Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Anal Chim Acta ; 1310: 342672, 2024 Jun 29.
Article de Anglais | MEDLINE | ID: mdl-38811131

RÉSUMÉ

BACKGROUND: This study tackles the critical challenges in metal analysis by presenting an innovative miniaturized metal extraction device prototype. This device features a functional nanocomposite (FNC) enhanced 3D-printed polylactic acid (PLA) metal extractant (FNC@3D PLA). The research is motivated by the constraints of traditional solid-phase extraction (SPE) methods, specifically their limitations in handling competitive metal ion environments and matrix interference during inductively coupled plasma mass spectrometry (ICP-MS) analysis. The designed prototype aims to overcome these challenges and enhance the extraction efficiency of diverse metals. RESULTS: The FNC, designed to incorporate various functional groups critical for metal ion extraction efficiency, was meticulously engineered through the reaction of acid-treated and delaminated graphitic carbon nitride nanosheets (Thiol-gCN NSs) with 3-mercaptopropyl trimethoxysilane (MPTMS). The competitive metal ion extraction efficiency of FNC@3D PLA was demonstrated, showcasing notable limit of detection values of 3.2 ± 0.7 ng mL-1 and 8.57 ± 3.05 ng mL-1 for Cu and Ag, respectively. Furthermore, the miniaturized 3D-printed metal-preconcentration setup incorporating FNC@3D PLA exhibited favorable intraday relative standard deviation (RSD) percentage (%) values ranging from 1.23 to 8.6 for both Cu and Ag. Interday RSD % between 1.41 and 8.14 were observed under spiked real urine sample conditions. The sustainability and robustness of the proposed approach were underscored by substantial recovery % values exhibited by FNC@3D PLA, even after eight consecutive regeneration processes. SIGNIFICANCE: This study significantly contributes to the advancement of analytical methodologies by providing a reliable and efficient platform for metal extraction and preconcentration in practical metal analysis applications. Developed FNC@3D PLA system demonstrates its potential to address the challenges associated with SPE in metal analysis, especially in complex sample matrices. We believe implications of this research can be extended to various fields, from environmental monitoring to clinical diagnostics, where accurate and reliable metal analysis is paramount.

2.
Anal Methods ; 15(47): 6531-6540, 2023 Dec 07.
Article de Anglais | MEDLINE | ID: mdl-37990560

RÉSUMÉ

We established an innovative and easy-to-use methodology for selenium (Se) extraction and determination from real water samples utilizing a magnetic nanocomposite adsorbent (MNC-SPE) aided by an inductively coupled plasma mass spectrometry (ICP-MS) approach. The MNC-SPE adsorbent was fabricated by hybridizing Fe3O4 nanoparticles on the surface of carbon nitride nanosheets (GCN NSs) that were coated with 1-hexyl-3-methylimidazolium hexafluorophosphate ionic liquid (P-IL). A variety of techniques were used to thoroughly analyze the structural and chemical characteristics of MNC-SPE, and appear to have a great number of diverse active surface functional units (imidazole ring and -NH3+). In order to optimize the key factors affecting the Se extraction, parameters including the adsorbent dosage, contact time, eluent type, eluent volume, eluent time, and reusability of adsorbent were extensively studied. The proposed approach was validated under the optimal reaction conditions, and it showed good linearity between 0.15 and 100 pg µL-1 with a significant R2 value (R2 = 0.9994) toward Se metal. Besides, the Se limit of detection (LOD) and limit of quantification (LOQ) are 0.063 pg µL-1 and 0.147 pg µL-1, respectively. Further, by utilizing tap and river water samples, the applicability of the validated method was tested; the approach showed high Se recovery values in the range of 87.6-115.5% for the spiked real-world samples and the interday and intraday precision (RSD%) values of the approach were 4.8% (n = 6). The MNC-SPE can be regenerated and reused for four consecutive extraction-desorption cycles by employing 0.5 M NaOH eluent.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE