Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 48
Filtrer
1.
Tomography ; 8(1): 257-266, 2022 01 24.
Article de Anglais | MEDLINE | ID: mdl-35202186

RÉSUMÉ

Radiculopathy can be caused by nerve root irritation and nerve root compression at the level of the lateral recess or at the level of the intervertebral foramen. T2-weighted (T2w) MRI is considered essential to evaluate the nerve root and its course, starting at the lateral recess through the intervertebral foramen to the extraforaminal space. With the introduction of novel MRI acceleration techniques such as compressed SENSE, standard-resolution 2D T2w turbo spin echo (TSE) sequences with a slice-thickness of 3-4 mm can be replaced with high-resolution isotropic 3D T2w TSE sequences with sub-millimeter resolution without prolonging scan time. With high-resolution 3D MRI, the course of the nerve root can be visualized more precisely due to a detailed depiction of the anatomical situation and less partial volume effects, potentially allowing for a better detection of nerve root compromise. In this intra-individual comparison study, 55 patients with symptomatic unilateral singular nerve root radiculopathy underwent MRI with both 2D standard- and 3D high-resolution T2w TSE MRI sequences. Two readers graded the degree of lumbar lateral recess stenosis and lumbar foraminal stenosis twice on both image sets using previously validated grading systems in an effort to quantify the inter-readout and inter-sequence agreement of scores. Inter-readout agreement was high for both grading systems and for 2D and 3D imaging (Kappa = 0.823-0.945). Inter-sequence agreement was moderate for both lumbar lateral recess stenosis (Kappa = 0.55-0.577) and lumbar foraminal stenosis (Kappa = 0.543-0.572). The percentage of high degree stenosis with nerve root deformity increased from 16.4%/9.8% to 41.8-43.6%/34.1% from 2D to 3D images for lateral recess stenosis/foraminal stenosis, respectively. Therefore, we show that while inter-readout agreement of grading systems is high for both standard- and high-resolution imaging, the latter outperforms standard-resolution imaging for the visualization of lumbar nerve root compromise.


Sujet(s)
Imagerie par résonance magnétique , Radiculopathie , Imagerie par résonance magnétique de diffusion , Humains , Imagerie tridimensionnelle/méthodes , Imagerie par résonance magnétique/méthodes , Radiculopathie/imagerie diagnostique , Racines des nerfs spinaux/imagerie diagnostique
2.
Phys Med ; 93: 20-28, 2022 Jan.
Article de Anglais | MEDLINE | ID: mdl-34902771

RÉSUMÉ

PURPOSE: To assess the clinical feasibility of spiral 3D Time-Of-Flight (TOF) MR Angiography (MRA) sequence variants for rapid non-contrast carotid artery imaging. METHODS: Nine different 3D TOF MRA sequences were acquired in nine healthy volunteers on a standard clinical 1.5 T scanner. Three cartesian sequences (fully sampled (10:15 min), accelerated with SENSE (05:08 min), accelerated with Compressed SENSE (03:32 min)) and six different spiral sequences were acquired (spiral acquisition windows ranging from 10 to 5 ms (01:32 min-03:05 min)). Three readers graded the images qualitatively in terms of overall image quality, vessel sharpness, inhomogeneous intraluminal signal, background noise, visualization of large and small vessels and overall impression of the number of visible vessels. Cross-sectional areas of the vessel lumen were measured and vessel sharpness was quantified. RESULTS: The SENSE and Compressed SENSE accelerated cartesian sequences and the Spiral 6 ms and 5 ms sequences were deemed comparable to the fully sampled cartesian sequence in most qualitative categories (p > 0.05) based on exact binomial tests. The Spiral 6 ms and 5 ms sequences achieved a scan time reduction of 75.3% and 69.9% respectively compared to the fully sampled cartesian sequence. The spiral sequences (generally) exhibited improved subjective vessel sharpness (p < 0.01-p = 0.13) but increased background noise (p = 0.03-p = 0.25). Cross-sectional area measurements were similar between all sequences (Krippendorff's alpha: 0.955-0.982). Quantitative vessel sharpness was increased for all spiral sequences compared to all cartesian sequences (p = 0.004). CONCLUSIONS: Spiral 3D TOF MRA sequences with a spiral acquisition window of 5 ms or 6 ms may be used for accurate, rapid, clinical non-contrast carotid artery imaging.


Sujet(s)
Imagerie tridimensionnelle , Angiographie par résonance magnétique , Artères carotides/imagerie diagnostique , Études de faisabilité , Volontaires sains , Humains
3.
Br J Radiol ; 95(1135): 20210354, 2022 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-34762522

RÉSUMÉ

OBJECTIVES: To compare a novel 3D spiral gradient echo (GRE) sequence with a conventional 2D cartesian turbo spin echo (TSE) sequence for sagittal contrast-enhanced (CE) fat-suppressed (FS) T1 weighted (T1W) spine MRI. METHODS: In this inter-individual comparison study, 128 patients prospectively underwent sagittal CE FS T1W spine MRI with either a 2D cartesian TSE ("TSE", 285 s, 64 patients) or a 3D spiral GRE sequence ("Spiral", 93 s, 64 patients). Between both groups, patients were matched in terms of anatomical region (cervical/thoracic/lumbar spine and sacrum). Three readers used 4-point Likert scales to assess images qualitatively in terms of overall image quality, presence of artifacts, spinal cord visualization, lesion conspicuity and quality of fat suppression. RESULTS: Spiral achieved a 67.4% scan time reduction compared to TSE. Interreader agreement was high (alpha=0.868-1). Overall image quality (4;[3,4] vs 3;[3,4], p<0.001 - p=0.002 for all readers), presence of artifacts (4;[3,4] vs 3;[3,4] p=0.027 - p=0.046 for all readers), spinal cord visualization (4;[4,4] vs 4;[3,4], p<0.001 for all readers), lesion conspicuity (4;[4,4] vs 4;[4,4], p=0.016 for all readers) and quality of fat suppression (4;[4,4] vs 4;[4,4], p=0.027 - p=0.033 for all readers), were all deemed significantly improved by all three readers on Spiral images as compared to TSE images. CONCLUSION: We demonstrate the feasibility of a novel 3D spiral GRE sequence for improved and rapid sagittal CE FS T1W spine MRI. ADVANCES IN KNOWLEDGE: A 3D spiral GRE sequence allows for improved sagittal CE FS T1W spine MRI at very short scan times.


Sujet(s)
Artéfacts , Imagerie par résonance magnétique , Humains , Imagerie tridimensionnelle/méthodes , Imagerie par résonance magnétique/méthodes , Neuroimagerie/méthodes , Pelvis , Rachis
4.
AJR Am J Roentgenol ; 218(1): 132-139, 2022 01.
Article de Anglais | MEDLINE | ID: mdl-34406050

RÉSUMÉ

BACKGROUND. Sequences with noncartesian k-space sampling may improve image quality of head and neck MRI. OBJECTIVE. The purpose of this study was to compare intraindividually the image quality of a spiral gradient-recalled echo (GRE) sequence and conventional cartesian GRE and cartesian turbo spin-echo (TSE) sequences for contrast-enhanced T1-weighted head and neck MRI. METHODS. This prospective study included patients referred for contrast-enhanced head and neck MRI from August 2020 to May 2021. Patients underwent 1.5-T MRI including contrast-enhanced spiral GRE (2 minutes 28 seconds), cartesian GRE (4 minutes 27 seconds), and cartesian TSE (3 minutes 41 seconds) sequences, acquired in rotating order across patients. Three radiologists independently assessed image quality measures, including conspicuity of prespecified lesions, using 5-point Likert scales. One reader measured maximal extent of dental material artifact and contrast-to-noise ratio (CNR). RESULTS. Thirty-one patients (13 men, 18 women; mean age, 63.8 years) were enrolled. Nineteen patients had a focal lesion; 22 had dental material. Interreader agreement for image quality measures was substantial to excellent (Krippendorff alpha, 0.681-1.000). Scores for overall image quality (whole head and neck, neck only, and head only), pulsation artifact, muscular contour delineation, vessel contour delineation, motion artifact, and differentiation between mucosa and pharyngeal muscles were significantly better for spiral GRE than for cartesian GRE and cartesian TSE for all readers (p < .05). Scores for lesion conspicuity (whole head and neck, neck only, and head only), quality of fat suppression, flow artifact, and foldover artifact were not significantly different between spiral GRE and the cartesian sequences for any reader (p > .05). Dental material artifact scores were significantly worse for spiral GRE than the other sequences for all readers (p < .05). The mean maximum extent of dental material artifact was 39.6 ± 25.5 (SD) mm for spiral GRE, 35.6 ± 24.3 mm for cartesian GRE, and 29.6 ± 21.4 mm for cartesian TSE; the mean CNR was 221.1 ± 94.5 for spiral GRE, 151.8 ± 85.7 for cartesian GRE, and 153.0 ± 63.2 for cartesian TSE (p < .001 between spiral GRE and other sequences for both measures). CONCLUSION. Three-dimensional spiral GRE improves subjective image quality and CNR of head and neck MRI with shorter scan time versus cartesian sequences, though it exhibits larger dental material artifact. CLINICAL IMPACT. A spiral sequence may help overcome certain challenges of conventional cartesian sequences for head and neck MRI.


Sujet(s)
Produits de contraste , Tumeurs de la tête et du cou/imagerie diagnostique , Amélioration d'image/méthodes , Imagerie tridimensionnelle/méthodes , Imagerie par résonance magnétique/méthodes , Adulte , Sujet âgé , Sujet âgé de 80 ans ou plus , Artéfacts , Femelle , Tête/imagerie diagnostique , Humains , Mâle , Adulte d'âge moyen , Cou/imagerie diagnostique , Études prospectives , Reproductibilité des résultats
5.
Acad Radiol ; 29(2): 269-276, 2022 02.
Article de Anglais | MEDLINE | ID: mdl-33158702

RÉSUMÉ

OBJECTIVES: Acoustic noise emission from MRI scanners is considered a major factor of patient discomfort during routine MRI examinations. We prospectively evaluated the impact of acoustic noise reduction using software implementations in routine clinical MRI on subjective patient experience and image quality. METHODS: Two-hundred consecutive patients undergoing one of four MRI examinations (brain, lumbar spine, shoulder, and knee) at a single center were prospectively randomized into two groups at a 1 to 1 ratio: standard MRI examination and MRI examination with acoustic noise reduction. After the examination, patients were asked to complete a questionnaire aimed at defining their subjective experience (primary endpoint). Two readers assessed subjective image quality of all patient studies in consensus (secondary endpoint). Nonparametric tests and logistic regression models were used for statistical analysis. RESULTS: Hundred-seventy-four patients were included in the final study. Patients in the intervention group felt less discomforted by the acoustic noise (p = 0.01) and reported increased audibility of music through the headphones (p = 0.03). No significant difference in subjective image quality was found. CONCLUSION: Our study indicates that the effects of acoustic noise reduction in routine clinical MRI can be translated into reduced patient discomfort from acoustic noise and improved audibility of music. Acoustic noise reduction thus significantly contributes to increased patient comfort during MRI examinations.


Sujet(s)
Acoustique , Imagerie par résonance magnétique , Humains , Bruit , Évaluation des résultats des patients , Rapport signal-bruit
6.
Eur J Radiol Open ; 8: 100377, 2021.
Article de Anglais | MEDLINE | ID: mdl-34611530

RÉSUMÉ

PURPOSE: To investigate the diagnostic yield of low to ultra-high b-values for the differentiation of benign from malignant vertebral fractures using a state-of-the-art single-shot zonal-oblique-multislice spin-echo echo-planar diffusion-weighted imaging sequence (SShot ZOOM SE-EPI DWI). MATERIALS AND METHODS: 66 patients (34 malignant, 32 benign) were examined on 1.5 T MR scanners. ADC maps were generated from b-values of 0,400; 0,1000 and 0,2000s/mm2. ROIs were placed into the fracture of interest on ADC maps and trace images and into adjacent normal vertebral bodies on trace images. The ADC of fractures and the Signal-Intensity-Ratio (SIR) of fractures relative to normal vertebral bodies on trace images were considered quantitative metrics. The appearance of the fracture of interest was graded qualitatively as iso-, hypo-, or hyperintense relative to normal vertebrae. RESULTS: ADC achieved an area under the curve (AUC) of 0.785/0.698/0.592 for b = 0,400/0,1000/0,2000s/mm2 ADC maps respectively. SIR achieved an AUC of 0.841/0.919/0.917 for b = 400/1000/2000s/mm2 trace images respectively. In qualitative analyses, only b = 2000s/mm2 trace images were diagnostically valuable (sensitivity:1, specificity:0.794). Machine learning models incorporating all qualitative and quantitative metrics achieved an AUC of 0.95/0.98/0.98 for b-values of 400/1000/2000s/mm2 respectively. The model incorporating only qualitative metrics from b = 2000s/mm2 achieved an AUC of 0.97. CONCLUSION: By using quantitative and qualitative metrics from SShot ZOOM SE-EPI DWI, benign and malignant vertebral fractures can be differentiated with high diagnostic accuracy. Importantly qualitative analysis of ultra-high b-value images may suffice for differentiation as well.

8.
Sci Rep ; 11(1): 12000, 2021 06 07.
Article de Anglais | MEDLINE | ID: mdl-34099833

RÉSUMÉ

In this paper we sought to develop and assess the reproducibility of an updated 6-point grading system for lumbar foraminal stenosis based on the widely used Lee classification that more accurately describes lumbar foraminal stenosis as seen on high-resolution MRI. Grade A indicates absence of foraminal stenosis. Grades B, C, D and E indicate presence of foraminal stenosis with contact of the nerve root with surrounding anatomical structures (on one, two, three or four sides for B, C, D and E respectively) yet without morphological change of the nerve root. To each grade, a number code indicating the location of contact between the nerve root and surrounding anatomical structure(s) is appended. 1, 2, 3 and 4 indicate contact of the nerve root at superior, posterior, inferior and anterior position of the borders of the lumbar foramen. Grade F indicates presence of foraminal stenosis with morphological change of the nerve root. Three readers graded the lumbar foramina of 101 consecutive patients using high-resolution T2w (and T1w) MR images with a spatial resolution of beyond 0.5 mm3. Interreader agreement was excellent (Cohen's Kappa = 0.866-1). Importantly, 30.6%/31.6%/32.2% (reader 1/reader 2/ reader 3) of foramina were assigned grades that did not appear in the original Lee grading system (grades B and D). The readers found no foramen that could not be described accurately with the updated grading system. Thus, an updated 6-point grading system for lumbar foraminal stenosis is reproducible and comprehensively describes lumbar foraminal stenosis as seen on high-resolution MRI.


Sujet(s)
Sténose pathologique/métabolisme , Région lombosacrale/anatomie et histologie , Sténose du canal vertébral/métabolisme , Sujet âgé , Sujet âgé de 80 ans ou plus , Femelle , Humains , Imagerie par résonance magnétique , Mâle , Adulte d'âge moyen , Reproductibilité des résultats , Études rétrospectives
9.
Sci Rep ; 11(1): 5506, 2021 03 09.
Article de Anglais | MEDLINE | ID: mdl-33750899

RÉSUMÉ

We sought to evaluate the utility of radiomics for Amide Proton Transfer weighted (APTw) imaging by assessing its value in differentiating brain metastases from high- and low grade glial brain tumors. We retrospectively identified 48 treatment-naïve patients (10 WHO grade 2, 1 WHO grade 3, 10 WHO grade 4 primary glial brain tumors and 27 metastases) with either primary glial brain tumors or metastases who had undergone APTw MR imaging. After image analysis with radiomics feature extraction and post-processing, machine learning algorithms (multilayer perceptron machine learning algorithm; random forest classifier) with stratified tenfold cross validation were trained on features and were used to differentiate the brain neoplasms. The multilayer perceptron achieved an AUC of 0.836 (receiver operating characteristic curve) in differentiating primary glial brain tumors from metastases. The random forest classifier achieved an AUC of 0.868 in differentiating WHO grade 4 from WHO grade 2/3 primary glial brain tumors. For the differentiation of WHO grade 4 tumors from grade 2/3 tumors and metastases an average AUC of 0.797 was achieved. Our results indicate that the use of radiomics for APTw imaging is feasible and the differentiation of primary glial brain tumors from metastases is achievable with a high degree of accuracy.


Sujet(s)
Algorithmes , Tumeurs du cerveau , Encéphale , Gliome , Imagerie par résonance magnétique , Adulte , Sujet âgé , Encéphale/imagerie diagnostique , Encéphale/anatomopathologie , Tumeurs du cerveau/imagerie diagnostique , Tumeurs du cerveau/anatomopathologie , Femelle , Gliome/imagerie diagnostique , Gliome/anatomopathologie , Humains , Mâle , Adulte d'âge moyen , Métastase tumorale
10.
Invest Radiol ; 56(8): 517-524, 2021 08 01.
Article de Anglais | MEDLINE | ID: mdl-33653993

RÉSUMÉ

OBJECTIVES: Pulse sequences with non-Cartesian k-space sampling enable improved imaging in anatomical areas with high degrees of motion artifacts. We analyzed a novel spiral 3-dimensional (3D) gradient echo (GRE) magnetic resonance imaging (MRI) sequence ("spiral," 114.7 ± 11 seconds) and compared it with a radial 3D GRE ("vane," 216.7 ± 2 seconds) and a conventional Cartesian 2D turbo spin echo (TSE) sequence ("TSE," 266.7 ± 82 seconds) for contrast-enhanced fat-suppressed T1-weighted spine imaging. MATERIALS AND METHODS: Forty consecutive patients referred for contrast-enhanced MRI were prospectively scanned with all 3 sequences. A qualitative analysis was performed by 3 readers using 4- or 5-point Likert scales to independently grade images in terms of overall image quality, occurrence of artifacts, lesion conspicuity, and conspicuity of nerve roots. The numbers of visible nerve roots per sequence and patient were counted in consensus. Coefficient of variation measurements were performed for the paravertebral musculature (CVPM) and the spinal cord (CVSC). RESULTS: Spiral (median [interquartile range], 5 [4-5]) exhibited improved overall image quality in comparison to TSE (3 [3-4]) and vane (4 [4-5]; both P < 0.001). Vane surpassed TSE in terms of overall image quality (P < 0.001). Spiral (4 [3.75-4]) and vane (3.5 [3-4]) presented with less artifacts than TSE (3 [2.75-3.25]; both P < 0.001). Spiral (4 [4-5]) outperformed vane (4 [3-5]; P = 0.01) and TSE (4 [3-4]; P = 0.04) in terms of lesion conspicuity. Conspicuity of nerve roots was superior on spiral (3 [3-4]) and vane (4 [3-4]) when compared with TSE (1.5 [1-2]; both P < 0.001). Readers discerned significantly more nerve roots on spiral (4 [2.75-8]) and vane (4 [3.75-7.25]) images when compared with TSE (2 [0-4]; both P < 0.001). Interreader agreement ranged from moderate (α = 0.639) to almost perfect (α = 0.967). CVPM and CVSC were significantly lower on spiral as compared with vane and TSE (P < 0.001, P = 0.04). Vane exhibited lower CVPM and CVSC than TSE (P < 0.001, P = 0.01). CONCLUSIONS: A novel spiral 3D GRE sequence improves contrast-enhanced fat-suppressed T1-weighted spinal imaging qualitatively and quantitatively in comparison with a conventional Cartesian 2D TSE sequence and to a lesser extent with a radial 3D GRE sequence at shorter scan times.


Sujet(s)
Produits de contraste , Imagerie tridimensionnelle , Artéfacts , Humains , Imagerie par résonance magnétique , Rachis/imagerie diagnostique
11.
Br J Radiol ; 94(1121): 20200869, 2021 May 01.
Article de Anglais | MEDLINE | ID: mdl-33596102

RÉSUMÉ

OBJECTIVES: Diffusion-weighted imaging (DWI) plays a crucial role in the diagnosis of ischemic stroke. We assessed the value of computed and acquired high b-value DWI in comparison with conventional b = 1000 s mm-2 DWI for ischemic stroke at 3T. METHODS: We included 36 patients with acute ischemic stroke who presented with diffusion abnormalities on DWI performed within 24 h of symptom onset. B-values of 0, 500, 1000 and 2000 s mm-2 were acquired. Synthetic images with b-values of 1000, 1500, 2000 and 2500 s mm-2 were computed. Two readers compared synthetic (syn) and acquired (acq) b = 2000 s mm-2 images with acquired b = 1000 s mm-2 images in terms of lesion detection rate, image quality, presence of uncertain hyperintensities and lesion conspicuity. Readers also selected their preferred b-value. Contrast ratio (CR) measurements were performed. Non-parametrical statistical tests and weighted Cohens' κ tests were computed. RESULTS: Syn1000 and syn1500 matched acq1000 images in terms of lesion detection rate, image quality and presence of uncertain hyperintensities but presented with significantly improved lesion conspicuity (p < 0.01) and were frequently selected as preferred b-values. Acq2000 images exhibited a similar lesion detection rate and improved lesion conspicuity (p < 0.01) but worse image quality (p < 0.01) than acq1000 images. Syn2000 and syn2500 images performed significantly worse (p < 0.01) than acq1000 images in most or all categories. CR significantly increased with increasing b-values. CONCLUSION: Synthetic images at b = 1000 and 1500 s mm-2 and acquired DWI images at b = 2000 s mm-2 may be of clinical value due to improved lesion conspicuity. ADVANCES IN KNOWLEDGE: Synthetic b-values enable improved lesion conspicuity for DWI of ischemic stroke.


Sujet(s)
Imagerie par résonance magnétique de diffusion/méthodes , Accident vasculaire cérébral ischémique/imagerie diagnostique , Sujet âgé , Sujet âgé de 80 ans ou plus , Imagerie par résonance magnétique de diffusion/normes , Femelle , Humains , Mâle , Adulte d'âge moyen , Normes de référence , Études rétrospectives , Rapport signal-bruit , Incertitude
12.
Invest Radiol ; 55(12): 775-784, 2020 12.
Article de Anglais | MEDLINE | ID: mdl-32816415

RÉSUMÉ

OBJECTIVES: Spiral magnetic resonance imaging acquisition may enable improved image quality and higher scan speeds than Cartesian trajectories. We tested the performance of four 3D T1-weighted (T1w) TFE sequences (magnetization-prepared gradient echo magnetic resonance sequence) with isotropic spatial resolution for brain imaging at 1.5 T in a clinical patient cohort based on qualitative and quantitative image quality metrics. Two prototypical spiral TFE sequences (spiral 1.0 and spiral 0.85) and a Cartesian compressed sensing technology accelerated TFE sequence (CS 2.5; acceleration factor of 2.5) were compared with a conventional (reference standard) Cartesian parallel imaging accelerated TFE sequence (SENSE; acceleration factor of 1.8). MATERIALS AND METHODS: The SENSE (5:52 minutes), CS 2.5 (3:17 minutes), and spiral 1.0 (2:16 minutes) sequences all had identical spatial resolutions (1.0 mm). The spiral 0.85 (3:47 minutes) had a higher spatial resolution (0.85 mm). The 4 TFE sequences were acquired in 41 patients (20 with and 21 without contrast media). Three readers rated qualitative image quality (12 categories) and selected their preferred sequence for each patient. Two readers performed quantitative analysis whereby 6 metrics were derived: contrast-to-noise ratio for white and gray matter (CNRWM/GM), contrast ratio for gray matter-CSF (CRGM/CSF), and white matter-CSF (CRWM/CSF); and coefficient of variations for gray matter (CVGM), white matter (CVWM), and CSF (CVCSF). Friedman tests with post hoc Nemenyi tests, exact binomial tests, analysis of variance with post hoc Dunnett tests, and Krippendorff alphas were computed. RESULTS: Concerning qualitative analysis, the CS 2.5 sequence significantly outperformed the SENSE in 4/1 (with/without contrast) categories, whereas the spiral 1.0 and spiral 0.85 showed significantly improved scores in 10/9and 7/7 categories, respectively (P's < 0.001-0.039). The spiral 1.0 was most frequently selected as the preferred sequence (reader 1, 10/15 times; reader 2, 9/12 times; reader 3, 11/13times [with/without contrast]). Interreader agreement ranged from substantial to almost perfect (alpha = 0.615-0.997). Concerning quantitative analysis, compared with the SENSE, the CS 2.5 had significantly better scores in 2 categories (CVWM, CVCSF) and worse scores in 2 categories (CRGM/CSF, CRWM/CSF), the spiral 1.0 had significantly improved scores in 4 categories (CNRWM/GM, CRGM/CSF, CRWM/CSF, CVWM), and the spiral 0.85 had significantly better scores in 2 categories (CRGM/CSF, CRWM/CSF). CONCLUSIONS: Spiral T1w TFE sequences may deliver high-quality clinical brain imaging, thus matching the performance of conventional parallel imaging accelerated T1w TFEs. Imaging can be performed at scan times as short as 2:16 minutes per sequence (61.4% scan time reduction compared with SENSE). Optionally, spiral imaging enables increased spatial resolution while maintaining the scan time of a Cartesian-based acquisition schema.


Sujet(s)
Encéphale/imagerie diagnostique , Imagerie tridimensionnelle/méthodes , Phénomènes magnétiques , Imagerie par résonance magnétique/méthodes , Adulte , Humains , Mâle , Adulte d'âge moyen
13.
PLoS One ; 15(4): e0232372, 2020.
Article de Anglais | MEDLINE | ID: mdl-32348366

RÉSUMÉ

OBJECTIVES: Non-Cartesian Spiral readout can be implemented in 3D Time-of-flight (TOF) MR angiography (MRA) with short acquisition times. In this intra-individual comparison study we evaluated the clinical feasibility of Spiral TOF MRA in comparison with compressed sensing accelerated TOF MRA at 1.5T for intracranial vessel imaging as it has yet to be determined. MATERIALS AND METHODS: Forty-four consecutive patients with suspected intracranial vascular disease were imaged with two Spiral 3D TOFs (Spiral, 0.82x0.82x1.2 mm3, 01:32 min; Spiral 0.8, 0.8x0.8x0.8 mm3, 02:12 min) and a Compressed SENSE accelerated 3D TOF (CS 3.5, 0.82x0.82x1.2 mm3, 03:06 min) at 1.5T. Two neuroradiologists assessed qualitative (visualization of central and peripheral vessels) and quantitative image quality (Contrast Ratio, CR) and performed lesion and variation assessment for all three TOFs in each patient. After the rating process, the readers were questioned and representative cases were reinspected in a non-blinded fashion. For statistical analysis, the Friedman and Nemenyi post-hoc test, Kendall W tests, repeated measure ANOVA and weighted Cohen's Kappa tests were used. RESULTS: The Spiral and Spiral 0.8 outperformed the CS 3.5 in terms of peripheral image quality (p<0.001) and performed equally well in terms of central image quality (p>0.05). The readers noted slight differences in the appearance of maximum intensity projection images. A good to high degree of interstudy agreement between the three TOFs was observed for lesion and variation assessment (W = 0.638, p<0.001 -W = 1, p<0.001). CR values did not differ significantly between the three TOFs (p = 0.534). Interreader agreement ranged from good (K = 0.638) to excellent (K = 1). CONCLUSIONS: Compared to the CS 3.5, both the Spiral and Spiral 0.8 exhibited comparable or better image quality and comparable diagnostic performance at much shorter acquisition times.


Sujet(s)
Angiographie cérébrale/méthodes , Angiopathies intracrâniennes/imagerie diagnostique , Angiographie par résonance magnétique/méthodes , Adulte , Sujet âgé , Sujet âgé de 80 ans ou plus , Angiographie cérébrale/économie , Études de faisabilité , Femelle , Humains , Imagerie tridimensionnelle/économie , Imagerie tridimensionnelle/méthodes , Angiographie par résonance magnétique/économie , Mâle , Adulte d'âge moyen , Facteurs temps
14.
Invest Radiol ; 55(5): 293-303, 2020 05.
Article de Anglais | MEDLINE | ID: mdl-31895223

RÉSUMÉ

OBJECTIVES: Non-Cartesian spiral magnetic resonance (MR) acquisition may enable higher scan speeds, as the spiral traverses the k-space more efficiently per given time than in Cartesian trajectories. Spiral MR imaging can be implemented in time-of-flight (TOF) MR angiography (MRA) sequences. In this study, we tested the performance of five 3-dimensional TOF MRA sequences for intracranial vessel imaging at 1.5 T with qualitative and quantitative image quality metrics based on in vitro and in vivo measurements. Specifically, 3 novel spiral TOF MRA sequences (spiral-TOFs) and a compressed sensing (CS) technology-accelerated TOF MRA sequence (CS 3.5) were compared with a conventional (criterion standard) parallel imaging-accelerated TOF MRA sequence (SENSE). MATERIALS AND METHODS: The SENSE sequence (5:08 minutes) was compared with the CS 3.5 sequence (3:06 minutes) and a spiral-TOF (spiral, 1:32 minutes), all with identical resolutions. In addition, 2 further isotropic spiral-TOFs (spiral 0.8, 2:12 minutes; spiral 0.6, 5:22 minutes) with higher resolution were compared with the SENSE. First, vessel tracking experiments were performed in vitro with a dedicated vascular phantom to determine possible differences in the depiction of cross-sectional areas of vessel segments. For the in vitro tests, an additional 3-dimensional proton density-weighted sequence was added for comparison reasons. Second, 3 readers blinded to sequence details assessed qualitative (16 features) and 2 readers assessed quantitative (contrast-to-noise ratio [CNR], contrast ratio [CR], vessel sharpness, and full width at half maximum edge criterion measurements) image quality based on images acquired from scanning 10 healthy volunteers with all 5 TOF sequences. Scores from quantitative image quality analysis were compared with Kruskal-Wallis, analysis of variance, or Welch's analysis of variance, followed by Dunnett's or Dunnett's T3 post hoc tests. Scores from qualitative image quality analysis were compared with exact binomial tests, and the level of interreader agreement was determined with Krippendorff's alpha. RESULTS: Concerning the in vitro tests, there were no significant differences between the 5 TOFs and the proton density-weighted sequence in measuring cross-sectional areas of vessel segments (P = 0.904). As for the in vivo tests, the CS 3.5 exhibited equal qualitative image quality as the SENSE, whereas the 3 spiral-TOFs outperformed the SENSE in several categories (P values from 0.002 to 0.031). Specifically, the spiral 0.8 and 0.6 sequences achieved significantly higher scores in 12 categories. Interreader agreement ranged from poor (alpha = -0.013, visualization of internal carotid artery segment C7) to substantial (alpha = 0.737, number of vessels visible, sagittal). As for the quantitative metrics, the CS 3.5 and all 3 spiral-TOFs presented with significantly worse CNR than the SENSE ([mean ± SD] SENSE 37.48 ± 7.13 vs CS 3.5 31.14 ± 5.97 vs spiral 19.77 ± 1.65 vs spiral 0.8 16.18 ± 2.14 vs spiral 0.6 10.37 ± 1.05). The CR values did not differ significantly between the SENSE and the other TOFs except for the spiral sequence that showed significantly improved CR (SENSE 0.53 ± 0.03 vs spiral 0.56 ± 0.03). As for vessel sharpness, the SENSE was outperformed by all spiral-TOFs (SENSE 0.37 ± 0.03 vs spiral 0.52 ± 0.07 vs spiral 0.8 0.53 ± 0.08 vs spiral 0.6 0.73 ± 0.09), whereas the CS 3.5 performed equally well (SENSE 0.37 ± 0.03 vs CS 3.5 0.37 ± 0.03). Full width at half maximum values did not differ significantly between any TOF. CONCLUSIONS: Spiral-TOFs may deliver high-quality intracranial vessel imaging thus matching the performance of conventional parallel imaging-accelerated TOFs (such as the SENSE). Specifically, imaging can be performed at unprecedented scan times as short as 1:32 minutes per sequence (70.12% scan time reduction compared with SENSE). Optionally, spiral imaging may also be used to increase spatial resolution while maintaining the scan time of a Cartesian-based acquisition schema. The CNR was decreased in spiral-TOF images.


Sujet(s)
Angiopathies intracrâniennes/diagnostic , Imagerie tridimensionnelle/méthodes , Angiographie par résonance magnétique/méthodes , Adulte , Femelle , Volontaires sains , Humains , Mâle , Adulte d'âge moyen , Reproductibilité des résultats , Jeune adulte
15.
BMC Ophthalmol ; 19(1): 258, 2019 Dec 16.
Article de Anglais | MEDLINE | ID: mdl-31842814

RÉSUMÉ

BACKGROUND: In this retrospective study the relationship between intraocular pressure (IOP), retinal nerve fiber layer (RNFL) thickness and pathologic hypersignal in optic nerve segments on 3D double inversion recovery (DIR) MR sequence in 21 patients with proven glaucoma of different origin was evaluated. METHODS: All patients were examined on a 3 T MR Philips® scanner. Pathologic optic nerve DIR hypersignal was determined in four different nerve segments. IOP was measured in mmHg by applanation tonometry. RNFL thickness was measured in µm with optical coherence tomography (OCT Heidelberg Engineering Spectralis® apparatus). Wilcoxon rank sum tests, student's t-tests and (multivariate) linear regression models were appied. RESULTS: 3D DIR hypersignal was present in 17 (41.5%) optic nerves. 3D DIR hypersignal was not related to ischemic or demyelinating optic nerve pathology but was associated with increased IOP (19.8 [24-18]; versus 15.45; [18.85-13.75] mmHg; p = 0.008) and decreased RNFL thickness (61.06 ± 12.1 versus 82.5 ± 21.6 µm; p < 0.001) in comparison to optic nerves of glaucoma patients without DIR hypersignal. Specifically, presence of DIR hypersignal in optic nerves in at least one optic nerve segment lowered RNFL thickness on average by 17.54 µm (p = 0.005) in comparison to optic nerves without DIR hypersignal. CONCLUSIONS: In patients with glaucomatous optic neuropathy (GON) and pathologic optic nerve DIR hypersignal, significantly increased IOP and significantly decreased RNFL thickness values are present. DIR hypersignal seems to be a marker for disease severity in GON related to decreased RNFL thickness and may thus represent long-segment severe axonal degeneration in optic nerves in patients with GON. Venous congestion and edema within the optic nerve related to high IOP may contribute to the DIR hypersignal as well.


Sujet(s)
Glaucome à angle fermé/physiopathologie , Glaucome à angle ouvert/physiopathologie , Pression intraoculaire/physiologie , Neurofibres/anatomopathologie , Atteintes du nerf optique/physiopathologie , Cellules ganglionnaires rétiniennes/anatomopathologie , Sujet âgé , Sujet âgé de 80 ans ou plus , Femelle , Glaucome à angle fermé/imagerie diagnostique , Glaucome à angle ouvert/imagerie diagnostique , Humains , Imagerie tridimensionnelle , Imagerie par résonance magnétique , Mâle , Adulte d'âge moyen , Atteintes du nerf optique/imagerie diagnostique , Études rétrospectives , Tomographie par cohérence optique , Tonométrie oculaire , Tests du champ visuel , Champs visuels/physiologie
16.
Eur J Radiol ; 120: 108667, 2019 Nov.
Article de Anglais | MEDLINE | ID: mdl-31550639

RÉSUMÉ

PURPOSE: To compare image quality between a 2D T1w turbo spin echo (TSE) sequence and a Compressed SENSE accelerated 3D T1w black blood TSE sequence (equipped with a black blood prepulse for blood signal suppression) in pre- and postcontrast imaging of the pituitary and to assess scan time reductions. METHODS AND MATERIALS: For this retrospective study, 56 patients underwent pituitary MR imaging at 3T. 28 patients were scanned with the 2D- and 28 patients with the accelerated 3D sequence. Two board certified neuroradiologists independently evaluated 13 qualitative image features (12 features on postcontrast- and 1 feature on precontrast images).SNR and CNR measurements were obtained. Interreader agreement was assessed with the intraclass correlation coefficient while differences in scores were assessed with exact Wilcoxon rank sum tests. RESULTS: The interreader agreement ranged from fair (visibility of the ophthalmic nerve, ICC = 0.57) to excellent (presence and severity of pulsation artefacts, ICC = 0.97). The Compressed SENSE accelerated 3D sequence outperformed the 2D sequence in terms of "overall image quality" (median: 4 versus 3, p = 0.04) and "presence and severity of pulsation artefacts" (median: 0 versus 1, p < 0.001). There were no significant differences in any other qualitative and quantitative (SNR, CNR) image quality features. Scan time was reduced by 03:53 min (33.1%) by replacing the 2D with the 3D sequence. CONCLUSION: The Compressed SENSE accelerated 3D T1w black blood TSE sequence is a reliable alternative for the standard 2D sequence in pituitary imaging. The black blood prepulse may aid in suppression of pulsation artefacts.


Sujet(s)
Imagerie par résonance magnétique/méthodes , Maladies de l'hypophyse/anatomopathologie , Adolescent , Adulte , Sujet âgé , Sujet âgé de 80 ans ou plus , Artéfacts , Femelle , Humains , Imagerie tridimensionnelle/méthodes , Mâle , Adulte d'âge moyen , Études rétrospectives , Statistique non paramétrique , Jeune adulte
17.
Front Aging Neurosci ; 11: 199, 2019.
Article de Anglais | MEDLINE | ID: mdl-31427956

RÉSUMÉ

OBJECTIVES: To assess the influence of age and sex on 10 cerebrospinal fluid (CSF) flow dynamics parameters measured with an MR phase contrast (PC) sequence within the cerebral aqueduct at the level of the intercollicular sulcus. MATERIALS AND METHODS: 128 healthy subjects (66 female subjects with a mean age of 52.9 years and 62 male subjects with a mean age of 51.8 years) with a normal Evans index, normal medial temporal atrophy (MTA) score, and without known disorders of the CSF circulation were included in the study. A PC MR sequence on a 3T MR scanner was used. Ten different flow parameters were analyzed using postprocessing software. Ordinal and linear regression models were calculated. RESULTS: The parameters stroke volume (sex: p < 0.001, age: p = 0.003), forward flow volume (sex: p < 0.001, age: p = 0.002), backward flow volume (sex: p < 0.001, age: p = 0.018), absolute stroke volume (sex: p < 0.001, age: p = 0.005), mean flux (sex: p < 0.001, age: p = 0.001), peak velocity (sex: p = 0.009, age: p = 0.0016), and peak pressure gradient (sex: p = 0.029, age: p = 0.028) are significantly influenced by sex and age. The parameters regurgitant fraction, stroke distance, and mean velocity are not significantly influenced by sex and age. CONCLUSION: CSF flow dynamics parameters measured in the cerebral aqueduct are partly age and sex dependent. For establishment of reliable reference values for clinical use in future studies, the impact of sex and age should be considered and incorporated.

18.
Front Neurosci ; 13: 520, 2019.
Article de Anglais | MEDLINE | ID: mdl-31178687

RÉSUMÉ

OBJECTIVES: To define normal signal intensity values of amide proton transfer-weighted (APTw) magnetic resonance (MR) imaging in different brain regions. MATERIALS AND METHODS: Twenty healthy subjects (9 females, mean age 29 years, range 19 - 37 years) underwent MR imaging at 3 Tesla. 3D APTw (RF saturation B1,rms = 2 µT, duration 2 s, 100% duty cycle) and 2D T2-weighted turbo spin echo (TSE) images were acquired. Postprocessing (image fusion, ROI measurements of APTw intensity values in 22 different brain regions) was performed and controlled by two independent neuroradiologists. Values were measured separately for each brain hemisphere. A subject was scanned both in prone and supine position to investigate differences between hemispheres. A mixed model on a 5% significance level was used to assess the effect of gender, brain region and side on APTw intensity values. RESULTS: Mean APTw intensity values in the hippocampus and amygdala varied between 1.13 and 1.57%, in the deep subcortical nuclei (putamen, globus pallidus, head of caudate nucleus, thalamus, red nucleus, substantia nigra) between 0.73 and 1.84%, in the frontal, occipital and parietal cortex between 0.56 and 1.03%; in the insular cortex between 1.11 and 1.15%, in the temporal cortex between 1.22 and 1.37%, in the frontal, occipital and parietal white matter between 0.32 and 0.54% and in the temporal white matter between 0.83 and 0.89%. APTw intensity values were significantly impacted both by brain region (p < 0.001) and by side (p < 0.001), whereby overall values on the left side were higher than on the right side (1.13 vs. 0.9%). Gender did not significantly impact APTw intensity values (p = 0.24). APTw intensity values between the left and the right side were partially reversed after changing the position of one subject from supine to prone. CONCLUSION: We determined normal baseline APTw intensity values in different anatomical localizations in healthy subjects. APTw intensity values differed both between anatomical regions and between left and right brain hemisphere.

19.
Neurobiol Aging ; 76: 181-193, 2019 04.
Article de Anglais | MEDLINE | ID: mdl-30738323

RÉSUMÉ

The protracted accumulation of amyloid-ß (Aß) is a major pathologic hallmark of Alzheimer's disease and may trigger secondary pathological processes that include neurovascular damage. This study was aimed at investigating long-term effects of Aß burden on cerebral blood volume of arterioles and pial arteries (CBVa), possibly present before manifestation of dementia. Aß burden was assessed by 11C Pittsburgh compound-B positron emission tomography in 22 controls and 18 persons with mild cognitive impairment (MCI), [ages: 75(±6) years]. After 2 years, inflow-based vascular space occupancy at ultra-high field strength of 7-Tesla was administered for measuring CBVa, and neuropsychological testing for cognitive decline. Crushing gradients were incorporated during MR-imaging to suppress signals from fast-flowing blood in large arteries, and thereby sensitize inflow-based vascular space occupancy to CBVa in pial arteries and arterioles. CBVa was significantly elevated in MCI compared to cognitively normal controls and regional CBVa related to local Aß deposition. For both MCI and controls, Aß burden and follow-up CBVa in several brain regions synergistically predicted cognitive decline over 2 years. Orbitofrontal CBVa was positively associated with apolipoprotein E e4 carrier status. Increased CBVa may reflect long-term effects of region-specific pathology associated with Aß deposition. Additional studies are needed to clarify the role of the arteriolar system and the potential of CBVa as a biomarker for Aß-related vascular downstream pathology.


Sujet(s)
Maladie d'Alzheimer/étiologie , Maladie d'Alzheimer/physiopathologie , Peptides bêta-amyloïdes/métabolisme , Artérioles/physiopathologie , Volume sanguin cérébral , Dysfonctionnement cognitif/étiologie , Dysfonctionnement cognitif/physiopathologie , Sujet âgé , Sujet âgé de 80 ans ou plus , Maladie d'Alzheimer/imagerie diagnostique , Maladie d'Alzheimer/métabolisme , Dysfonctionnement cognitif/imagerie diagnostique , Dysfonctionnement cognitif/métabolisme , Femelle , Humains , Imagerie par résonance magnétique , Mâle , Neuroimagerie
20.
Neuroimage ; 186: 399-409, 2019 02 01.
Article de Anglais | MEDLINE | ID: mdl-30342237

RÉSUMÉ

PURPOSE: The lateral geniculate nucleus (LGN) is an essential nucleus of the visual pathway, occupying a small volume (60-160 mm3) among the other thalamic nuclei. The reported LGN volumes vary greatly across studies due to technical limitations and due to methodological differences of volume assessment. Yet, structural and anatomical alterations in ophthalmologic and neurodegenerative pathologies can only be revealed by a precise and reliable LGN representation. To improve LGN volume assessment, we first implemented a reference acquisition for LGN volume determination with optimized Contrast to Noise Ratio (CNR) and high spatial resolution. Next, we compared CNR efficiency and rating reliability of 3D Magnetization Prepared Rapid Gradient Echo (MPRAGE) images using white matter nulled (WMn) and grey matter nulled (GMn) sequences and its subtraction (WMn-GMn) relative to the clinical standard Proton Density Turbo Spin Echo (PD 2D TSE) and the reference acquisition. We hypothesized that 3D MPRAGE should provide a higher CNR and volume determination accuracy than the currently used 2D sequences. MATERIALS AND METHODS: In 31 healthy subjects, we obtained at 3 and 7 T the following MR sequences: PD-TSE, MPRAGE with white/grey matter signal nulled (WMn/GMn), and a motion-corrected segmented MPRAGE sequence with a resolution of 0.4 × 0.4 × 0.4 mm3 (reference acquisition). To increase CNR, GMn were subtracted from WMn (WMn-GMn). Four investigators manually segmented the LGN independently. RESULTS: The reference acquisition provided a very sharp depiction of the LGN and an estimated mean LGN volume of 124 ±â€¯3.3 mm3. WMn-GMn had the highest CNR and gave the most reproducible LGN volume estimations between field strengths. Even with the highest CNR efficiency, PD-TSE gave inconsistent LGN volumes with the weakest reference acquisition correlation. The LGN WM rim induced a significant difference between LGN volumes estimated from WMn and GMn. WMn and GMn LGN volume estimations explained most of the reference acquisition volumes' variance. For all sequences, the volume rating reliability were good. On the other hand, the best CNR rating reliability, LGN volume and CNR correlations with the reference acquisition were obtained with GMn at 7 T. CONCLUSION: WMn and GMn MPRAGE allow reliable LGN volume determination at both field strengths. The precise location and identification of the LGN (volume) can help to optimize neuroanatomical and neurophysiological studies, which involve the LGN structure. Our optimized imaging protocol may be used for clinical applications aiming at small nuclei volumetric and CNR quantification.


Sujet(s)
Corps géniculés/anatomie et histologie , Corps géniculés/imagerie diagnostique , Traitement d'image par ordinateur/méthodes , Imagerie par résonance magnétique/méthodes , Adolescent , Adulte , Femelle , Humains , Amélioration d'image , Mâle , Adulte d'âge moyen , Normes de référence , Reproductibilité des résultats , Rapport signal-bruit , Jeune adulte
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE