Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 351
Filtrer
1.
Microb Pathog ; 195: 106893, 2024 Aug 27.
Article de Anglais | MEDLINE | ID: mdl-39197333

RÉSUMÉ

BACKGROUND: Vaccination is the best way to prevent influenza virus infection, and insufficient antibodies make it difficult to resist influenza virus invasion. Astragalus Polysaccharide (APS) has a boosting effect on immunity, so we evaluate the effect of APS as an immune adjuvant for H1N1 influenza vaccines in this study. METHODS: The mice were immunized twice with influenza A (H1N1) vaccine and APS. Subsequently, the serum antibody levels were assessed using enzyme-linked immunosorbent assay (ELISA). The frequency of peripheral immune T cells was determined by flow cytometry. Following this, the immunized mice were exposed to a lethal dose of the virus, and changes in body weight and survival rates were recorded. Hematoxylin-eosin staining was employed to observe pathological alterations in lung and intestinal tissues. Western blot analysis was conducted to detect the expression of intestinal barrier function proteins (Occludin and Claudin-1). ELISA was utilized to measure the expression level of serum inflammatory cytokine TNF-α. Fresh mouse feces were collected after the initial immunization as well as after viral infection for 16S rRNA analysis aimed at detecting alterations in gut microbiota. RESULTS: Compared to the Hemagglutinin (HA) group, the APS group demonstrated higher levels of immunoglobulin G (IgG), IgG1, and IgG3, as well as neutralizing antibody levels. Additionally, it increased the frequency of CD8+ cells to enhance resistance against lethal infection. On day 14 post-infection, the high-dose APS group exhibited a higher survival rate (71.40 %) compared to the HA group (14.28 %), along with faster weight recovery. Furthermore, APS was found to ameliorate alveolar damage in lung tissue and rectify intestinal structural disorder. It also upregulated the expression levels of tight junction proteins Occludin and Claudin-1 in intestinal tissue while reducing serum TNF-α expression levels. In addition, populations of Colidextribacter, Peptococcaceae, and Ruminococcaceae were the dominant gut microbiota in the APS group after viral infection. CONCLUSION: APS has an immune-enhancing effect and is expected to be a novel adjuvant in the H1N1 influenza vaccine.

2.
Small ; : e2403419, 2024 Jul 06.
Article de Anglais | MEDLINE | ID: mdl-38970539

RÉSUMÉ

The conductive carbon-based interlayer, as the secondary current collector in the self-dissolving battery system, can effectively capture escaping cathode active materials, inducing deep release of remaining capacity. In the multi-step reactions of Li─S batteries, the environmental tolerance of the conductive carbon-based interlayer to polysulfides determines the inhibition of shuttle effects. Here, a modified metal-organic framework (Mn-ZIF67) is utilized to obtain nitrogen-doped carbon-coated heterogeneous Co-MnO (Co-MnO@NC) with dual catalytic center for the functional interlayer materials. The synergistic coupling mechanism of NC and Co-MnO achieves rapid deposition and conversion of free polysulfide and fragmented active sulfur on the secondary current collector, reducing capacity loss in the cathode. The Li─S battery with Co-MnO@NC/PP separator maintains an initial capacity of 1050 mAh g-1 (3C) and excellent cycle stability (0.056% capacity decay rate). Under extreme testing conditions (S load = 5.82 mg cm-2, E/S = 9.1 µL mg-1), a reversible capacity of 501.36 mAh g-1 is observed after 200 cycles at 0.2 C, showing good further practical reliability. This work demonstrates the advancement application of Co-MnO@NC bimetallic heterojunctions catalysts in the secondary current collector for high-performance Li─S batteries, thereby providing guidance for the development of interlayer in various dissolution systems.

3.
Cell Mol Life Sci ; 81(1): 303, 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-39008099

RÉSUMÉ

Vitamin C (VC) serves as a pivotal nutrient for anti-oxidation process, metabolic responses, and stem cell differentiation. However, its precise contribution to placenta development and gestation remains obscure. Here, we demonstrated that physiological levels of VC act to stabilize Hand1, a key bHLH transcription factor vital for the development trajectory of trophoblast giant cell (TGC) lineages, thereby promoting the differentiation of trophoblast stem cells into TGC. Specifically, VC administration inactivated c-Jun N-terminal kinase (JNK) signaling, which directly phosphorylates Hand1 at Ser48, triggering the proteasomal degradation of Hand1. Conversely, a loss-of-function mutation at Ser48 on Hand1 not only significantly diminished both intrinsic and VC-induced stabilization of Hand1 but also underscored the indispensability of this residue. Noteworthy, the insufficiency of VC led to severe defects in the differentiation of diverse TGC subtypes and the formation of labyrinth's vascular network in rodent placentas, resulting in failure of maintenance of pregnancy. Importantly, VC deficiency, lentiviral knockdown of JNK or overexpression of Hand1 mutants in trophectoderm substantially affected the differentiation of primary and secondary TGC in E8.5 mouse placentas. Thus, these findings uncover the significance of JNK inactivation and consequential stabilization of Hand1 as a hitherto uncharacterized mechanism controlling VC-mediated placentation and perhaps maintenance of pregnancy.


Sujet(s)
Acide ascorbique , Facteurs de transcription à motif basique hélice-boucle-hélice , Différenciation cellulaire , JNK Mitogen-Activated Protein Kinases , Placentation , Trophoblastes , Animaux , Femelle , Grossesse , Acide ascorbique/pharmacologie , Acide ascorbique/métabolisme , Placentation/génétique , Souris , JNK Mitogen-Activated Protein Kinases/métabolisme , JNK Mitogen-Activated Protein Kinases/génétique , Différenciation cellulaire/effets des médicaments et des substances chimiques , Trophoblastes/métabolisme , Trophoblastes/effets des médicaments et des substances chimiques , Facteurs de transcription à motif basique hélice-boucle-hélice/métabolisme , Facteurs de transcription à motif basique hélice-boucle-hélice/génétique , Placenta/métabolisme , Phosphorylation , Humains , Souris de lignée C57BL
4.
Heliyon ; 10(14): e34436, 2024 Jul 30.
Article de Anglais | MEDLINE | ID: mdl-39082013

RÉSUMÉ

Current commercial separators used in lithium-ion batteries have inherent flaws, especially poor thermal stability, which pose substantial safety risks. This study introduces a high-safety composite membrane made from electrospun poly(vinyl alcohol)-melamine (PVAM) and polyvinylidene fluoride (PVDF) polymer solutions via a dip coating method, designed for high-voltage battery systems. The poly(vinyl alcohol) and melamine components enhance battery safety, while the PVDF coating improves lithium-ion conductivity. The dip-coated PVDF/Esp-PVAM composite separators were evaluated for electrolyte uptake, contact angle, thermal stability, porosity, electrochemical stability and ionic conductivity. Notably, our Dip 1 % PVDF@Esp-PVAM composite separator exhibited excellent wettability and a lithium-ion conductivity of approximately 7.75 × 10⁻4 S cm⁻1 at room temperature. These separators outperformed conventional PE separators in half-cells with Ni-rich NCM811 cathodes, showing exceptional cycling stability with 93.4 % capacity retention after 100 cycles at 1C/1C, as compared to 84.8 % for PE separators. Our Dip 1 % PVDF@Esp-PVAM composite separator demonstrates significant potential for enhancing the long-term durability and high-rate performance of lithium-ion batteries, making it a promising option for long-term energy storage applications.

5.
J Hazard Mater ; 477: 135311, 2024 Sep 15.
Article de Anglais | MEDLINE | ID: mdl-39068889

RÉSUMÉ

Face masks have emerged as a significant source of microplastics (MPs) under the influence of biotic and abiotic interactions. However, the combined effects of abiotic photoaging and biofilm-loading on mask-derived MPs as carriers of metal ions are not clear. We investigated the Pb(Ⅱ) adsorption onto polypropylene (PP) and polyurethane (PU) mask-derived MPs treated by photoaging, biofilm-loading, and both combinations, evaluating the composite risks. PU mask-derived MPs (1.157.47 mg/g) exhibited greater Pb(Ⅱ) adsorption capacity than PP mask-derived MPs (0.842.08 mg/g) because of the presence of intrinsic carbonyl functional groups. Photoaging (30.5%, 88.4%), biofilm-loading (110.7%, 87.1%), and both combinations (146.7%, 547.0%) of PP and PU masks enhanced Pb(Ⅱ) adsorption compared to virgin mask-derived MPs due to the increase of oxygen-containing functional groups. High-throughput sequencing indicated that the structural morphology and chemical composition of masks significantly affected the microbial community. Adsorption mechanisms involved electrostatic force and surface complexation. A combination of photoaging and biofilms increased the ecological risk index of mask-derived MPs in freshwater, showing the risk level to be high (PP mask) and very high (PU mask). This research highlights the crucial role of photoaging combined with biofilms in controlling metal ion adsorption onto mask-derived MPs, thereby increasing the composite risks.


Sujet(s)
Biofilms , Plomb , Microplastiques , Polypropylènes , Polyuréthanes , Adsorption , Plomb/composition chimique , Polyuréthanes/composition chimique , Polypropylènes/composition chimique , Microplastiques/composition chimique , Microplastiques/toxicité , Polluants chimiques de l'eau/composition chimique , Masques
6.
Cell Biochem Biophys ; 2024 Jul 17.
Article de Anglais | MEDLINE | ID: mdl-39020087

RÉSUMÉ

To investigate vascular endothelium damage in rats exposed to hypoxic and cold and the effect of salidroside in protecting against this damage. A rat isolated aortic ring hypoxia/cold model was established to simulate exposure to hypoxic and cold. The levels of endothelial cell injury markers were measured by ELISA. TEM was performed to observe the ultrastructure of vascular ring endothelial cells. In vitro assays were performed to verify the effect of salidroside on endothelial cells. CCK-8 and flow cytometry were performed to analyze endothelial cell survival and apoptosis, respectively. Ca2+ concentrations were measured by Flow cytometry, and the expressions of NOS/NO pathway-related proteins were measured by WB. Endothelial cell damage, mitochondrial swelling, autophagy, and apoptosis were increased in the hypoxia group and hypoxia/hypothermia group. All of these effects were inhibited by salidroside. Moreover, exposure to cold combined with hypoxia reduced the NO levels, Ca2+ concentrations and NOS/NO pathway-related protein expression in the hypoxia group and hypoxia/hypothermia group. Salidroside treatment reversed these changes. Salidroside protected against endothelial cell injury induced by cold and hypoxia through reduction of Ca2+-CaM-CAMKII-dependent eNOS/NO activation, thereby preventing mitochondrial damage, reducing ROS levels, and inhibiting apoptosis.

7.
Materials (Basel) ; 17(13)2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38998290

RÉSUMÉ

Electropolishing (EP) has become a standard procedure for treating the inner surfaces of superconducting radio-frequency (SRF) cavities composed of pure niobium. In this study, a new EP facility was employed for the surface treatment of both 1.3 GHz and 3.9 GHz single-cell cavities at the Wuxi Platform. The stable "cold EP" mode was successfully implemented on this newly designed EP facility. By integrating the cold EP process with a two-step baking approach, a maximum accelerating gradient exceeding 40 MV/m was achieved in 1.3 GHz single-cell cavities. Additionally, an update to this EP facility involved the design of a special cathode system for small-aperture structures, facilitating the cold EP process for 3.9 GHz single-cell cavities. Ultimately, a maximum accelerating gradient exceeding 25 MV/m was attained in the 3.9 GHz single-cell cavities after undergoing the cold EP treatment. The design and commissioning of the EP device, as well as the electropolishing and vertical test results of the single-cell cavities, will be detailed herein. These methods and experiences are also transferable to multi-cell cavities and elliptical cavities of other frequencies.

8.
Front Biosci (Landmark Ed) ; 29(6): 221, 2024 Jun 20.
Article de Anglais | MEDLINE | ID: mdl-38940044

RÉSUMÉ

The endoplasmic reticulum (ER) played an important role in the folding, assembly and post-translational modification of proteins. ER homeostasis could be disrupted by the accumulation of misfolded proteins, elevated reactive oxygen species (ROS) levels, and abnormal Ca2+ signaling, which was referred to ER stress (ERS). Ferroptosis was a unique programmed cell death model mediated by iron-dependent phospholipid peroxidation and multiple signaling pathways. The changes of mitochondrial structure, the damage of glutathione peroxidase 4 (GPX4) and excess accumulation of iron were the main characteristics of ferroptosis. ROS produced by ferroptosis can interfere with the activity of protein-folding enzymes, leading to the accumulation of large amounts of unfolded proteins, thus causing ERS. On the contrary, the increase of ERS level could promote ferroptosis by the accumulation of iron ion and lipid peroxide, the up-regulation of ferroptosis related genes. At present, the studies on the relationship between ferroptosis and ERS were one-sided and lack of in-depth studies on the interaction mechanism. This review aimed to explore the molecular mechanism of cross-talk between ferroptosis and ERS, and provide new strategies and targets for the treatment of liver diseases.


Sujet(s)
Stress du réticulum endoplasmique , Ferroptose , Maladies du foie , Espèces réactives de l'oxygène , Ferroptose/physiologie , Humains , Maladies du foie/métabolisme , Espèces réactives de l'oxygène/métabolisme , Animaux , Transduction du signal , Fer/métabolisme , Peroxydation lipidique , Réticulum endoplasmique/métabolisme
10.
Opt Express ; 32(11): 19467-19479, 2024 May 20.
Article de Anglais | MEDLINE | ID: mdl-38859081

RÉSUMÉ

Computational micro-spectrometers comprised of detector arrays and encoding structure arrays, such as on-chip Fabry-Perot (FP) cavity filters, have great potential in many in-situ applications owing to their compact size and snapshot imaging ability. Given manufacturing deviation and environmental influence are inevitable, easy and effective calibration for spectrometer is necessary, especially for in-situ applications. Currently calibration strategies based on iterative algorithms or neural networks require accurate measurements of pixel-level (spectral) encoding functions through monochromator or large amounts of standard samples. These procedures are time-consuming and expensive, thereby impeding in-situ applications. Meta-learning algorithms with few-shot learning ability can address this challenge by incorporating the prior knowledge in the simulated dataset. In this work, we propose a meta-learning algorithm free of measuring encoding function or large amounts of standard samples to calibrate a micro-spectrometer with manufacturing deviation effectively. Our micro-spectrometer comprises 16 types of FP filters covering a wavelength range of 550-720 nm. The center wavelength of each filter type deviates from the design up to 6 nm. After calibration with 15 different color data, the average reconstruction error on the test dataset decreased from 7.2 × 10-3 to 1.2 × 10-3, and further decreased to 9.4 × 10-4 when the calibration data increased to 24. The performance is comparable to algorithms trained with measured encoding function both in reconstruction error and generalization ability. We estimated that the cost of in-situ calibration through reflectance measurements of color chart decreased to one percent of the cost through monochromator measurements. By exploiting prior deviation information in simulation data with meta-learning, the efficiency and cost of calibration are significantly improved, thereby facilitating the large-scale production and in-situ application of micro-spectrometers.

11.
Org Lett ; 26(24): 5136-5140, 2024 Jun 21.
Article de Anglais | MEDLINE | ID: mdl-38847357

RÉSUMÉ

Herein, we report a rhodium-catalyzed C-H activation/[4+2] cyclization reaction between α,ß-unsaturated amides and iodonium ylides for the synthesis of novel 7,8-dihydroquinoline-2,5-diones and analogues. This protocol provides a series of pyridones fused with saturated cycles with good functional group compatibility, good water and air tolerance, and good to excellent yields under mild and green reaction conditions. Additionally, scale-up synthesis can be smoothly performed with as low as 0.25 mol % catalyst loading. Recycling experiments and different transformation experiments were also carried out to demonstrate the potential synthetic utility of this protocol.

12.
Proc Natl Acad Sci U S A ; 121(19): e2315348121, 2024 May 07.
Article de Anglais | MEDLINE | ID: mdl-38701117

RÉSUMÉ

Ovarian cancer is an aggressive gynecological tumor characterized by a high relapse rate and chemoresistance. Ovarian cancer exhibits the cancer hallmark of elevated glycolysis, yet effective strategies targeting cancer cell metabolic reprogramming to overcome therapeutic resistance in ovarian cancer remain elusive. Here, we revealed that epigenetic silencing of Otubain 2 (OTUB2) is a driving force for mitochondrial metabolic reprogramming in ovarian cancer, which promotes tumorigenesis and chemoresistance. Mechanistically, OTUB2 silencing destabilizes sorting nexin 29 pseudogene 2 (SNX29P2), which subsequently prevents hypoxia-inducible factor-1 alpha (HIF-1α) from von Hippel-Lindau tumor suppressor-mediated degradation. Elevated HIF-1α activates the transcription of carbonic anhydrase 9 (CA9) and drives ovarian cancer progression and chemoresistance by promoting glycolysis. Importantly, pharmacological inhibition of CA9 substantially suppressed tumor growth and synergized with carboplatin in the treatment of OTUB2-silenced ovarian cancer. Thus, our study highlights the pivotal role of OTUB2/SNX29P2 in suppressing ovarian cancer development and proposes that targeting CA9-mediated glycolysis is an encouraging strategy for the treatment of ovarian cancer.


Sujet(s)
Carbonic anhydrase IX , Extinction de l'expression des gènes , Mitochondries , Tumeurs de l'ovaire , Thiolester hydrolases , Animaux , Femelle , Humains , Souris , Antigènes néoplasiques/métabolisme , Antigènes néoplasiques/génétique , Carbonic anhydrase IX/métabolisme , Carbonic anhydrase IX/génétique , Lignée cellulaire tumorale , Résistance aux médicaments antinéoplasiques/génétique , Résistance aux médicaments antinéoplasiques/effets des médicaments et des substances chimiques , Régulation de l'expression des gènes tumoraux/effets des médicaments et des substances chimiques , Glycolyse/effets des médicaments et des substances chimiques , Sous-unité alpha du facteur-1 induit par l'hypoxie/métabolisme , Sous-unité alpha du facteur-1 induit par l'hypoxie/génétique , , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Tumeurs de l'ovaire/génétique , Tumeurs de l'ovaire/métabolisme , Tumeurs de l'ovaire/anatomopathologie , Tumeurs de l'ovaire/traitement médicamenteux , Thiolester hydrolases/génétique
14.
Anal Biochem ; 692: 115552, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-38718956

RÉSUMÉ

The reactive nitrogen species (RNS) in lysosomes play a major role during the regulation of lysosomal microenvironment. Nitroxyl (HNO) belongs to active nitrogen species (RNS) and is becoming a potential diagnostic and therapeutic biomarker. However, the complex synthesis routes of HNO in biosystem always hinder the exact determination of HNO in living cells. Here, a rhodamine-based fluorescent probe used to determine nitroxyl (HNO) in lysosomes was constructed and synthesized. 2-(Diphenylphosphino)benzoate was utilized as the sensing unit for HNO and morpholine was chose as the targeting group for lysosome. Before the addition of HNO, the probe displayed a spirolactone structure and almost no fluorescence was found. After the addition of HNO, the probe existed as a conjugated xanthene form and an intense green fluorescence was observed. The fluorescent probe possessed fast response (3 min) and high selectivity for HNO. Furthermore, fluorescence intensity of the probe linearly related with the HNO concentration in the range of 6.0 × 10-8 to 6.0 × 10-5 mol L-1. The detection limit was found to be 1.87 × 10-8 mol L-1 for HNO. Moreover, the probe could selectively targeted lysosome with excellent biocompatibility and had been effectually utilized to recognize exogenous HNO in A549 cells.


Sujet(s)
Colorants fluorescents , Lysosomes , Oxydes d'azote , Rhodamines , Colorants fluorescents/composition chimique , Colorants fluorescents/synthèse chimique , Lysosomes/métabolisme , Oxydes d'azote/analyse , Oxydes d'azote/composition chimique , Humains , Rhodamines/composition chimique , Rhodamines/synthèse chimique
15.
Nature ; 630(8015): 198-205, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38720074

RÉSUMÉ

Phosphoinositide-3-kinase-γ (PI3Kγ) is implicated as a target to repolarize tumour-associated macrophages and promote antitumour immune responses in solid cancers1-4. However, cancer cell-intrinsic roles of PI3Kγ are unclear. Here, by integrating unbiased genome-wide CRISPR interference screening with functional analyses across acute leukaemias, we define a selective dependency on the PI3Kγ complex in a high-risk subset that includes myeloid, lymphoid and dendritic lineages. This dependency is characterized by innate inflammatory signalling and activation of phosphoinositide 3-kinase regulatory subunit 5 (PIK3R5), which encodes a regulatory subunit of PI3Kγ5 and stabilizes the active enzymatic complex. We identify p21 (RAC1)-activated kinase 1 (PAK1) as a noncanonical substrate of PI3Kγ that mediates this cell-intrinsic dependency and find that dephosphorylation of PAK1 by PI3Kγ inhibition impairs mitochondrial oxidative phosphorylation. Treatment with the selective PI3Kγ inhibitor eganelisib is effective in leukaemias with activated PIK3R5. In addition, the combination of eganelisib and cytarabine prolongs survival over either agent alone, even in patient-derived leukaemia xenografts with low baseline PIK3R5 expression, as residual leukaemia cells after cytarabine treatment have elevated G protein-coupled purinergic receptor activity and PAK1 phosphorylation. Together, our study reveals a targetable dependency on PI3Kγ-PAK1 signalling that is amenable to near-term evaluation in patients with acute leukaemia.


Sujet(s)
Phosphatidylinositol 3-kinases de classe Ib , Leucémies , Transduction du signal , p21-Activated Kinases , Animaux , Humains , Souris , Lignée cellulaire , Phosphatidylinositol 3-kinases de classe Ib/génétique , Phosphatidylinositol 3-kinases de classe Ib/métabolisme , Cytarabine/pharmacologie , Cytarabine/usage thérapeutique , Leucémies/traitement médicamenteux , Leucémies/enzymologie , Leucémies/génétique , Leucémies/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Phosphorylation oxydative/effets des médicaments et des substances chimiques , p21-Activated Kinases/antagonistes et inhibiteurs , p21-Activated Kinases/métabolisme , Phosphorylation , Tests d'activité antitumorale sur modèle de xénogreffe
16.
ACS Sens ; 9(6): 2793-2800, 2024 Jun 28.
Article de Anglais | MEDLINE | ID: mdl-38820066

RÉSUMÉ

Nitric oxide (NO) plays a pivotal role as a biological signaling molecule, presenting challenges in its specific detection and differentiation from other reactive nitrogen and oxygen species within living organisms. Herein, a 18F-labeled (fluorine-18, t1/2 = 109.7 min) small-molecule tracer dimethyl 4-(4-(4-[18F]fluorobutoxy)benzyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate ([18F]BDHP) is developed based on the dihydropyridine scaffold for positron emission tomography (PET) imaging of NO in vivo. [18F]BDHP exhibits a highly sensitive and efficient C-C cleavage reaction specifically triggered by NO under physiological conditions, leading to the production of a 18F-labeled radical that is readily retained within the cells. High uptakes of [18F]BDHP are found within and around NO-generating cells, such as macrophages treated with lipopolysaccharide or benzo(a)pyrene. MicroPET/CT imaging of arthritic animal model mice reveals distinct tracer accumulation in the arthritic legs, showcasing a higher distribution of NO compared with the control legs. In summary, a specific radical-generating dihydropyridine tracer with a unique radical retention strategy has been established for the marking of NO in real-time in vivo.


Sujet(s)
Dihydropyridines , Radio-isotopes du fluor , Monoxyde d'azote , Tomographie par émission de positons , Animaux , Monoxyde d'azote/métabolisme , Monoxyde d'azote/composition chimique , Souris , Dihydropyridines/composition chimique , Tomographie par émission de positons/méthodes , Radio-isotopes du fluor/composition chimique , Radicaux libres/composition chimique , Cellules RAW 264.7
17.
J Clin Gastroenterol ; 2024 Mar 01.
Article de Anglais | MEDLINE | ID: mdl-38457411

RÉSUMÉ

BACKGROUND AND AIMS: Many studies have shown a link between physical activity (PA) and nonalcoholic fatty liver disease (NAFLD). However, more research is needed to investigate the relationship between different types of PA and NAFLD. This study aimed to explore the potential link between different types of PA, hepatic steatosis, and liver fibrosis. STUDY: A cross-sectional study was conducted using the data set from the National Health and Nutrition Examination Survey (NHANES) from 2017 to 2020. A multiple linear regression model was used to examine the linear relationship between different types of PA, the controlled attenuation parameter (CAP), and liver stiffness measurement (LSM). In addition, smoothing curve fitting and threshold effect analysis were used to depict their nonlinear relationship. RESULTS: This study involved 5933 adults. Multiple linear regression analysis revealed a significantly negative correlation between leisure-time PA and CAP, while the relationship between occupation-related PA, transportation-related PA, and CAP was not significant. Subgroup analysis further revealed that leisure-time PA was significantly negatively correlated with CAP in women and younger age groups (under 60 y old), while the relationship was not significant in men and older age groups. In addition, there was a significant negative correlation between leisure-time PA and liver fibrosis in men. CONCLUSIONS: Leisure-time PA can prevent hepatic steatosis, and women and young people benefit more. Occupation-related PA is not associated with hepatic steatosis and cannot replace leisure-time PA. In men, increasing leisure-time PA is more effective in preventing liver fibrosis.

18.
J Sleep Res ; : e14190, 2024 Mar 07.
Article de Anglais | MEDLINE | ID: mdl-38453144

RÉSUMÉ

The presence of a circadian cycle of cerebral blood flow may have implications for the occurrence of daily variations in cerebrovascular events in humans, but how cerebral blood flow varies throughout the day and its mechanism are still unclear. The study aimed to explore the diurnal variation of cerebral blood flow in healthy humans and its possible mechanisms. Arterial spin labelling images were collected at six time-points (09:00 hours, 13:00 hours, 17:00 hours, 21:00 hours, 01:00 hours, 05:00 hours) from 18 healthy participants (22-39 years old; eight females) to analyse diurnal variations in cerebral blood flow. Resting heart rate and blood pressure at six time-points and blood indicators (20-hydroxyeicosatetraenoic acid, epoxyeicosatrienoic acids, prostaglandin E2, noradrenaline and nitric oxide) related to cerebral vascular tone at two time-points (09:00 hours and 21:00 hours) were collected to analyse possible influences on diurnal variations in cerebral blood flow. From 21:00 hours to 05:00 hours, parietal cortical relative cerebral blood flow tended to increase, while frontal cortical and cerebellar relative cerebral blood flow tended to decrease. There was a time-dependent negative correlation between parietal cortical relative cerebral blood flow and resting heart rate, whereas there was a time-dependent positive correlation between cerebellar relative cerebral blood flow and resting heart rate. The change of parietal cortical relative cerebral blood flow was positively correlated with the change of nitric oxide. There was also a time-dependent positive correlation between mean arterial pressure and mean whole-brain cerebral blood flow. The findings indicated that parietal cortical relative cerebral blood flow and frontal cortical/cerebellar relative cerebral blood flow showed roughly opposite trends throughout the day. The diurnal variations in relative cerebral blood flow were regional-specific. Diurnal variation of nitric oxide and neurogenic regulation may be potential mechanisms for diurnal variation in regional relative cerebral blood flow.

19.
Materials (Basel) ; 17(5)2024 Mar 04.
Article de Anglais | MEDLINE | ID: mdl-38473666

RÉSUMÉ

Cemented carbide used in the rotor of a mud pulser is subjected to the scouring action of solid particles and corrosive mud media for a long time, which causes abrasive wear and electrochemical corrosion. To improve the wear and corrosive resistance of cemented carbide, samples with different cobalt content (WC-5Co, WC-8Co, and WC-10Co) receive deep cryogenic treatment (DCT) at -196 °C for 2.5 h. An optical metalloscope (OM) and X-ray diffractometer (XRD) are used to observe the phase changes of cemented carbides, and the XRD is also used to observe the change in residual stress on the cemented carbide's surface. A scanning electron microscope (SEM) is used to characterize the wear and electrochemical corrosion surface microstructure of cemented carbides (untreated and DCT). The results show that the DCT promotes the precipitation of the η phase, and the diffraction peak of ε-Co tends to intensify. Compared with the untreated, the wear rates of WC-5Co, WC-8Co, and WC-10Co can be reduced by 14.71%, 37.25%, and 41.01% by DCT, respectively. The wear form of the cemented carbides is mainly the extrusion deformation of Co and WC shedding. The precipitation of the η phase and the increase in WC residual compressive stress by DCT are the main reasons for the improvement of wear resistance. The electrochemical corrosion characteristic is the dissolution of the Co phase. DCT causes the corrosion potential of cemented carbide to shift forward and the corrosion current density to decrease. The enhancement of the corrosion resistance of cemented carbide caused by DCT is due to the Co phase transition, η phase precipitation, and the increase in the compressive stress of cemented carbide.

20.
Food Chem X ; 21: 101240, 2024 Mar 30.
Article de Anglais | MEDLINE | ID: mdl-38434690

RÉSUMÉ

Encapsulation technology has been extensively used to enhance the stability, specificity, and bioavailability of essential food ingredients. Additionally, it plays a vital role in improving product quality and reducing production costs. This study presents a comprehensive classification of encapsulation techniques based on the state of different cores (solid, liquid, and gaseous) and offers a detailed description and analysis of these encapsulation methods. Specifically, it introduces the diverse applications of encapsulation technology in food, encompassing areas such as antioxidant, protein activity, physical stability, controlled release, delivery, antibacterial, and probiotics. The potential impact of encapsulation technology is expected to make encapsulation technology a major process and research hotspot in the food industry. Future research directions include applications of encapsulation for enzymes, microencapsulation of biosensors, and novel technologies such as self-assembly. This study provides a valuable theoretical reference for the in-depth research and wide application of encapsulation technology in the food industry.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE