ther ; 26(1): 10, 2024 01 02.
Article de Anglais | MEDLINE | ID: mdl-38167341

RÉSUMÉ

BACKGROUND: Overlapping cases of systemic lupus erythematosus (SLE) and primary biliary cirrhosis (PBC) are rare and have not yet been fully proven to be accidental or have a common genetic basis. METHODS: Two-sample bidirectional Mendelian randomization (MR) analysis was applied to explore the potential causal relationship between SLE and PBC. The heterogeneity and reliability of MR analysis were evaluated through Cochran's Q-test and sensitivity test, respectively. Next, transcriptome overlap analysis of SLE and PBC was performed using the Gene Expression Omnibus database to identify the potential mechanism of hub genes. Finally, based on MR analysis, the potential causal relationship between hub genes and SLE or PBC was validated again. RESULTS: The MR analysis results indicated that SLE and PBC were both high-risk factors for the occurrence and development of the other party. On the one hand, MR analysis had heterogeneity, and on the other hand, it also had robustness. Nine hub genes were identified through transcriptome overlap analysis, and machine learning algorithms were used to verify their high recognition efficiency for SLE patients. Finally, based on MR analysis, it was verified that there was no potential causal relationship between the central gene SOCS3 and SLE, but it was a high-risk factor for the potential risk of PBC. CONCLUSION: The two-sample bidirectional MR analysis revealed that SLE and PBC were high-risk factors for each other, indicating that they had similar genetic bases, which could to some extent overcome the limitation of insufficient overlap in case samples of SLE and PBC. The analysis of transcriptome overlapping hub genes provided a theoretical basis for the potential mechanisms and therapeutic targets of SLE with PBC overlapping cases.


Sujet(s)
Lupus érythémateux disséminé , Transcriptome , Humains , Analyse de randomisation mendélienne , Reproductibilité des résultats , Cirrhose du foie/génétique , Lupus érythémateux disséminé/génétique , Étude d'association pangénomique
14.
Biomol Biomed ; 24(2): 401-410, 2024 Mar 11.
Article de Anglais | MEDLINE | ID: mdl-37897663

RÉSUMÉ

This study focused on the development and validation of a diagnostic model to differentiate between spinal tuberculosis (STB) and pyogenic spondylitis (PS). We analyzed a total of 387 confirmed cases, out of which 241 were diagnosed with STB and 146 were diagnosed with PS. These cases were randomly divided into a training group (n = 271) and a validation group (n = 116). Within the training group, four machine learning (ML) algorithms (least absolute shrinkage and selection operator [LASSO], logistic regression analysis, random forest, and support vector machine recursive feature elimination [SVM-RFE]) were employed to identify distinctive variables. These specific variables were then utilized to construct a diagnostic model. The model's performance was subsequently assessed using the receiver operating characteristic (ROC) curves and the calibration curves. Finally, internal validation of the model was undertaken in the validation group. Our findings indicate that PS patients had an average platelet-to-neutrophil ratio (PNR) of 277.86, which was significantly higher than the STB patients' average of 69.88. The average age of PS patients was 54.71 years, older than the 48 years recorded for STB patients. Notably, the neutrophil-to-lymphocyte ratio (NLR) was higher in PS patients at 6.15, compared to the 3.46 NLR in STB patients. Additionally, the platelet volume distribution width (PDW) in PS patients was 0.2, compared to 0.15 in STB patients. Conversely, the mean platelet volume (MPV) was lower in PS patients at an average of 4.41, whereas STB patients averaged 8.31. Hemoglobin (HGB) levels were lower in PS patients at an average of 113.31 compared to STB patients' average of 121.64. Furthermore, the average red blood cell (RBC) count was 4.26 in PS patients, which was less than the 4.58 average observed in STB patients. After evaluation, seven key factors were identified using the four ML algorithms, forming the basis of our diagnostic model. The training and validation groups yielded area under the curve (AUC) values of 0.841 and 0.83, respectively. The calibration curves demonstrated a high alignment between the nomogram-predicted values and the actual measurements. The decision curve indicated optimal model performance with a threshold set between 2% and 88%. In conclusion, our model offers healthcare practitioners a reliable tool to efficiently and precisely differentiate between STB and PS, thereby facilitating swift and accurate diagnoses.


Sujet(s)
Spondylarthrite , Spondylite , Tuberculose vertébrale , Humains , Adulte d'âge moyen , Algorithmes , Apprentissage machine
15.
Environ Toxicol ; 39(1): 264-276, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-37705229

RÉSUMÉ

Co-existing of polystyrene-nano plastics (PSNPs) and arsenic (As) in the environment caused a horrendous risk to human health. However, the potential mechanism of PSNPs and As combination induced testicular toxicity in mammals has not been elucidated. Therefore, we first explore the testicular toxicity and the potential mechanism in male Kunming mice exposed to As or/and PSNPs. Results revealed that compared to the As or PSNPs group, the combined group showed more significant testicular toxicity. Specifically, As and PSNPs combination induced irregular spermatozoa array and blood-testis barrier disruption. Simultaneously, As and PSNPs co-exposure also exacerbated oxidative stress, including increasing the MDA content, and down-regulating expression of Nrf-2, HO-1, SOD-1, and Trx. PSNPs and As combination also triggered testicular apoptosis, containing changes in apoptotic factors (P53, Bax, Bcl-2, Cytc, Caspase-8, Caspase-9, and Caspase-3). Furthermore, co-exposed to As and PSNPs aggravated inflammatory damage characterized by targeted phosphorylation of NF-κB and degradation of I-κB. In summary, our results strongly confirmed As + PSNPs co-exposure induced the synergistic toxicity of testis through excessive oxidative stress, apoptosis, and inflammation, which could offer a new sight into the mechanism of environmental pollutants co-exposure induced male reproductive toxicity.


Sujet(s)
Arsenic , Testicule , Souris , Humains , Mâle , Animaux , Testicule/métabolisme , Polystyrènes/toxicité , Arsenic/toxicité , Arsenic/métabolisme , Microplastiques , Matières plastiques/métabolisme , Stress oxydatif , Inflammation/induit chimiquement , Inflammation/métabolisme , Apoptose , Mammifères/métabolisme
16.
Cytokine ; 173: 156446, 2024 01.
Article de Anglais | MEDLINE | ID: mdl-37979213

RÉSUMÉ

OBJECTIVES: Previous studies have reported an association between inflammatory cytokines and inflammatory arthritis, including Ankylosing spondylitis (AS), rheumatoid arthritis (RA), and psoriatic arthritis (PsA). This study aims to explore the causal relationship between inflammatory cytokines and AS, RA, and PsA using Mendelian randomization (MR). METHODS: We conducted a bidirectional two-sample MR analysis using genetic summary data from a publicly available genome-wide association study (GWAS) that included 41 genetic variations of inflammatory cytokines, as well as genetic variant data for AS, RA, and PsA from the FinnGen consortium. The main analysis method used was Inverse variance weighted (IVW) to investigate the causal relationship between exposure and outcome. Additionally, other methods such as MR Egger, weighted median (WM), simple mode, and weighted mode were employed to strengthen the final results. Sensitivity analysis was also performed to ensure the reliability of the findings. RESULTS: The results showed that macrophage colony-stimulating factor (MCSF) was associated with an increased risk of AS (OR = 1.163, 95 % CI = 1.016-1.33, p = 0.028). Conversely, high levels of TRAIL and beta nerve growth factor (ß-NGF) were associated with a decreased risk of AS (OR = 0.892, 95 % CI = 0.81-0.982, p = 0.002; OR = 0.829, 95 % CI = 0.696-0.988, p = 0.036). Four inflammatory cytokines were found to be associated with an increased risk of PsA: vascular endothelial growth factor (VEGF) (OR = 1.161, 95 % CI = 1.057-1.275, p = 0.002); Interleukin 12p70 (IL12p70) (OR = 1.189, 95 % CI = 1.049-1.346, p = 0.007); IL10 (OR = 1.216, 95 % CI = 1.024-1.444, p = 0.026); IL13 (OR = 1.159, 95 % CI = 1.05-1.28, p = 0.004). Interleukin 1 receptor antagonist (IL-1rα) was associated with an increased risk of seropositive RA (OR = 1.181, 95 % CI = 1.044-1.336, p = 0.008). Similarly, genetic susceptibility to inflammatory arthritis was found to be causally associated with multiple inflammatory cytokines. Lastly, the sensitivity analysis supported the robustness of these findings. CONCLUSIONS: This study provides additional insights into the relationship between inflammatory cytokines and inflammatory arthritis, and may offer new clues for the etiology, diagnosis, and treatment of inflammatory arthritis.


Sujet(s)
Arthrite psoriasique , Polyarthrite rhumatoïde , Pelvispondylite rhumatismale , Humains , Cytokines/génétique , Arthrite psoriasique/génétique , Étude d'association pangénomique , Analyse de randomisation mendélienne , Reproductibilité des résultats , Facteur de croissance endothéliale vasculaire de type A , Polyarthrite rhumatoïde/génétique , Pelvispondylite rhumatismale/génétique
17.
J Trace Elem Med Biol ; 81: 127336, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-37976960

RÉSUMÉ

BACKGROUND: Arsenic is a widely distributed ecotoxic pollutant that has been found to cause neurotoxicity in a variety of species. Gut-brain axis is a two-way information network between the gut microbiome and the brain, which is closely related to organismal health. However, the role of the gut-brain axis in arsenic-induced neurotoxicity remains largely unknown. METHODS: In order to explore whether there is a relationship between brain and gut microbiota of meat ducks, we performed molecular biological detection including RT-qPCR and Western blot, as well as morphological detection including, HE staining and immunohistochemistry. Meanwhile, intestinal contents were analyzed using 16 S ribosomal RNA gene sequencing and analysis RESULTS: In this study, we investigated whether arsenic trioxide (ATO) can activate the gut microbiome-brain axis to induce intestinal and brain injury. The results showed that ATO-exposure disrupted the diversity balance of intestinal microbiota and integrity and injured the intestinal structure. ATO-exposure also reduced the number of glycogen and goblet cells in the duodenum. In addition, exposure to ATO caused intestinal inflammatory injury by activating NF-κB signaling pathway and promoting the expression of its target genes. Meanwhile, the tight junction-related proteins (ZO-1, occludin) of gut and brain were reduced by ATO exposure. Furthermore, results also revealed that ATO-exposure induced brain injury, including neuronal cell vacuolization and reduced numbers of neuronal cells in the cortex and hippocampus. Remarkably, ATO-exposure also disrupted neurotransmitter levels. Additionally, our further molecular mechanism study revealed that ATO-exposure increased the expression of autophagy and apoptosis related mRNA and proteins levels in the brain tissues. CONCLUSION: Altogether, these findings provide a new insight into that ATO-exposure induced intestinal injury and aggravated neurotoxicity via the gut-brain axis.


Sujet(s)
Arsenic , Lésions encéphaliques , Animaux , Arsenic/toxicité , Canards , Axe cerveau-intestin , Trioxyde d'arsenic/pharmacologie , Encéphale
18.
Ann Med ; 55(2): 2287193, 2023.
Article de Anglais | MEDLINE | ID: mdl-38019769

RÉSUMÉ

BACKGROUND: Cinnamomi ramulus (C. ramulus) is frequently employed in the treatment of ankylosing spondylitis (AS). However, the primary constituents, drug targets, and mechanisms of action remain unidentified. METHODS: In this study, various public databases and online tools were employed to gather information on the compounds of C. ramulus, drug targets, and disease targets associated with ankylosing spondylitis. The intersection of drug targets and disease targets was then determined to identify the common targets, which were subsequently used to construct a protein-protein interaction (PPI) network using the STRING database. Network analysis and the analysis of hub genes and major compounds were conducted using Cytoscape software. Furthermore, the Metascape platform was utilized for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Molecular docking studies and immunohistochemical experiments were performed to validate the core targets. RESULTS: The network analysis identified 2-Methoxycinnamaldehyde, cinnamaldehyde, and 2-Hydroxycinnamaldehyde as the major effective compounds present in C. ramulus. The PPI network analysis revealed PTGS2, MMP9, and TLR4 as the most highly correlated targets. GO and KEGG analyses indicated that C. ramulus exerts its therapeutic effects in ankylosing spondylitis through various biological processes, including the response to hormones and peptides, oxidative stress response, and inflammatory response. The main signaling pathways involved were IL-17, TNF, NF-kappa B, and Toll-like receptor pathways. Molecular docking analysis confirmed the strong affinity between the key compounds and the core targets. Additionally, immunohistochemical analysis demonstrated an up-regulation of PTGS2, MMP9, and TLR4 levels in ankylosing spondylitis. CONCLUSIONS: This study provides insights into the effective compounds, core targets, and potential mechanisms of action of C. ramulus in the treatment of ankylosing spondylitis. These findings establish a solid groundwork for future fundamental research in this field.


Sujet(s)
Pharmacologie des réseaux , Pelvispondylite rhumatismale , Humains , Simulation de docking moléculaire , Matrix metalloproteinase 9 , Cyclooxygenase 2 , Pelvispondylite rhumatismale/traitement médicamenteux , Récepteur de type Toll-4
19.
Nat Cell Biol ; 25(11): 1625-1636, 2023 Nov.
Article de Anglais | MEDLINE | ID: mdl-37945830

RÉSUMÉ

Mitochondrial export into the extracellular space is emerging as a fundamental cellular process implicated in diverse physiological activities. Although a few studies have shed light on the process of discarding damaged mitochondria, how mitochondria are exported and the functions of mitochondrial release remain largely unclear. Here we describe mitopherogenesis, a formerly unknown process that specifically secretes mitochondria through a unique extracellular vesicle termed a 'mitopher'. We observed that during sperm development in male Caenorhabditis elegans, healthy mitochondria are exported out of the spermatids through mitopherogenesis and each of the generated mitophers harbours only one mitochondrion. In mitopherogenesis, the plasma membrane first forms mitochondrion-embedding outward buds, which then promptly bud off and thereby result in the generation of mitophers. Mechanistically, extracellular protease signalling in the testis triggers mitopher formation from spermatids, which is partially mediated by the tyrosine kinase SPE-8. Moreover, mitopherogenesis requires normal microfilament dynamics, whereas myosin VI antagonizes mitopher generation. Strikingly, our three-dimensional electron microscopy analyses indicate that mitochondrial quantity requires precise modulation during sperm development, which is critically mediated by mitopherogenesis. Inhibition of mitopherogenesis causes accumulation of mitochondria in sperm, which may lead to sperm motility and fertility defects. Our findings identify mitopherogenesis as a previously undescribed process for mitochondria-specific ectocytosis, which may represent a fundamental branch of mechanisms underlying mitochondrial quantity control to regulate cell functions during development.


Sujet(s)
Sperme , Mobilité des spermatozoïdes , Animaux , Mâle , Sperme/métabolisme , Spermatozoïdes/métabolisme , Fécondité , Caenorhabditis elegans/génétique , Mitochondries/métabolisme
20.
J Org Chem ; 88(20): 14649-14658, 2023 Oct 20.
Article de Anglais | MEDLINE | ID: mdl-37816698

RÉSUMÉ

A metal-free and selective oxidative methyl C-H functionalization of BHT with aniline compounds has been developed. This innovative method enables the facile and efficient synthesis of a diverse array of BHT-functionalized N-containing skeletons, including arylamines, benzoxazoles, benzothiazoles, benzimidazoles, quinazolines, and quinazolinones, all of which are challenging to access. The control experiment involving TEMP18O suggests that the radical adduct of TEMPO with the benzyl radical of BHT may serve as an intermediate.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE